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Abstract: Energy limitations remain a key concern in the development of Internet of Medical Things
(IoMT) devices since most of them have limited energy sources, mainly from batteries. Therefore,
providing a sustainable and autonomous power supply is essential as it allows continuous energy
sensing, flexible positioning, less human intervention, and easy maintenance. In the last few years,
extensive investigations have been conducted to develop energy-autonomous systems for the IoMT
by implementing energy-harvesting (EH) technologies as a feasible and economically practical
alternative to batteries. To this end, various EH-solutions have been developed for wearables to
enhance power extraction efficiency, such as integrating resonant energy extraction circuits such as
SSHI, S-SSHI, and P-SSHI connected to common energy-storage units to maintain a stable output
for charge loads. These circuits enable an increase in the harvested power by 174% compared to
the SEH circuit. Although IoMT devices are becoming increasingly powerful and more affordable,
some tasks, such as machine-learning algorithms, still require intensive computational resources,
leading to higher energy consumption. Offloading computing-intensive tasks from resource-limited
user devices to resource-rich fog or cloud layers can effectively address these issues and manage
energy consumption. Reinforcement learning, in particular, employs the Q-algorithm, which is
an efficient technique for hardware implementation, as well as offloading tasks from wearables to
edge devices. For example, the lowest reported power consumption using FPGA technology is
37 mW. Furthermore, the communication cost from wearables to fog devices should not offset the
energy savings gained from task migration. This paper provides a comprehensive review of joint
energy-harvesting technologies and computation-offloading strategies for the IoMT. Moreover, power
supply strategies for wearables, energy-storage techniques, and hardware implementation of the task
migration were provided.

Keywords: energy harvesting; IoMT devices; energy autonomous; wearables; energy-storage; energy
management; fog edge computing; task offloading; deep learning; reinforced learning; IoMT

1. Introduction

With the spread of Internet of Medical Things (IoMT) applications, more intelligent
services are presently emerging in the healthcare and medical areas, such as remote patient
monitoring [1,2], telemedicine [3], biometrics scanners [4] and vital signs monitoring [5,6].
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In general, the IoMT comprises different and heterogeneous smart devices, such as wear-
ables, wireless sensors, and medical monitors, which can be applied to the human body,
at home or in hospitals to provide better and more efficient remote monitoring. By com-
bining information technology with medical information, wearable devices can perform
better monitoring of medical and healthcare applications, resulting in reduced complexity
and enhanced efficiency. With the use of the IoMT, physicians and healthcare responsible
are also able to access different and real-time medical databases, which ensures a better
understanding and identification of their patients’ health issues.

The IoMT presents an application of the Internet of Things (IoT) in the field of medical
and healthcare. The IoT comprises physical network devices equipped with sensors,
software, and network connections that facilitate data collection and transmission. It can
integrate cloud services and fog centers, where complex and efficient data processing
is carried out with high processing capabilities. Considering the basic concepts of the
IoT, the general layer architecture of IoMT is illustrated in Figure 1. It comprises four
main layers, namely the sensing layer, the edge layer, the fog layer and the cloud layer.
In the sensing layer, the wireless sensors and medical devices are installed along with
different actuators. They are responsible for sensing medical and physiological information,
and executing specific controlling and monitoring requests such as laser positioning and
equipment maintenance. The raw data collected from the end devices are collected and
transmitted to the edge devices, where data processing, reduction and analysis are carried
out. Devices with edge computing processors provide improved security while operating
at a low power level. Within the fog layer, local area networks are installed, where the
data are transmitted from endpoints to a gateway, where it is then transmitted to sources
for processing and return transmission. By the end, data are transmitted to the cloud
layer, which can access several IoT devices at the same time. It permits real-time and
continuous data processing with higher computational capabilities. However, even though
wearable devices are becoming more powerful and affordable, machine-learning-based
tasks that typically require more computation resources may overload them with higher
data communications and, therefore, higher energy consumption.

Figure 1. General layers architecture of IoMT system.

Therefore, it becomes imperative to offload some tasks from resource-constrained
edge devices to co-located edge devices, such as the fog. Applications that require intensive
computation resources are often offloaded to cloud servers to be processed, which improves
IoT device capabilities. Cloud computing, by contrast, may cause high latency response
times, privacy and security issues. As a solution, some studies proposed to offload tasks
to a Mobile Edge Computing (MEC) server via edge devices that can be placed near
end devices and process some computational capacity. Thus, transmission latencies are
reduced, and reliability and security are enhanced. Even though computation offloading
over fog edge computing or MEC has reduced the energy consumption of IoMT devices to
a certain degree, their energy limitations remain a key concern. However, most devices are
powered by batteries, which limits their energy resources and operating times. Similarly,
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computation performance may be affected if not enough battery energy is available for
task transmission. A larger battery or more frequent recharging can address this problem.
In contrast, the small size of IoMT devices makes it difficult to equip them with larger
batteries or to recharge their batteries frequently. To address these challenges, energy-
harvesting technologies have been identified as promising techniques to increase battery
life and achieve energy-autonomous systems. Figure 2 shows the general architecture of
an IoMT system with the integration of EH-supplied systems and considering the task-
offloading aspect. The IoMT system includes various types of sensors used, most likely
activity sensors (presented in red circles in Figure 2), physiological sensors (presented in
green circles in Figure 2). Sensor are placed over the human body within a network, where
each sensor is responsible for monitoring certain physical information. The sensor data
are gathered in the base station to be transmitted to the next IoT layer, which can be either
an access point, a gateway or a mobile device. Later, the collected data are transported to
the fog layer and then the cloud. Communication can be established between different
installed devices over the different layers. During the communication, information related
to the actual status of the corresponding devices, such as the residual energy level, neighbor
list and reception acknowledgement could be shared. This information care is used later to
decide upon the most appropriate device for task offloading. Offloading involves sharing
details about which device will be best suited to execute the current task, the type of task
that will be executed, and how it will be executed. Task offloading can occur at different
levels of the IoMT system, such as from the WBAN to the gateway and from the gateway
to the fog, to the cloud.

Figure 2. General architecture of an IoMT system based on energy harvesting and with consideration
of task offloading.

Within the framework of IoT for medical applications, continuous data transmission
takes place over the different layers of the network. Therefore, different sensor and commu-
nication technologies are used for sensing and transmitting data in real time, enabling fast
calculations and optimal decision-making. It is crucial to satisfy the trade-off between the
energy consumption, computational capability and data transmission for a real-time and
accurate operation. Several schemes for energy efficiency and management are required to
respond to these challenges. In general they can be classified into four main categories:
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• Resources allocation ensures a better allocation and management of the available
resources, mainly radio and energy resources.

• Energy harvesting and transfer provide a sustainable energy supply, which are har-
vested from ambient resources. In the case of wearable systems, the energy can even
be harvested from the human activities, such as breathing and movement.

• Hardware systems are explored during the development and design of wireless nodes
and devices with consideration of the minimum energy consumption.

• Network installation enables the definition of appropriate infrastructures that maxi-
mize energy efficiency and ensure the data transmission and computational capabilities.

In this direction, it is important to investigate energy-efficient solutions for IoMT
system, where intensive tasks and data processing are realized in a strict execution time.
In particular, the communication and data transmissions need more attention, especially
in the case of limited energy sources and computation capabilities. In this direction,
investigations into energy-harvesting solutions along with task-offloading concepts present
a promising solution to deal with excessive demands for a stable communication and data
transmission. The contributions of this paper are:

• We provide a literature review of the state-of-the-art joint energy-harvesting and
task-offloading approaches in fog edge computing systems.

• We compare the state-of-the-art related surveys based on specific key features.
• We investigate energy-harvesting technologies and energy-storage strategies for

IoMT devices.
• We survey recent research efforts on task offloading in fog edge computing and related

design considerations.
• We review existing approaches for the design of patient-centered care system.

The paper is organized as follows. Section 2 surveys research efforts related to joint en-
ergy harvesting and task-offloading approaches in fog edge computing systems. Section 3
presents the task-offloading approaches for fog edge computing, and deep-reinforcement
learning-based algorithms. Section 4 highlights the related design considerations and
challenges for EH driven task offloading. Section 5 reviews possibilities of energy sup-
ply, energy-storage strategies and recent trends in energy harvesting. Section 6 presents
requirements for patient-centered care system. Finally, Section 7 concludes the paper.

2. Related Works

Recently, task offloading in fog edge computing systems has gained considerable
attention due to the increasing development of IoMT devices. In [7], the authors developed
a deep-learning-based, Internet of Medical Things-enabled edge computing framework
for tackling COVID-19. It detects various COVID-19 symptoms and generates reports
and alerts for medical decision support. Results indicate that the system can be used to
effectively manage in-home health during a pandemic. Nevertheless, improvements to
the system accuracy were needed as well as implementations with real subjects. In [8]
a joint optimization framework was also proposed for IoT fog computing to achieve
optimal resource allocation. The results show that the proposed framework enhanced the
performance of IoT-based network systems. In [9] authors investigated delay-sensitive
task offloading in edge-enabled healthcare services. A priority-aware service provisioning
was proposed, allowing edge server computing resources to handle hard-deadline tasks
earlier than soft-deadline tasks which have a lower priority and can tolerate longer delays
over hard-deadline tasks. In contrast, the authors plan to examine how hard-deadline
tasks can be placed in remote healthcare applications where ensuring high reliability is a
crucial requirement.

When focusing on the increasing number of tasks that require high computational ca-
pability and consequently more energy, mobile devices need effective mechanisms to figure
out which tasks to perform locally and which to migrate to the cloud. The authors in [10]
discussed different computational offloading techniques. They consider the offloading
either to a fog node or a cloud. They both have their trade-offs. The cloud, as an example,



Electronics 2022, 11, 383 5 of 25

is rich in terms of resources, but offloading computational tasks to cloud servers can lead
to security and privacy issues and it is also far away from mobile nodes. In contrast, fog is
nearby but has limited resources. Hence, offloading to a cloud or fog consumes different
amounts of energy and increases computation performance. In this context, the authors
proposed an energy consumption-oriented algorithm to reduce energy consumption when
offloading tasks. Initially, they compute the consumed energy when offloading the task to
the fog compared to the cloud. Afterwards, they evaluated which entity would be preferred
for the task based on the computation requirements. Based on these factors, the task is then
offloaded to the desired entity.

Energy harvesting is a promising technology for converting ambient (solar, wind, etc.)
and human energy (motion, breath) into electrical power, enabling communication systems
to achieve energy-autonomous and efficient communications. In [11] the joint offloading
and resource allocation issues in energy harvesting small cell networks is addressed to
maximize the number of tasks performed by edge servers while reducing their energy and
delay costs. In [12], the authors proposed a deep-reinforcement-learning-based framework
for online offloading to reduce the computational complexity in large EH-driven networks.
The proposed algorithm can successfully improve offloading behavior by implementing
a deep neural network that learns binary offloading decisions based on past offloading
experiences. In contrast, a distributed implementation of the proposed algorithm is still
needed to enable the users to make offloading decisions in a distributed manner via a learn-
ing process. Similarly, a reinforcement-learning-based privacy-aware offloading scheme
for a healthcare IoT device supplied by energy harvesting was proposed in [13]. The of-
floading policy applied on the edge device can be determined by considering the privacy
level, energy consumption, and computation latency at each time slot. In [14], the authors
investigated computation offloading and resource allocation issues with multiple energy
harvesting supplied mobiles. All mobile devices initially harvest energy from RF signals
and then use it to perform their own tasks locally or offload them to a MEC server. Some
other offloading schemes can also achieve self-sustaining operations. In [15], for instance,
the state-of-the-art of methodologies for task offloading in MEC and wireless power transfer
to end nodes were recently described. The authors demonstrated the effective use of the
Wireless Power Transfer (WPT) technique to charge end mobile phones which have gained
more popularity in MEC. However, the increasing demand for computing resources may
degrade the performance of MEC. Accordingly, they highlighted the influence of making
decisions between task-offloading implementations and offloading locations on the power
consumption of MEC devices.

Energy-efficient appliances have become prevalent in various fields and industries,
including health care. Therefore, energy management is an effective technique for evalu-
ating the energy efficiency of different devices. By contrast, the surveyed contributions
lack discussions of joint energy-harvesting technologies, fog edge computing, and energy
management techniques which are vital for IoMT devices.

Table 1 compares the state-of-the-art-related surveys based on specific key features.

Table 1. Comparison between state-of-the-art surveys.

Reference Fog Edge Computing Task Offloading Energy Harvesting Energy Storage

[16–18] X - - -

[19,20] X X - -

This work X X X X

3. Principles of Task Offloading
3.1. Pre-IoT Age

Task or computation-offloading theory emerged to respond with the need to speed
up task processing in hardware. Task migration in a distributed system aims at balancing
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the load among available processors without a drastic increase in the communication
overhead [21,22]. Two classes of algorithms have been devised: static and dynamic. Com-
munication protocol plays a pivotal role in balancing the load among processors. Three
types of control models have been articulated for load balancing: centralized, distributed,
and hybrid [23].

In a multicore/multiprocessor system, task offloading has been used to speed up the
execution of multitasks, given a process P1 that can be decomposed into n independent
processes, P1, n and M cores. Each process k requires an execution time tk,m on the mth
core, such that m ∈ {1, . . . , M} and k ∈ {1, . . . , n} (see Appendix A). The energy dissipated
by the mth core to run the kth process is Ek,m. The task offloading seeks an offloading
algorithm that assigns tasks such that the execution time is met at the lowest possible
energy consumption, i.e., the offloading should solve the following optimization problem.

min
M

∑
m=1

n

∑
i=1

δi,mEi,m

s.t.
n

∑
k=1

tk,m ≤ t, ,

n ≤ M

(1)

where δi,m

{
1 if Pi runs on processor m
0 else

.

The authors of [24] devised an offloading strategy that moves the computationally
demanding task from CPU to GPU. They further demonstrated this strategy by considering
the implementation of a signature-matching intrusion detection system. This approach has
been generalized to cover the multicore architecture with and without accelerators.

Offloading can be used to balance the load among cores or processors in a multiproces-
sor system. This is often regarded as task migration that aims at moving the task execution
from one core/processor using a given performance metric: power consumption, thermal
energy, and dark silicon [25]. Communication-driven task migration attempts to migrate
tasks to adjacent cores.

3.2. Post IoT Age

The Internet of Things, IoT, is the new trend in connectivity spawned from progress
in sensors, embedded systems, and communication technologies. It is a three-tier archi-
tecture that is composed of a perception/sensors layer, connectivity layer, and application
layer [26].

Mobile edge computing, MEC, is a new frontier in computing technologies. Multi-
tude factors have contributed to the emergence of edge computing. Traditionally, cloud
computing has been the dominant technology for the storage and processing of big data.
Conventional task-offloading techniques have been proposed to migrate computationally in-
tensive tasks/applications to cloud servers for processing. The offloading decision is aimed
at either reducing end-user power consumption or increasing system performance [27].
However, the offloading strategies devised for cloud computing are not adequate in today’s
technologies for the following reasons: (1) Cloud servers cannot sustain the real-time
processing of critical tasks, (2) the growing need for data protection and privacy, (3) the
exponential increase in the number of IoT devices, and (4) the rising concern of the power
consumption of data centers [28]. It has been reported that in the US, data centers consume
up to 2.2% of all utility power [29]. According to the International Energy Agency (IEA),
nearly 1% of global energy is consumed by data centers (roughly 250 TWh).

Edge computing, EC, addresses the shortcomings of cloud computing by bringing
cloud-like services and operations close to the user. Task-offloading techniques have
also been developed for edge computing. Fog computing is a term coined by CISCO
and emerged after edge computing [30,31]. Fog-computing architecture, as illustrated in
Figure 3, is composed of IoT end devices, fog devices that can perform processing and
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storage (such as micro cloudlet and gateways), and cloud layer (typically data centers and
cloud servers) [32,33].

Figure 3. Offloading strategies using fog-computing paradigm. The fog layer is composed of cloudlets
(small-scale data centers),and storage (fog servers). The cloud layer houses data centers and servers.

In the realm of the fog-computing paradigm, task offloading has become a hierarchical
approach in which an offloading algorithm can execute the task locally using a specialized
core, or nearby on an edge device, or remotely on fog or cloud nodes.

Task migration to near or far end nodes needs to account for the cost of the communi-
cation protocol: power and delay. In the context of fog computing, the offloading algorithm
needs to solve the following optimization algorithm.

min
M

∑
m=1

n

∑
i=1

δi,m(Ei,m + ECi,m)

s.t.
n

∑
k=1

(tk,m + τk,m) ≤ t, ,

n ≤ M

(2)

where ECi,m is the energy consumed to transmit data of task Pi to processor m, and τk,m is
the latency to transmit task data to the processor m. Those parameters depend on the type
of the communication protocol as well as the load of the remote processor that will execute
the task.

3.3. Offloading Algorithms

The offloading algorithms aim to find a suitable processor (locally or remotely) to
execute a task given a certain constraint. In wearables, offloading can be done at two stages:
from wearables to edge devices or from edge device to fog/cloud devices [34]. The of-
floading device keeps on checking the estimated available power and compares it with
the forested power demands. The offloading algorithms are invoked whenever the power
demands exceed the available power (harvested and stored) and the energy consumed
by the communication unit is less than the energy consumed by task processing. This
concept is illustrated in Figure 4. Offloading can be combined with advanced techniques
for power management such as sleep, dynamic voltage and frequency scaling (DVFS),
and approximated computing [35].
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Figure 4. Principles of energy-aware offloading algorithm.

3.3.1. Algorithm Classification

Numerous offloading algorithms for fog computing have recently been proposed.
Those algorithms belong to two categories: learning and non-learning. Table 2 summarizes
the types of offloading algorithms proposed recently.

Table 2. Recently proposed offloading algorithm.

Reference Algorithm Type Optimization Problem Objective

[36] Heuristic Approximation algorithm Reduce energy consumption of
wearables

[37] Heuristic Mixed-integer nonlinear
programming

Joint scheduling and
offloading

[38] Coalition game
theory merge and split maxi- mize the total numbers

of computed bits

[39] Evolutionary genetic algorithm joint optimization of load
balance and propagation delay

[40] Deterministic Iterative balance relays energy

[41] Reinforcement
learning

decentralized partially
observable Markov

decision process

Maximizing IoT utility and
satisfying delay requirements

[42] Reinforcement
learning

Deep Deterministic Policy
Gradient

Maximizing task completion
rate and reducing task latency

[43,44] Reinforcement
learning Q-deep learning Reduce computation latency

3.3.2. Deep-Reinforcement Learning

In recent years, much attention has been given to deep-reinforcement learning (DRL)
in task offloading. Reinforcement learning, RL, is a branch of artificial intelligence in
which an agent interacts with the environment and learns using two functions: reward
and punishment. Punishment is a negative reward. In RL, the learning cycle is not based
on a training dataset; instead, the agent interacts with the environments with no prior
knowledge and obtains immediate feedback based on its performance. The environment is
modeled as a Markovian Decision Process (MDP). In RL an experience is defined as the
triple (st, at, rt), where st, at, and rt are, respectively the state, action and reward at the time
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t. The agent determines the action based on a policy, π(s). Q-learning algorithm is an
offline policy that estimates π(s) with guaranteed convergence. The mapping between the
policy and the state at a given time t is given by (3) [45]

Q(st, at) = Q(st, at) + α(rt + γ max
a

Q(st+1, at)−Q(st, at)), (3)

where α is the learning rate, and γ is the discount rate. In RL, the agent tends to maximize
the rewards. This concept is illustrated in Figure 5.

Figure 5. Principles of DRL.

Offloading algorithms-based Q-Learning has been devised in many published reports
such [11,43,44,46–48].

In [46], the authors devised a dynamic computation-offloading strategy for an MEC
system using Markov decision process theory. The authors considered IoT devices with
energy-harvesting techniques. The optimal offloading is achieved using a low-complex
after-state learning method.

The problem of task offloading in the context of MEC has been formulated in [47] as
a constrained Markov decision process (CMDP). The authors applied Lagrangian primal-
dual optimization and devised a deep-reinforcement learning algorithm to solve the re-
laxed CMDP.

Dynamic computational offloading for MEC systems with EH-enabled IoT devices
considering multiple offloading servers has been studied and solved in [48]. The authors
elaborated an offloading algorithm using deep Q-learning techniques.

Hardware implementation of the Q-learning algorithm received scant attention. Most
of the reported implementation focuses on designing an accelerator using FPGA technology.
The lowest power consumption has been reported to be 37 mW for a Q-matrix of dimensions
eight states and four policies [49].

The work of [41] considered task offloading with energy harvesting for an IoT MEC
system. The offloading problem has been formulated as a decentralized partially observable
Markov decision process. They further reduced the computational complexity by searching
for an approximated solution using an RL decentralized offloading algorithm. The results,
obtained using Matlab simulations, showed that the proposed reduces both average delay
and average energy consumption.

To this end, it is crucial to identify the power consumption during different activities
of the end devices, in particular data processing, data transmission and communication.
In the following section, specific design considerations for task offloading are presented,
which may influence the power consumption and the latency of the software and hard-
ware components of the IoMT systems. The main focus is attributed to the choice of the
communication protocols for IoT devices with consideration of the energy consumption.

4. Design Considerations for the Task Offloading

With respect to the general architecture of IoMT, Wireless Body Area Networks
(WBANs) [38,50,51] are installed where various types of sensors are used, most likely
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activity sensors (e.g., accelerometer), physiological sensors (e.g., heart rate, ECG and body
temperature) and environmental sensors (e.g., humidity and air pressure) (see Figure 1).
Various types of applications are recognized with enhanced sensing and communication ca-
pability, such as biomedical and wearable solutions for health monitoring, human activities
control, organ implantation monitoring and remote surgical interventions. These appli-
cations require a high data rate, low latency and high quality of services (QoS) [39,40,52],
in order to ensure precise, real-time and secure medical applications. With the integration
of the IoMT, it is more challenging to identify the most appropriate strategy that enables
efficient handling of the intensive and continuous requests from the installed wireless
devices on the human body promptly. Moreover, wireless sensor nodes are battery pow-
ered, where the lifetime of the battery is directly dependent of the number of executed
tasks along the process. Due to this, it is important to increase the computation capacity
of battery-powered devices when performing intensive computing tasks while ensuring
real-time intervention and data transmission. In this context, the choice of suitable data
transmission and communication protocols has a strong influence on the evaluation of
the task-offloading algorithm in terms of processing time, energy consumption and com-
putation. In the following, an overview of the most common communication protocols
is provided.

4.1. Communication Protocols

The general architecture of IoMT is reported in Figure 1. The provided architecture is
composed of three main layers: (1) the things/devices layer, where the WBAN is installed,
along with the gateway devices, (2) the fog layer, and (3) the cloud layer [53,54]. Different
communication technologies can be identified within each layer, which enable transmission
of the data from the end devices to the end user.

In the first layer, different sensor nodes are installed on the body, which build the
WBAN. Sensor nodes can be implantable, wearable or mobile, placed for example in
the hand of the patient. In this type of network the communication between sensors
is carried out within a short range of 2 to 3 m. These devices, basically, require small
power sources with respect to the safety and security of the user. Therefore, with respect
to the low power specification and small communication range, the standard Industrial
Scientific and Medical (ISM) band is sufficient to cover the installed nodes [55,56]. Various
communication technologies are supported in the ISM band, such as ZigBee, Bluetooth
and Wi-Fi. Moreover, alternative communication technology is introduced such as the
Intra-Body Communication (IBC) technology [57,58]. Through IBC, the human body is
used as a transmission medium, enabling power-saving, and thus improving the robustness
and security of communications. Due to these advantages, IBC has been included as a third
physical layer in the IEEE 802.15.6 standard for wireless body area networks designated as
Human Body Communication (HBC) [59]. A central device, refereed also as base station, is
responsible for collecting sensor data and forwarding them to the next communication layer.
Accordingly, intermediate devices are installed as a bridge between the small interconnected
WBAN and the exterior local network, namely the Wireless Local Area Network (WLAN).
In this case, local gateways are used such as mobile devices, access points or simple mid-
layer gateways. Typically, they provide a bridge between the IoT edge devices and the fog
and cloud servers. They enable the passing of data from the discrete sensor network to the
other cloud and application layers. On one side, common communication technologies
can be initiated between the WBAN’ nodes and the intermediate gateways, such as the
Wi-Fi and Bluetooth. In the other side, communication with the fog and cloud server
can be realized through 5G, Wi-Fi or GPR [60,61]. To this end, data communication and
storage are carried out over this layer, whereas in the IoT layer, installed wireless devices
are periodically transmitting information. Sensor devices remain awake for a specific time
frame from time to time to transmit the required information.

Within the second layer, local servers and gateway devices for the fog network are
placed. These devices enable the processing of the collected data. Excessive and complex
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processing and data-mining algorithms can be carried out at this stage. Later, the collected
data are redirected to the cloud layer for further processing. In the case of the cloud or
fog layer, more powerful and long-range protocols are required, namely the LoRaWAN,
Sigfox, NB-IoT and LTW-M [62], which ensure a better coverage range with a minimum
of 1 km in urban deployment and 10 km in rural deployment. Moreover, the fog layer
is in connection with healthcare experts responsible, which permits a reduction to the
time delay of the interpretation and execution of specific tasks and decisions. In the third
layer, powerful data storage and computation resources are installed. In this instance data
analysis, decision-making and urgent intervention can be recognized. In addition, the cloud
layer permits the incorporation of various and heterogeneous healthcare systems, which
enables a real-time and continuous access to the current patient, equipment and planned
tasks supervision and monitoring. Basically, this layer consists of cloud-based resources
that will store the data generated by the medical infrastructure and be used to perform
analytical work as needed in the future [54]. An overview of the common communication
technologies used in WBANs is presented in Table 3 [63,64].

Table 3. Comparison between communication technologies used in the WBANs.

Criteria Range in m Data Rate Frequency Standard Energy Consumption

Bluetooth [65,66] <10 1–3 Mbits/s 2.4 GHz IEEE 802.15.1- <30 mA

NFC [67] 0.1 424 Kbit/s 13.56 MHz ISO/IEC 1800-3 <15 mA

RFID [68,69] <12 100 Mbit/s LF: 125–135 KHz, ISO/IEC 1800 -
HF: 13.56 MHz,
UHF: 868–930 MHz,
Microwave 2.45, 5.8 GHz,

BLE [66] 10–300 125 Mbit/s 2.4 GHz IEE 802.15.1 <15 mA, 10–100 mW

ZigBee [66,70] 10–500 250 Kbit/s 2.4 GHz IEEE 802.15.4 <16 mA, 10–100 mW

Wi-Fi [64,70] 100 11 Mbit/s 2.4, 5 GHz IEEE 802.11 a/b/g -

LoRaWAN [71,72] ∼5 in urban 56 bits/s UL 868, 434, 915 MHz LPWAN Sleep: 7.66 µA to 34 mA
20 in rural 296 bits/s DL Tx: 133 mA

Rx: 16.3 mA

Sigfox [73,74] ∼10 km in urban 100 bits/s UL 868, 434, 915 MHz LPWAN, UNB Sleep: ∼1 µA, Tx: 49 mA
∼40 km in rural 60 bits/s DL Rx: 19 mA

NB-IoT [75–77] ∼1 km in urban 220 Kbits/s Licensed LTE LPWAN Sleep: 13 mW
∼10 km in rural Tx: 716 mW, Rx: 21 mW

4.2. Energy Consumption of Wireless Nodes

Typically, in the task-offloading paradigm, computing tasks are created by end devices
(e.g., wireless sensor nodes, central devices). Therefore, the energy requirement at the level
of the wireless node, as well as the network, are emphasized. Therefore, characterizing the
energy consumption of the end device is crucial to create a balance between the energy
requirement, demands and consumption. Essentially, the wireless sensor node is composed
of four main units: energy management unit, communication unit, data processing unit
and sensing unit. The energy management unit is responsible for converting the energy
retrieved from either the battery or the energy-harvesting circuit into a suitable energy
level, which can be used to supply the electronics of the node. Using energy harvesting
helps to reduce the dependency on the battery power by extending the lifetime of the
node itself [78]. The communication unit contains the radio transceiver module used
for wireless communication. The processing unit is the core of the node, where all data
processing and node activity is carried out. The last unit contains the embedded sensors,
which can be either passive or active and are responsible for the sensing and actuating
tasks. Basically, the effective lifetime of the node is dependent on the available, residual
energy and the required amount of energy to successfully carry out the assigned task.
Consequently, the total energy consumption is deducted in relation to the energy supply
and energy consumption during data processing and communication. Considering the
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energy provided by the harvesting module and the module consumption, the effective
residual energy at a time instance t is estimated in accordance with the consumed, harvested
and residual energy amounts of the previous time instance.

ERes(t) = ERes(t− 1)− ECons + EHarv (4)

ERes(t), ERes(t− 1), ECons and EHarv are the residual energy of the node at a time instance t,
the residual energy at a time instance (t− 1), energy consumption and the energy of the
harvesting module, respectively (see Appendix A).

The general definition of the energy consumption within a sensor node is presented in
Equation (5).

ECons = ETransceiver + ESystem + ESensing (5)

where ETransceiver, ESystem and ESensing are the energy consumed during the reception and
transmission of data packet, energy consumed within the coding and decoding activities
and the energy consumed during sensing activities, respectively.

With respect to the standard energy consumption model, the ETransceiver is presented
based on the transmitter and receiver electronic definition as presented in Equations (7) and (9).
The total energy consumption, within the radio module during data transmission, becomes:

ECons = ERx + ETx + ESystem + ESensing (6)

The energy of transmission and reception are dependent on the number of transmitted
data bits over a distance d, where Eelec is the electrical energy of the circuitry needed to
transmit or to receive a l bit data packet. d is the distance between the receiver and transmitter.

ETx =

{
Eelec × l + E f s × l × d2, d ≤ dT

Eelec × l + Eamp × l × d4, d > dT
(7)

The distance between both transmitter and receiver is dependent on the medium access
and therefore, it is defined based on ε f and εamp, which present the energy consumption
factor for free space and for the multipath radio models, respectively. The threshold
distance dT is defined as:

dT =

√
ε f s

εamp
(8)

The energy consumption during the reception is defined based on the number of
communicated bits l, which is defined in Equation (9). The list of the used parameters with
their typical values is illustrated in Appendix A.

ERx (l) = Eelec × l (9)

Eventually, the effective energy consumption of a wireless node depends strongly
on how often it sends and receives data packets, and processes sensor information.

Task offloading offers a promising solution to reduce the workload on the installed
devices, by adopting specific algorithms where the task realization is offloaded to devices
with efficient energy sources and computation capabilities. In the context of WBANs and
wearable solutions, intensive computing is mitigated from the wireless sensor to the edge
and from the cloud to the fog. It presents an efficient solution to manage the intensive
communication and computation in a limited energy source environment. Moreover,
by adopting an energy-harvesting solution, the energy of the system can be kept available
to carry out the assigned tasks in real time and continuously, which remains challenging for
different applications, such as in the case of real-time and continuous pulse monitoring [79],
motion tracking [80], exoskeleton manipulation [81] and the maintenance and monitoring
of implantable devices [82]. To this end, providing continuous and efficient power supply
to wearable and implantable devices presents a highly addressed challenge in recent
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research [83–85]. As part of this, integrating energy-harvesting technologies with task-
offloading approaches allows end devices to endure for a long time to support long-term
task processing [86–88].

5. Power Supply for Wearables with Task Offloading Capabilities

Task-offloading approaches can be efficiently combined with energy harvesting to
address the issue of insufficient battery capacity and limited computation resources in
IoMT devices and consequently increase the operating time of wearable devices. This is
referred to as joint energy harvesting and task offloading. Using this technology, users
can extract energy, convert it into useful energy, store it in the appropriate energy-storage
device, and use that energy to perform the corresponding local computing and offloading
tasks [15,89–91].

As depicted in Figure 4, the offloading algorithm reacts based on two estimations:
The energy harvested/stored and the energy demands. Energy harvesting from ambient
sources is considered a promising solution that can be used to provide power supply for
IoMT devices and thus replace batteries. The most commonly used harvesters for the
supply of wearable devices are piezoelectric harvesters, thermoelectric generators, RF
harvesters, and solar cells. Table 4 illustrates the amount of power that can be harnessed
from different sources, along with some advantages and limitations associated with each.

Ambient light presents the highest power density among other sources, with the
possibility of harvesting indoor and outdoor. However, it has limited application due to its
restricted availability.

Table 4. Available power from different energy sources (literature survey).

Energy Source Harvested Power Advantages Disadvantages

Mechanical energy

Human (motion) 4 µW/cm2
High power

density
Depending on the
source propertiesIndustry (vibrations) 100 µW/cm2

Thermal energy

Human (heat) 25 µW/cm2
Widely

available
Limitation of

power densityIndustry 1–10 mW/cm2

Ambient light

Indoor 10 µW/cm2
High power

density Intermittent
Outdoor 10 mW/cm2

Radio frequency

GSM 0.1 µW/cm2
Widely

available

Power dependent on
distance between

RF source-harvesterWi-Fi 0.001 mW/cm2

5.1. Thermoelectric Generators

Energy can be derived from heat using thermoelectric generators (TEGs) based on the
thermoelectric effect. It is also known as the Seebeck effect, according to which electricity is
generated by the temperature gradient between two conductors. A TEG can be attached to
the body to convert the temperature difference between a body skin and the surrounding
environment into voltage. This concept was launched in 1999, where the first wristwatch
supplied by body heat was invented [92]. TEGs can be used as an efficient power supply
for wearable devices when the human body and the surrounding environment have a
temperature difference of 5 to 10 degrees.

The electric potential of a TEG is expressed by Equation (10)

VTEG = S · ∆T (10)
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where S is the Seebeck coefficient of the material used and (∆T) is the temperature difference
across the TEG.

A thermally powered wearable device that incorporates an accelerometer to sense falls
was developed in [93]. In this application, the device generated 520 µW of output power
at 15 ◦C, which charged a capacitor and a power management unit, included to link the
thermal source and a sensor node.

An in-depth analysis of thermoelectric generation technology was recently presented
in [94], illustrating the working principles of TEGs and their applications. Nevertheless,
the development of thermoelectric materials with acceptable power factors remains a major
challenge, for which various techniques have been investigated to achieve better efficiencies.

5.2. Kinetic Energy Harveters

In contrast to solar or thermal energy, a kinetic energy source is not dependent on
location or time. Kinetic harvesters are based on the extraction of vibration or motion and
the conversion of the mechanical energy into electrical power through one or a combination
of different transduction mechanisms. The most common ones are piezoelectric, electro-
magnetic, electrostatic, and triboelectric. These harvesters are classified related to their
transduction mechanisms. Unlike other means of transduction, piezoelectric harvesters
directly convert human motion changes into electrical signals without any requirements
for further external input. Piezoelectric (PE) harvesters operate through the piezoelectric
effect. When a force is applied to a PE element, a mechanical strain is developed, causing
the material to exhibit changes in its polarization, causing the accumulation of electrical
charges across the piezoelectric material. The changes in charge distribution produce an
electric field depending on the applied force, frequency of oscillation, and geometry of
the harvester.

Electromagnetic kinetic energy harvesters operate based on Faraday’s law induction
which states that once a conductor moves through an electric field, a current is induced.
A system of springs, magnets and coils are used in electromagnet energy-harvesting sys-
tems. Coil number and magnetic mass are the main determinants of the output power
of these energy harvesters. Therefore, reducing their size, weight and complexity is chal-
lenging. As example, the authors of [95] demonstrated the effectiveness of a frequency-
converted electromagnetic harvester which extracts energy mainly from human limb
motion. A power density of 0.33 mW/cm3 was achieved in this work using low-frequency
human vibration to power wearable devices at extremely low frequencies.

5.3. Flexible Piezoelectric Generators

The body is an excellent source of significant amounts of mechanical energy which
can be produced from several biological processes, including walking, heartbeat, breathing
and muscle movements. Thanks to their high flexibility, piezoelectric nanogenerators
(PENGs) can convert this mechanical stress into electrical charges through nanostructured
piezoelectric materials when stretched, pressed or flexed. In addition, this technology can
potentially be integrated with other energy-harvesting mechanisms, resulting in hybrid
energy-harvesting solutions. The simple architecture of PENGs makes them attractive
and considered to be the most promising energy harvesters for wearable devices and mi-
crosystems. The materials used in piezoelectricity are diverse, including crystals, ceramics,
and polymers. The converter needs to be attached to a part of the body subjected to strong
compressive stress to maximize the piezoelectric effect. PENGs can provide enough power
to supply devices with power consumption ranging from microwatts to milliwatts, which
best fits the wearable sensor range as seen in Table 5 where the energy consumption of
typical wearable sensors is presented.
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Table 5. Energy consumption of typical medical sensors.

Wearable Sensors Voltage
Range

Power
Consumption Description

Optical heart rate sensors
- BH1790GLC optical heart
rate sensor [96]

1.7–3.6 V 720 µW
Measures the pulse waves
that occur when the heart
pumps blood.

Blood pressure sensors
- Capacitive tactile sensor [97] 1.8–3.3 V 1.2–4.6 mW

Measures the pressure
exerted by the circulating
blood on the walls of blood
vessels.

Glucometers
- Implantable RFID glucose
monitoring sensor [98]

1.0 V–1.2 V 50 µW Measures the average
blood glucose concentration.

Pulse oximeter sensors
-MAX30102 pulse oximetry [99] 1.8 V–3.3 V <1 mW

It attaches to a body part,
most commonly to a finger
to measure the oxygen
saturation level of the
circulating arterial blood.

Flexible Piezoelectric generators can be modeled as sinusoidal current sources IP in
parallel with parasitic capacitances CP and internal resistances RP when excited by sinu-
soidal vibrations at their resonant frequencies. Since the piezoelectric transducer can deliver
an alternating irregular AC current rather than direct current (DC), an electronic interface
is essential to enable voltage compatibility between the piezoelectric element and the load.
The electronic interface greatly influences the energy-harvesting effectiveness [100], which
has driven a variety of research efforts to develop PENG-compatible energy management
interfaces [101]. Implementing these circuits is mostly intended to allow the user to use
irregular AC power harnessed by piezoelectric transducers (PTs) to supply loads such as
wearable sensors. The rectification stage of PEH systems is usually coupled with a DC-DC
converter [100] to scale the rectified voltage to match the application’s requirements.

One limitation of the classic AC-DC energy-harvesting circuits when implemented
with PEts is that negative output power is produced because the output current and
voltage could not keep the same phase, leading to a loss of an amount of the harvested
energy. P-SSHI and S-SSHI have been proposed to overcome this limitation. The main
difference between the circuits is how we connect the switch S and the inductor L, either in
series, so we are talking about SSHI or in parallel to deal with P-SSHI. When the vibration
occurs, the switch S remains open, allowing the current to flow through the circuit to the
storage element Cr. If the piezoelectric element’s voltage drops below a certain threshold,
the switch S will automatically close, inverting the voltage across the PE element and
therefore stopping current flow. This means that the switch is kept closed until a full
inversion of the PEt’s voltage has been achieved. Nevertheless, this voltage inversion
causes an electrical damping that opposes the mechanical vibrations on the piezoelectric
material. This effect is known as Synchronized Switch Damping (SSD). It can significantly
affect the overall conversion efficiency, and it is consequently the main limitation of both P-
SSHI and S-SSHI circuits. Figures 6 and 7 display the P-SSHI and S-SSHI energy-harvesting
interfaces, respectively.
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Figure 6. Schematic of P-SSHI energy extraction interface.

Figure 7. Schematic of S-SSHI energy extraction interface.

SECE circuit, displayed in Figure 8, mainly prevents the SSD effect, which is the main
limitation of P-SSHI and S-SSHI circuits. This effect is caused by the direct connection
between the output load and the piezoelectric transducer during the hole vibration phase.
When the PEH generates the voltage, the switch S will be closed, and the energy will be
stored in the inductor L as seen in the figure.

Figure 8. Schematic of SECE energy extraction interface when the switch S is closed.

When the vibration stops, the voltage across the piezoelectric element falls to zero,
and the switch S will open immediately. Consequently, the energy accumulated in the
inductor will be directly transferred to the storage capacitor and the load. One limitation
for this interface is the complexity when compared to the simple architecture and switching
strategy that characterize SSHI circuits.

The control of the integrated switches was a common limitation for the reviewed
interfaces, so several researchers were focusing on developing self-powered resonant
energy-harvesting circuits. In [102], authors demonstrated an optimized self-powered P-
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SSHI circuit that can automatically switch once the voltage exceeds its maximum threshold.
In addition, this technology can potentially be integrated with other energy-harvesting
mechanisms, resulting in hybrid harvesting solutions [103].

5.4. Energy-Storage Techniques

Using energy harvesting to achieve battery-free operation has gained high interest.
However, any interruption in the energy-harvesting source will affect the wearable de-
vice’s operation. Therefore, an energy-storage mechanism is still required to maintain a
smooth power supply for charge loads and serve as a backup whenever the energy source
is unavailable.

The harnessed energy can be stored before being supplied to the MCU, or the power
can be delivered directly. The decision of whether implementing a storage element in a
wearable device considers different factors:

• Placement of the device: implant or outside.
• Energy source: type
• Requirements of the application: either it needs a sustainable supply for the wearable

device or a non-critical usage.

Batteries and super capacitors are the two main solutions for energy storage. Energy
storage for wearable devices must comply with several requirements. First, the storage
element needs to be rechargeable to avoid frequent battery replacements, which can be
inconvenient in several cases. In pacemakers, as an example, surgery needs to be per-
formed every eight years to replace their lithium batteries [104]. As a second requirement,
the storage device needs to be capable of supporting long-term application with minimal
impact on battery parameters.

The following Table 6 compares two storage mechanisms, batteries and capacitors.

Table 6. Comparison between different storage techniques for energy harvesters in IoMT devices

Comparison Conventional Batteries Supercapacitors

Storage mechanism Chemical Physical
Energy storage High Limited
Recharging cycles 100 s Millions
Charging time Hours Sec-minutes
Impedance Low-high Low
Physical size Large Medium
Capacity 0.3–2500 mAH 10–100 µAH

They differ mostly in the number of charging cycles since capacitors can reach millions
of cycles. In addition, capacitors require only a few seconds for charging, so the charging
time is very fast compared to batteries. In contrast, supercapacitors cannot be used in AC
and high frequency circuits and have lower capacity than batteries, but this can satisfy the
requirements of some low-power applications. One more limitation for using batteries as a
storage element is that the battery is susceptible to leakage, leading to chemical poisoning,
especially when used in implants. Batteries can leak chemicals when overcharged or
heated (above 60 ◦C). This can lead to chemical burns risking human beings. Due to their
advantages over batteries, super capacitors are a promising alternative to store energy. In a
super capacitor, thin dielectric layers and electrodes hold power at the electrode–electrolyte
interface to be accessed when needed. Thanks to their high pulse power capacity, they can
also handle small power surges. Super capacitors’ excellent cycle lifetime also makes them
ideally suited to act as energy-storage components in energy-harvesting-based sustainable
power systems.

5.5. Recent Energy-Harvesting Solutions for Wearables

The human body can be a versatile source of energy harvesting [105,106]. Energy can
be harvested from everyday activities, such as breathing, arm motion, walking, running,



Electronics 2022, 11, 383 18 of 25

or pedaling, without performing a specific workout. The body can produce mechanical
energy through various body zones movements, such as the elbow, the knee, the ankle
or the heels. The performance of three vibrating generators was studied in [107] at nine
different body locations for a person walking on a treadmill. The results indicate that the
energy generated at lower-body locations (hip, knee, and ankle) is four times greater than
the energy generated at upper-body locations. Additionally, body heat offers promising
possibilities for supplying wearable systems. Based on the Seeback effect, a flexible TEG
generated 4.95 mW of body heat and was used for a wearable multi-sensing bracelet [108].
A energy-autonomous, multi-sensing bracelet can operate under varying conditions, in-
cluding human motion. The amount of energy in such systems is highly dependent on
the temperature difference between the human body and the ambient environment [109].
Several studies have shown that physiological activities, such as blood pressure, heart
motion and breathing, can regularly provide wearable devices with energy supply. In [110],
cardiac contractions are used to supply low-powered pacemakers. When powered by a
constant heartbeat of 90 bpm, the harvester can deliver 11.1 j of electrical energy. Because of
the small size and weight requirement, energy extraction from the human body is much
more complicated than energy harvesting from machines [111]. The available power is
often weak and difficult to use, such as human kinetic energy, which typically has a low
frequency and a low amplitude.

Recently, thermoelectric nanogenerators (TENGs) were demonstrated as a conven-
tional technique for rehabilitation in [112]. As an exercise gaming device, a wearable
TENG-based rehabilitation device (Rehab-TENG) was developed. The device was used to
control a game on a laptop by flexing and extending the arm. It is an effective way of testing
the motor function of an impaired arm. Rehab-TENG is also used as an energy harvester in
an exercise system where the patient moves an impaired arm to store energy in a capacitor.
It is possible to assess the level of deficiency by measuring the charging rate of the storage
element, which consequently enhances patients’ motivation for exercising more repetitive
movements of the impaired body zone. This, in turn, speeds up recovery. Furthermore,
the authors suggested using the Rehab-TENG device as an autonomous home exercise and
monitoring system, which is particularly relevant during pandemics, therefore reducing
the necessity for hospital visits for rehabilitation.

An emerging trend in energy-harvesting technologies for IoMT is developing bio-
compatible wearable harvesters, such as textiles, footwear, or watches, which are energy-
autonomous, lightweight, flexible, and have more computational resources for better
performance. Consequently, various energy-saving approaches were proposed to mitigate
the problem of excessive energy demands during the operation of devices. Task offloading
is a promising and effective technique that extends the operating time of wearables by
migrating the energy intensive task to edge device. Task-offloading algorithms attempts
to solve an optimization problem by looking for a suitable remote processor to perform
the offloading, taking into consideration the overheads caused by the communication link
(energy and latency). Real-time implementation of task offloading for wearables is still in
its infancy.

6. Value-Based Healthcare System and Personalized Healthcare

The legacy health care system is staff-centric. Driven by the need to transform the
healthcare system to be patient- and personnel-centric, numerous governments have pro-
posed a transformation strategy. For instance, in Saudi Arabia, the government has identi-
fied eight challenges that the current health care system should cope with. Those challenges
are: (1) the continued growth and aging of the population, (2) the prevalence of avoid-
able injuries and non-communicable diseases beyond the international standard, (3) the
inadequacy and inconsistency of primary care, (4) wide-scale disparity in the quality of
care, (5) a significant deficiency in value and quality, (6) the system is resource-, staff-,
and institution-centric, (7) insufficient use of digital integrated systems, and (8) the growing
need to decrease government spending in health care systems [113].
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The value-based healthcare system is a new framework adopted by many governments
to improve healthcare services and user experience through the improvement of patient
healthcare outcomes at the lowest possible cost, i.e., the value is determined as the ratio
of outcomes to cost [114]. Preventive medicine and early intervention lowers the cost
associated with the hospitalization of patients. Healthcare 4.0, a new paradigm shift in
the health industry, has transformed healthcare from an institution-centered to a patient-
centered system [115].

Wearables are cornerstone technologies in Healthcare 4.0. The design of patient-
centered care mandates the inclusion of the user requirements to identify functional and
non-functional requirements [35]. Surveys, focus groups, and interviews are common
ways to capture user requirements. In [116], the authors devised a cost-efficient system
for the monitoring of the sedentary level of senior citizens. The system requirements and
guidelines have been gathered from a literature review. The system is then evaluated using
a mixed approach: focus group, interview, and observations. The system is refined through
the feedback provided by the end-user. The authors reported that: (1) the majority of the
respondents are interested in receiving a feedback on the level of their physical activity at
the end of the day, (2) nearly 58% of participants showed interest in a system that integrates
games with physical activity, and (3) virtually 83% of the participants showed interest in
profiling their daily activities and receiving alerts when their physical activities are low.

The user requirements for the wearables targeting Chinese seniors are the focus of the work
described in [117]. Those requirements have been classified under the following three categories:
healthcare requirements, privacy and security requirements, and commodity requirements.

7. Conclusions

Wearable devices are the heart of IoMT. Energy-harvesting techniques can achieve
energy-autonomous wearable devices. However, handling tasks that require intensive
computing resources limits their performance. To overcome these limitations, energy-aware
task-offloading approaches were proposed to reduce the device energy consumption and
improve computation resources. This paper surveys recent works on joint task offloading
and energy-harvesting techniques in the IoMT. In addition, possibilities of power supply
for medical sensors and energy-storage strategies are investigated.

Joint task offloading and energy harvesting is still an active area of research. The of-
floading is meaningful at two possible levels: from wearables (IoT end device) to edge
devices (IoT high-end or middle-end device), or from edge devices to fog nodes. An
off-policy-based reinforcement learning algorithm has been often proposed in the literature.
Nevertheless, its hardware implementation has received scant attention.

Future work will focus on the efficient hardware implementation of joint energy
harvesting and reinforcement learning-based task offloading for wearable devices. Never-
theless, privacy and security might affect the offloading strategy when applied to wearables;
this topic was not considered in this study.
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Abbreviations

EH Energy Harvesting
SSHI Synchronized Switch Harvesting on Inductor
P-SSHI Parallel Synchronized Switch Harvesting on Inductor
S-SSHI Serial Synchronized Switch Harvesting on Inductor
SECE Synchronized Electrical Charge Extraction
SEH Standard Energy Harvesting (Bridge rectifier)
SSD Synchronized Switch Damping
EWMA Exponentially Weighted Moving Average
HBC Human Body Communication
IoT Internet of Things
IoMT Internet of Medical Things
MCU Micro-Controller Unit
MEC Mobile Edge Computing
QoS Quality of Service
WBANs Wireless Body Area Networks
WSNs Wireless Sensor Networks
PENGs Piezoelectric nanogenerators
PEH Piezoelectric energy harvesting
FPEGs Flexible Piezoelectric Generators
PEt Piezoelectric transducer
TEG Thermoelectric Generator

Appendix A

Table A1. List of parameters with their typical values.

Parameter Explanation Typical Value/Range Unit

ERes(t) Residual energy at a time instance t NA J

ERes(t− 1) Residual energy at a time instance
(t− 1) NA J

ECons Energy consumption NA J

EHarv Energy of the harvesting module NA J

ETransceiver Consumed energy of transmission NA J

ESystem
Consumed energy of coding and

decoding NA J

ESensing Consumed energy of the sensing NA J

ERx Consumed energy of the reception NA J

ETx
Consumed energy of the

transmission NA J

Eelec Electrical energy of the circuitry Based on initial assumption (e.g., 50 nJ) J

d Distance between transmitter and
receiver Related to the realized scenario m

dT
Threshold distance between

transmitter and receiver 1 m m

l Size of the data packet Depends on the ADC of the processor bits

ε f
Energy consumption factor for free

space Depends on the pJ/bit/m2

εamp
Energy consumption factor for

multipath radio models propagation loss pJ/bit/m4

M Number of cores 8 -

n Number of tasks maximum value is 6 -

α the learning rate 10−4 -

γ the discount rate 0.85 -
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