
����������
�������

Citation: Vranken, H.; Alizadeh, H.

Detection of DGA-Generated

Domain Names with TF-IDF.

Electronics 2022, 11, 414. https://

doi.org/10.3390/electronics11030414

Academic Editors: Constantinos

Kolias, Georgios Kambourakis and

Weizhi Meng

Received: 1 December 2021

Accepted: 24 January 2022

Published: 29 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Detection of DGA-Generated Domain Names with TF-IDF
Harald Vranken 1,2,* and Hassan Alizadeh 1

1 Department of Computer Science, Open Universiteit, P.O. Box 2960, 6401 DL Heerlen, The Netherlands;
hassan77.alizadeh@gmail.com

2 Institute for Computing and Information Sciences, Radboud University, P.O. Box 9010,
6500 GL Nijmegen, The Netherlands

* Correspondence: harald.vranken@ou.nl

Abstract: Botnets often apply domain name generation algorithms (DGAs) to evade detection by
generating large numbers of pseudo-random domain names of which only few are registered by
cybercriminals. In this paper, we address how DGA-generated domain names can be detected by
means of machine learning and deep learning. We first present an extensive literature review on
recent prior work in which machine learning and deep learning have been applied for detecting
DGA-generated domain names. We observe that a common methodology is still missing, and the
use of different datasets causes that experimental results can hardly be compared. We next propose
the use of TF-IDF to measure frequencies of the most relevant n-grams in domain names, and use
these as features in learning algorithms. We perform experiments with various machine-learning and
deep-learning models using TF-IDF features, of which a deep MLP model yields the best results. For
comparison, we also apply an LSTM model with embedding layer to convert domain names from a
sequence of characters into a vector representation. The performance of our LSTM and MLP models is
rather similar, achieving 0.994 and 0.995 AUC, and average F1-scores of 0.907 and 0.891 respectively.

Keywords: DGA; botnet; TF-IDF; machine learning; deep learning

1. Introduction

Botnets pose a severe threat to the security of systems connected to the Internet and
their users. A botnet is composed of a collection of compromised systems (‘bots’) that
receive and respond to commands from a Command and Control (C&C) server. A C&C
server acts as rendezvous point between the bots and the botmaster, who controls the
botnet. By updating the malware running on the bots, the botmaster can configure the
botnet to perform different types of attacks, such as launching DDoS attacks, sending spam,
or stealing credentials. This versatility causes that botnets are considered as the Swiss army
knife of cybercriminals.

C&C servers and the communication channels between botmaster and bots are critical
components of a botnet. By taking down the C&C servers, or by blocking the communi-
cation channels, the link between bots and botmaster is broken, which renders the botnet
useless. Numerous techniques have been applied to provide stealthy botnet operation
and to increase resilience against take-down attempts [1]. An eminent technique to evade
detection is the application of domain name generation algorithms (DGAs) in bot malware
that generate large numbers of pseudo-random domain names for contacting the C&C
server, of which only few are actually registered shortly by the botmaster. Due to the
dynamic DGA operation and short-lived domain names, the communication between C&C
servers and bots is protected against take-down attempts.

The presence of botnets that use DGAs can be revealed by analysing network traffic.
For instance, most of the domain names that are generated by DGAs are not registered
and hence DNS lookups for resolving such domain names into IP addresses will result in
NXDomain responses from name servers. Hence, by monitoring and analysing NXDomain

Electronics 2022, 11, 414. https://doi.org/10.3390/electronics11030414 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11030414
https://doi.org/10.3390/electronics11030414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4541-6475
https://doi.org/10.3390/electronics11030414
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11030414?type=check_update&version=1


Electronics 2022, 11, 414 2 of 28

responses, the presence of DGA-based botnets can be revealed. In addition, the domain
names generated by DGAs typically differ from regular domain names. Regular domain
names are usually meant to be interpretable by humans and hence they often are rather short
and meaningful, while domain names generated by DGAs typically consist of random
strings of letters and digits that humans cannot pronounce or interpret as meaningful.
Hence, by analysing the syntax or semantics of domain names, the presence of DGA-based
botnets can be revealed.

In recent years, numerous methods applying machine learning, and more recently also
deep learning, have been explored for detecting DGA-based botnets. Machine-learning
algorithms typically have been used to train models using sample data of network traffic in
order to make predictions on whether the traffic contains traces originating from botnets.
The key principle is that the models are not programmed explicitly up front to detect
botnets, but the models evolve during training by discovering patterns in the sample data.
The sample data typically consist of features that are derived from captured network traffic,
such as relevant fields in packet headers or payload data. In prior work on detection
of DGA-generated domain names with machine learning, a large variety of structural,
linguistic, and statistical features have been explored that are derived from domain names
in DNS traffic. In deep learning, as an advanced form of machine learning, more complex
models are trained that can discover higher-level patterns in the sample data. While
machine learning requires to provide sample data by means of selected features during
training, deep learning is able to implicitly derive features at multiple levels from the
sample data.

Furthermore, in this paper, we apply machine learning and deep learning for detecting
DGA-based botnets, and use TF-IDF (term frequency–inverse document frequency) as sta-
tistical method to derive features from domain names. TF-IDF originates from information
retrieval and automated text analysis, where it is used as a weighting factor to evaluate how
relevant a word is to a document in a collection of documents [2]. Key words that appear
more often but in a smaller number of documents, have higher TF-IDF. We observed that
the distributions of characters and n-grams vary considerably for regular domain names
and domain names that are generated by different types of DGAs (as we will show in
Section 4.1). Our hypothesis therefore is that TF-IDF of n-grams can be used as features for
classifying domain names in learning algorithms.

Our contributions are as follows:

1. We provide an extensive literature review on recent prior work in which machine
learning and deep learning have been applied for detecting DGA-based botnets.

2. We explore the usage of TF-IDF for feature selection. Although TF-IDF has been
studied and applied extensively for decades in information retrieval, we are the first—
to the best of our knowledge—to apply TF-IDF for detecting DGA-based botnets.

3. We provide experimental results using TF-IDF as features with the most popular
algorithms for machine learning (Decision Tree, Gradient Boosting, K-Neighbours,
Logistic Regression, Multinomial Naive Bayes, Random Forest, and Support Vector
Machine) and deep learning (Multi-Layer Perceptron).

4. We compare the results obtained by machine learning, in which TF-IDF scores of
n-grams in domain names are used as features, with featureless deep learning (using
a long short-term memory (LSTM) classifier) in which domain names are embedded
as sequences of input characters.

In the remainder of this paper, we first provide more details about botnets and fluxing
methods, DGAs, and TF-IDF in Section 2. In Section 3, we present an extensive literature
review on recent prior work in which machine learning and deep learning have been
applied for detecting DGA-based botnets. In Section 4, we present our research method,
including a description of the datasets we applied in our experiments, the setup of our
experiments, and the experimental results with discussion. We conclude the paper in
Section 5.



Electronics 2022, 11, 414 3 of 28

2. Background

This section provides more details on fluxing methods as applied by botnets to evade
detection in Section 2.1, on DGAs in Section 2.2, and on TF-IDF in Section 2.3.

2.1. Botnets and Fluxing

The bots in a botnet regularly contact their C&C server. This is the case during the
rallying process, when a bot tries to contact its C&C server for the first time to announce its
presence, and later on when the bot contacts the C&C server to upload data (such as stolen
credentials) or to download malware updates. In order to do so, the bot should know either
the IP address or the domain name of the C&C server.

The IP address can be hardcoded in the bot malware. This offers stealthy botnet
operation since no DNS lookup is required. However, the IP address can easily be revealed
by reverse engineering of the malware. Network administrators can subsequently blacklist
the IP address in ACLs at gateways, or apply BGP route announcements to route the IP
address to a blackhole where the traffic is dropped.

Alternatively, the domain name can be hardcoded in the bot malware. This is less
stealthy since it requires a DNS lookup to resolve the domain name into an IP address.
To evade detection, botnets can apply IP/fast flux by using dynamic DNS to provide that
the domain name can be resolved into an IP address that changes frequently. These IP
addresses refer to proxy bots that relay communication between bots and the C&C server.
Bringing down the botnet now requires blacklisting or blackholing the IP addresses of all
proxy bots. To further evade detection, botnets can apply double flux, where the concept of
flux is also applied to the name server that is responsible for resolving the domain name.
The name server, which is under control of the botmaster, will refer to frequently changing
authoritative name servers, which in turn will resolve the domain name into frequently
changing IP addresses of proxy bots. However, the domain name can be blacklisted, or, by
applying DNS sinkholing, the domain name can be resolved into an IP address that is not
under control of the botnet. DNS sinkholing allows for instance law enforcement agencies
to take over the botnet.

Many botnets therefore do not rely on a single domain name, but apply domain flux
by generating a large number of domain names of which only few actually are registered
by the botmaster for a short time period. Domain flux renders botnet detection by static
domain name blacklists or sinkholing ineffective.

2.2. DGA

Domain flux is implemented in bot malware by a DGA that dynamically generates
a large number of pseudo-random domain names from a seed. The seed, which acts as a
shared secret between botmaster and bots, can be either static or dynamic [3].

A static seed was for instance applied in early versions of the Kraken botnet, and
therefore the same set of domain names is generated at each execution [4]. Early versions
of the Torpig botnet applied a deterministic seed that is derived from the current date.
Since the domain names derived from such deterministic seeds can be precomputed easily,
and botmasters do not register all future domain names in advance, a botnet can be taken
over. For instance, a research team was able to preregister some domain names and take
over the Torpig botnet for 10 days in 2009 [5]. The Conficker botnet also applied a time-
dependent seed based on GMT that is derived from the response of querying a public
website [6]. The Conficker.C botnet applied domain flux by generating 50,000 domain
names of which bots daily tried up to 500 for contacting the C&C server to receive updates.
If the botmaster registered one of these 50,000 domain names, bots have 1% probability
per day to contact the C&C server, and hence bots would contact the C&C server once
every 100 days on average. While the botmaster had to register only one or a few domain
names, law enforcement would have to preregister 50,000 domain names to block the
C&C communication.



Electronics 2022, 11, 414 4 of 28

Domain names derived from dynamic seeds rely on non-deterministic sources. For
instance, the Bedep DGA applied a seed that relates to foreign exchange reference rates
published daily by the European Central Bank, while the seed in later versions of the Torpig
DGA related to trending topics in Twitter [7]. Since domain names from non-deterministic
seeds cannot be precomputed in advance, blacklisting and sinkholing or preregistering
large numbers of short-lived domain names by law enforcement agencies is a challenging,
time-critical task that requires continuous effort. However, also botmasters only have a
small time window and should switch continuously to new domain names.

Next to classifying DGAs based on their seeding characteristics, Plohmann et al. classi-
fied DGAs into 4 types based on how domain names are constructed [7]. Arithmetic-based
DGAs (type DGA-A) are most common. They construct domain names by generating
sequences of values that have either an ASCII representation directly or index hardcoded
arrays that constitute the DGA alphabet. Hash-based DGAs (type DGA-H) construct do-
main names from hashing algorithms such as MD5 and SHA256. Wordlist-based DGAs
(type DGA-W) construct domain names by concatenating sequences of words from dic-
tionaries that are embedded in the malware or obtained from a publicly accessible source.
Permutation-based DGAs (type DGA-P) construct domain names through permutation of
an initial domain name.

Domain names generated by DGAs of type DGA-A typically consist of random
sequences of characters (letters and digits). Domain names generated by DGAs of type
DGA-H represent a hexadecimal number and consist of digits and the letters A–F. Domain
names generated by DGAs of type DGA-W are less random and pronounceable, which
makes them harder to distinguish from regular domain names. In addition, domain names
generated by DGAs of type DGA-P, that are derived by permutation of regular domain
names, look similar to regular domain names.

RFC 1035 initially specified the preferred syntax of domain names as a sequence of
labels separated by dots [8]. The right-most label conveys the top-level domain. Each label
is a sequence of at most 63 characters containing letters (A–Z, a–z), digits (0–9), or the
hyphen symbol (-), with the restriction that a label starts with a letter and ends with a letter
or digit. Although uppercase and lowercase letters are allowed, no significance is attached
to the case. The length of a domain name is at most 255 characters. In later specifications,
this has been relaxed to labels that contain the underscore symbol (_), leading or trailing
hyphens, other ASCII characters (such as the symbols # and $), and even Unicode characters
in internationalized domain names [9].

2.3. TF-IDF

TF-IDF originates from information retrieval and automated text analysis, where it is
used as a weighting factor to evaluate how relevant a term is to a document in a collection of
documents [2]. For instance, TF-IDF is the most popular weighting scheme in recommender
systems for research papers that apply content-based filtering [10].

TF-IDF is composed of multiplying term frequency (TF) [11] and inverse document
frequency (IDF) [12], where TF indicates how often a term appears in a document, and IDF
indicates the number of documents in a corpus that contain the term.

The simplest way to compute TF is the raw count of appearances of term ti in doc-
ument dj, where ti is in the set of terms T = {t1, . . . , tK} in the corpus of documents
D = {d1, . . . , dN}. This can be normalized by considering for instance the length of the doc-
ument or the most frequent term in the document. IDF adjusts for the general appearance
of terms across documents and is usually defined as log(N/ni), where N is the number
of documents in the corpus and ni is the number of documents in which term ti occurs.
IDF is close to 0 when the term appears in many documents, and increases when the term
appears in fewer documents. Hence, TF-IDF discriminates key terms that appear more
often but in a smaller number of documents.



Electronics 2022, 11, 414 5 of 28

3. Literature Review

We conducted an extensive literature review on recent prior work in which machine
learning (ML) and deep learning (DL) have been applied for detecting DGA-based botnets.
Zago et al. [13] previously published a literature review on DGA-based botnet detection
that covered literature up to May 2018. We extend their literature review by covering 38 ad-
ditional scientific papers that were published afterwards from May 2018 to February 2021.

Zago et al. built a taxonomy of approaches for botnet detection considering the applied
learning approach (supervised, unsupervised, or semi-supervised) and the type of features
adopted (context-aware, context-free, or featureless). Context-aware features are dependent
on a specific malware sample execution, such as features extracted from DNS responses
that consider timing, origin, or any other environment configuration. Context-free features
are related only to domain names, considering structural, statistical or linguistic properties
of a domain name. Featureless models, as typically applied in DL, do not require features
and use encoded domain names as inputs.

We adopt a slightly different taxonomy by considering the learning method, which is
either feature-based ML (see Table 1), featureless DL (see Table 2), or other (see Table 3).
Nearly all studies included in our review applied supervised learning algorithms, using
either classical ML models such as Decision Tree (DT), Random Forest (RF), k-Nearest
Neighbour (kNN), Logistic Regression (LR), Naïve Bayes (NB), Support Vector Machine
(SVM), Gradient Boost (GB), and Multi-Layer Perceptron (MLP), or novel DL models such
as Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN).

The following subsections provide more details on the ML models in Section 3.1, on
the DL models in Section 3.2, on other methods in Section 3.3, and on the datasets used in
the reviewed studies in Section 3.4.

Table 1. DGA-based botnet detection using feature-based ML models.

Reference Year Model Dataset (Benign/Malicious)
Number of Features

Context-Free Context-Aware

Chiba et al. [14] 2018 RF Alexa/hpHosts - 55
Schüppen et al. [15] 2018 RF, SVM Private/DGArchive (72 DGAs) 21 -
Ashiq et al. [16] 2019 FFNN (2-4 hidden layers) From [17] 8 -
He et al. [18] 2019 Adaboost, DT, kNN, RF Alexa/various sources 21 153
Li et al. [19] 2019 Adaboost, C4.5, kNN, NB .cn name server/Rustock DGA 1 31
Liu et al. [20] 2019 SVM Alexa/DGArchive (87 DGAs) - 18
Selvi et al. [21] 2019 RF Alexa/26 DGAs 18 -
Yang et al. [22] 2019 DT, ET, NB, SVM, ensemble (NB,ET,LR) Cisco Umbrella/Netlab, synthetic 24 -
Akhila et al. [23] 2020 DT, GBT, LR, RF, SVM Alexa/Bambenek 10 -
Alaeiyan et al. [24] 2020 RF, RNN, SVM Alexa/MasterDGA 18 -
Almashhadani et al. [25] 2020 BT, DT, kNN, NB, SVM Alexa/DGArchive (20 DGAs) 16 -
Anand et al. [26] 2020 C5.0, CART, GBM, kNN, RF, SVM Alexa/Netlab (19 DGAs) 45 -
Hwang et al. [27] 2020 LightGBM KISA/KISA (20 DGAs) 110 -
Liang et al. [28] 2020 RF, SVM, XGBoost Alexa/various blacklists 5 5
Mao et al. [29] 2020 NB, LSTM, MLP, RF, SVM, XGBoost Alexa/Netlab (40 DGAs) 5 -
Palaniappan et al. [30] 2020 LR Alexa/various blacklists 4 13
Sivaguru et al. [31] 2020 RF Alexa, private/DGArchive 26 9
Wu et al. [32] 2020 MLP, NB Alexa/Netlab 4 -
Zhang et al. [33] 2020 DT, LR, NB, RF, SVM, XGBoost, Voting Alexa/UMUDGA (37 DGAs) 18 -
Zago et al. [13] 2020 Adaboost, DT, kNN, NN, RF, SVM Majestic/various sources (16 DGAs) 40 -
Cucchiarelli et al. [34] 2021 MLP, RF, SVM Alexa/Netlab (25 DGAs) 4n + 5 (n DGAs) -
Patsakis et al. [35] 2021 RF Alexa, unipi/DGArchive, synthetic (13 DGAs) 32 -



Electronics 2022, 11, 414 6 of 28

Table 2. DGA-based botnet detection using featureless DL models.

Reference Year Model Dataset (Benign/Malicious)

Woodbridge et al. [36] 2016 LSTM Alexa/Bambenek
Lison and Mavroeidis [37] 2017 RNN Alexa/DGArchive (63 DGAs), Bambenek (11 DGAs)
Koh and Rhodes [38] 2018 LSTM OpenDNS/Bader, Abakumov
Tran et al. [39] 2018 LSTM.MI Alexa/Bambenek (37 DGAs)
Vinayakumar et al. [40] 2018 LSTM, GRU, IRNN, RNN, CNN, hybrid (CNN-LSTM) Alexa, OpenDNS/Bambenek, Bader (17 DGAs)
Xu et al. [41] 2018 CNN-based Alexa/DGArchive (16 DGAs)
Yu et al. [42] 2018 LSTM, BiLSTM, stacked CNN, parallel CNN, hybrid (CNN-LSTM) Alexa/Bambenek
Akarsh et al. [43] 2019 LSTM OpenDNS, Alexa/20 public DGAs
Qiao et al. [44] 2019 LSTM Alexa/Bambenek
Liu et al. [45] 2020 Hybrid (BiLSTM-CNN) Alexa/Netlab (50 DGAs), Bambenek (30 DGAs)
Ren et al. [46] 2020 CNN, LSTM, CNN-BiLSTM, ATT-CNN-BiLSTM, SVM Alexa/Bambenek, Netlab (19 DGAs)
Sivaguru et al. [31] 2020 hybrid (RF-LSTM.MI) Alexa, private/DGArchive
Vij et al. [47] 2020 LSTM Alexa/11 DGAs
Cucchiarelli et al. [34] 2021 BiLSTM, LSTM.MI, hybrid (CNN-BiLSTM) Alexa/Netlab (25 DGAs)
Highnam et al. [48] 2021 hybrid (CNN-LSTM-ANN) Alexa/DGArchive (3 DGAs)
Namgung et al. [49] 2021 CNN, LSTM, BiLSTM, hybrid (CNN-BiLSTM) Alexa/Bambenek
Yilmaz et al. [50] 2021 LSTM Majestic/DGArchive (68 DGAs)

Table 3. DGA-based botnet detection using other approaches.

Reference Year Dataset (Benign/Malicious)

Wang et al. [51] 2017 Emulated and real-life network data
Satoh et al. [52] 2020 Alexa/19 DGAs
Sun et al. [53] 2020 Alexa/various
Yan et al. [54] 2020 Passive DNS data/public blacklists
Yin et al. [55] 2020 Alexa/Bader (19 DGAs)

3.1. ML-Based Methods
3.1.1. Models

The studies in our literature review apply a range of ML methods, as shown in Table 1. RF
and SVM are applied most often. For each study, the best performing model is shown in bold.
It can be observed that there is no single best performing method overall, but RF and MLP
(with a single hidden layer) give best results in most cases. Due to differences in the applied
hyperparameters, features, datasets of benign and malicious domain names, and evaluation
metrics, it is rather unfeasible to compare the experimental results obtained in these studies.

3.1.2. Context-Free Features

Zago et al. [13] focused in their literature review on context-free features. They
identified 74 features of 32 types, although we found that their overview is somewhat
inaccurate. Most of the studies cited by Zago et al. use string metrics as features in
which a domain name is considered as a string of characters or words. Most frequently
used are string length (in 69% of the cited works) and entropy (46%). Some features
relate to linguistics, such as the pronounceability score (13%) and normality score (13%),
while other features capture more complex structural aspects of domain names, such as
the Jaccard Index measure (17%) and the Kullback–Leiber divergence (8%). Zago et al.
identified features related to length, ratio and sequence of digits, and frequencies and
pronounceability of n-grams as most relevant. They observed that arbitrary combinations
of features are used in most studies, often with different names or definitions, and hence a
common ground for features is still missing.

As a follow-up of the literature review by Zago et al., our literature review covered
22 more recent studies that applied ML-based methods (see Table 1). Nearly all studies (19
out of 22) use context-free features that relate to domain names.

As shown in Table 4, we identified 97 context-free feature types that we categorised as
being related to the domain name, subdomains, character-level information, linguistics,
and n-grams. Compared to the 32 feature types that were identified by Zago et al. [13] up
to early 2018, during the next two years researchers explored 65 additional feature types.
We observe however that arbitrary combinations of features have been used. Domain name
length, number of subdomains, alphabet cardinality, entropy, and the ratios of digits and
vowels are used most frequently.



Electronics 2022, 11, 414 7 of 28

Table 4. Context-free features.

Feature Type Usage

Domain name
Domain name in Unicode format [29]
Domain name length [13,15,16,18,23,25–28,31–33]
Domain name contains IP address [15,18]
Domain name has www prefix [15,18]
Domain name starts with digit [31]
Domain name has valid TLD [15,18]

Characters
Shanon entropy [15,18,21,23,25,25,27,28,31,33]
Cardinality (number of different characters) [15,18,21,31–33]
Ratio of unique characters (Gini value) [23,26,31]
Minimum character value [24]
Maximum character value [24]
Average character value [24]
Variance of character values [24]
Median of character values [24]
Number of non-occurring character values [24]
Number of odd character values [24]
Chi-squared test of character values [24]
Reverse character values [24]
Ratio of most frequently used letters [26]
Ratio of least frequently used letters [26]
Ratio of meaningful characters [13,31]
Ratio of repeated characters [15,18,26,31]
Ratio of underscores [15,18]
Number of hyphens [31]
Number of underscores and hyphens [30]
Number of dashes [24]
Ratio of consonants [13,21,25,31,33]
Ratio of consecutive consonants [15,18,31]
Number of consonants [25,26]
Longest consecutive consonant sequence [13,25]
Ratio of length of longest consonants sequence [25]
Contains digits [15,18]
Ratio of digits [13,15,18,21,23,31,33]
Ratio of consecutive digits [15,18,31]
Number of digits [27,30,31]
Longest consecutive digit sequence [13]
Ratio of vowels [13,15,18,23,25,27,28,31–33]
Number of vowels [25–27]
Longest consecutive vowel sequence [13,25]
Ratio of length of longest vowels sequence [25]
Ratio of vowels to consonants [16,21,25]
Ratio of length of longest consonants sequence to length of longest vowels se-
quence

[25]

Ratio of vowels and digits [29]
Contains digits and letters [27]
Transition frequency of digits and letters [28]
Ratio of longest sequence lengths of letters or digits [19,23]

Subdomains
Number of subdomains [13,15,18,24,27,28,30]
Subdomain length mean [15,18]
Contains single-character subdomain [15,18]
Ratio of subdomains that contain digits only [15,18]
Ratio of subdomains that contain hexadecimal numbers only [15,18]
Contains TLD as subdomain [15,18]
Binary encoded TLD [31,34]
TLD type [27,31]
TLD length [31]
Number of different characters in TLD [31]
Second-level domain type [27]
Second-level domain length [31]
Number of different characters in second-level domain [31]

Linguistics
Regularity score (edit distance) [16]
Levenshtein edit distance [13,23]
Jaccard index [23]
Randomness [16,25]
Number of ’word-like’ units [13]
Ratio of meaningful substrings [13,16,23]
Length of longest meaningful string [13]
Frequency score (frequency of words) [16]
Correlation score (between consecutive words) [16]
Pronounceability score [23,24]
Number of syllables [24]
Illegitimate contents (from word list) [30]
Domain squatting score [13]
Language hypothesis [13]



Electronics 2022, 11, 414 8 of 28

Table 4. Cont.

Feature Type Usage

n-grams
n-gram frequency distribution [13,15,18,24,32]
n-gram mean [13,21,26,33]
n-gram median [13,31]
n-gram variance [13,21,26]
n-gram standard deviation [13,21,26]
n-gram distance [29]
n-skip-gram distribution [24]
Number of most frequently used n-grams [26,33]
Number of masked n-grams [26]
Ratio of 4-grams without vowel [16]
Ratio of n-grams from benign domains [33]
Ratio of n-grams from malicious domains [33]
n-gram entropy [13]
n-gram covariance [13]
n-gram pronounceability score [13]
n-gram normality score [13]
n-gram transition probability [13]
n-gram probability of appearance [13]
n-gram index probability [13]
n-gram Kullback–Leiber divergence [13,34]
n-gram Jaccard Index measure [13,34]
n-gram distance-threshold [13]
n-gram distance–avg. frequency [13]
n-gram distance–avg. count [13]

A limited number of studies also used features derived from statistics of n-grams.
Next to n-grams, Selvi et al. [21] also used masked n-grams in which every character is
substituted by a symbol representing the character type (consonant, vowel, digit, other).
Alaeiyan et al. [24] also consider the distribution of n-skip-grams, in which n centre charac-
ters are removed in a sequence of adjacent characters (for n = 1, 2).

Yang et al. [22] and Patsakis et al. [35] both focus on wordlist-based DGAs and use
a large number of features that try to distinguish wordlist-based malicious and benign
domain names (excluded from Table 4). Yang et al. use 24 features based on word fre-
quency, part-of-speech frequency, inter-word correlation, and inter-domain correlation.
Patsakis et al. use 32 features that consider alphanumeric sequences, statistical and lexical
characteristics, and entropy.

Hwang et al. [27] used 10 context-free features and in addition they extracted 100 fea-
tures using a TextCNN. The TextCNN takes as input a 70× 100 matrix for each domain
name, constructed by taking 100 characters from the domain name (using truncation for
longer domain names and padding for shorter domain names) and one-hot encoding with
a dictionary of 70 characters. The TextCNN is composed of two convolutional and max
pooling layers with ReLU activation function, three dense layers with ReLU activation
function, and dropout.

3.1.3. Context-Aware Features

Of the 22 ML-based studies in our literature review, five studies used a combination
of context-free and context-aware features [18,19,28,30,31], and two studies used context-
aware features only [14,20], as indicated in Table 1.

Chiba et al. [14] used 55 context-aware features: 20 features reflect how and when a
domain name is included in evolving lists of popular and malicious domain names in a
certain time window; 18 features consider information from BGP prefixes, ASN, and IP
address registration corresponding to the related IP addresses of a domain name; eight
features consider relations between domain names of which IP addresses are in the same
ASN (so called rDomains). They also use nine features that relate to domain names in
rDomains. He et al. [18] used 153 context-aware features: 25 features derived from five
feature types that consider DNS information; 128 features obtained from graph embedding
to estimate the likelihood of a specific sequence of connected nodes, using a domain
relationship graph in which domain names are connected if they are mapped to the same
IP addresses using the Jaccard coefficient as weight. They also use 41 context-free features,



Electronics 2022, 11, 414 9 of 28

which are the same as used by Schüppen et al. [15]. Li et al. [19] focused on the Rustock
botnet that applies fast-flux and DGA. They used 31 context-aware features of eight feature
types that relate to DNS, and one context-free feature (the ratio of the number of characters
in the longest successive string of letters or digits and the total length of the domain name).
Liang et al. [28] used five context-aware features that relate to DNS and BGP, and five
context-free features. Palaniappan et al. [30] used 13 context-aware features: six DNS-based
features and seven web-based features that relate to the web site for which the domain
name provides the URL. They also used four context-free features. Sivaguru et al. [31] used
nine DNS-based features.

There are two studies, by Schüppen et al. [15] and Liu et al. [20], that focus com-
pletely on monitoring of non-existent domain (NXDomain) responses in DNS traffic.
Schüppen et al. [15] apply ML for classifying NXDomain responses as originating from
benign or malicious sources. Benign NXDomains can originate from either typing errors
due to users that misspell existing domain names, misconfigurations due to systems that
erroneously try to resolve domain names that do not exist (anymore), and misuse due to
non-intended DNS usage such as probing to detect DNS hijacking attempts or anti-virus
software performing signature checks. They apply 21 context-free feature types related
to domain names. Liu et al. [20] apply filtering to remove benign NXDomain responses
using a whitelist, and clustering to group malicious domain names from the same DGA
considering the DNS behaviour of hosts. Next, they apply statistical analysis on the clusters
considering the distributions of the DNS querying time, count, and domains, from which
18 context-aware featured are derived.

3.2. DL-Based Methods
3.2.1. CNN Models

Xu et al. [41] apply a CNN-based method called n-CBDC (n-gram Character-Based
Domain Classification). A sliding window is applied to obtain a sequence with length l of
n-grams from a domain name. The sequence of n-grams is represented in a n× l matrix
with one-hot encoding. A CNN layer is used for feature extraction by stacking multiple
convolution kernels of different sizes using an inception-like structure. The CNN output is
fed into a fully-connected classification network consisting of three layers with dropout.
The output is derived from a sigmoid function.

3.2.2. RNN Models

RNN models for detecting DGAs have been applied in several studies. RNN models
in general are composed of an embedding layer to transform a domain name into a vector
representation, an LSTM layer for implicit feature extraction, and a dense output layer.
Dropout is usually applied to prevent overfitting.

Woodbridge et al. [36] and Akarsh et al. [43] apply the Keras embedding layer that
learns a 128-dimensional vector representation for each character in the set of valid domain
characters. The output of the embedding layer is fed into an LSTM layer with 128 LSTM units
for implicit feature extraction. A dropout layer is added to prevent overfitting during training.
The final dense layer applies logistic regression and the output is derived from a sigmoid (for
binary classification) or softmax (for multi-class classification) activation function.

Lison and Mavroeidis [37] apply one-hot input representation, a layer with 512 GRU or
LSTM units, a dense output layer that takes a linear combination, and a sigmoid activation
function to generate the output.

Koh and Rhodes [38] apply the pretrained ELMo (Embeddings from Language Models)
word embedding layer, a fully-connected layer with 128 rectified linear units (ReLUs), and
a logistic regression output layer.

Qiao et al. [44] apply an input layer where a domain name (using a fixed length of
54 characters with padding or truncation) is converted into a matrix of dimension 54 × 128
using Word2Vec’s CBOW model. An LSTM layer with an attention mechanism is used that



Electronics 2022, 11, 414 10 of 28

gives different attention to different parts of the input domain name, followed by a fully
connected layer, dropout, and a softmax classification function.

Vij et al. [47] use an embedding layer where each character is mapped onto a vector
with 128 dimensions using a lookup. An LSTM layer with 128 units is added and dropout
is used for preventing overfitting.

Yilmaz et al. [50] use an embedding layer where characters are encoded by their ASCII
representation. An LSTM layer with two hidden layers is used with dropout to avoid
overfitting.

Tran et al. [39] use an embedding layer that projects a padded sequence of input
characters of length l to a sequence of vectors with dimension 128× l. LSTM.MI is used,
where the original LSTM is adapted to be cost-sensitive for dealing with multi-class im-
balance. Sivaguru et al. [31] use a hybrid model where the output of the LSTM.MI model
by Tran et al. is used, together with context-free and context-aware features, as input for
a B-RF classifier that consists of 100 trees, where each tree is trained using a subset of the
feature space.

3.2.3. Hybrid CNN-RNN Models

Several studies have applied hybrid models in which CNN and RNN models are
combined.

Vinayakumar et al. [40] use a hybrid CNN-LSTM model. When compared to RNN,
LSTM, GRU, I-RNN, and CNN models, best results are obtained with the LSTM and
hybrid CNN-LSTM model, achieving over 0.99 accuracy. The accuracy with ML methods
(Adaboost, DT, LR, ME, NB, RF) and hand-crafted features is below 0.96.

Yu et al. [42] compared LSTM, BiLSTM, stacked CNN, parallel CNN, and hybrid
CNN-LSTM models. All these models performed equally well and obtained over 0.98 accu-
racy. For comparison, the accuracy of ML methods (RF and MLP) with lexical features is
below 0.92.

Liu et al. [45] use a hybrid RCNN-SPP model that combines a bi-directional LSTM
network, a CNN, and spatial pyramid pooling.

Highnam et al. [48] use a hybrid CNN-LSTM-ANN model. The output of the embed-
ding layer is passed to separate LSTM and CNN models in parallel. The features extracted
by the LSTM and CNN models are sent to a single layer ANN, which is then flattened to
produce the output.

Ren et al. [46] compare CNN, LSTM, CNN-BiLSTM, ATT-CNN-BiLSTM, and ML
(SVM) models. Best results are obtained with the ATT-CNN-BiLSTM model that is com-
posed of an embedding layer, a CNN layer to extract local parallel features, a BiLSTM layer
to extract features that depend on neighbouring characters or on characters that are wider
apart, an attention layer, dropout, and an output layer.

Namgung et al. [49] compare CNN, LSTM, BiLSTM, and hybrid CNN-BiLSTM models.
In the hybrid model, the output of the embedding layer is sent to a CNN and a BiLSTM
with attention in parallel, which subsequently feed into a fully-connected output layer
using ReLU and dropout.

Cucchiarelli et al. [34] compare LSTM.MI from Tran et al. [39], BiLSTM from Mac
et al. [56], hybrid ATT-CNN-BiLSTM from Ren et al. [46], and ML (MLP, RF, SVM) models.
The best accuracy is obtained by a MLP with one single hidden layer composed by 128 units.
Although previous studies [40,46] showed that DL methods outperform basic ML methods,
Cucchiarelli et al. [34] show that ML methods with careful feature selection and classifier
tuning can still outperform DL methods.

3.3. Other Methods

Of the other methods, that are not based on ML or DL, Wang et al. [51] and Yin et al. [55]
focused on NXDomain responses. Wang et al. first filter ’normal’ NXDomain responses,
next cluster hosts that seem compromised by the same DGA-based malware, and finally
identify compromised hosts using a supervised statistical algorithm based on query time



Electronics 2022, 11, 414 11 of 28

and query count distributions. Yin et al. implemented client-side detection by using Thresh-
old Random Walk for sequential hypothesis testing that relies solely on benign domains.

Satoh et al. [52] filter benign domain names using whitelists, select the longest subdo-
main and split it into words using dictionaries, and estimate the randomness of character
strings. To compensate for deficiencies of the dictionaries, they also estimate the random-
ness of a subdomain by referring to web search results.

Sun et al. [53] applied a graph convolutional network method considering the character
distribution of domain names, resources aggregation of attackers, and the query behaviour
of clients. The DNS context is modelled as a Heterogeneous Information Network (HIN) of
clients, domains, IP addresses, and different types of relations among them. Meta-paths are
elaborately extracted to help uncover higher-level semantics hiding in the HIN. A graph
convolutional network (GCN) is used that applies an attention mechanism to adaptively
learn the meta-paths.

Yan et al. [54] applied graph analysis in a semi-supervised learning scheme. They first
extract three types of feature vectors: vectors that represent visiting patterns of domain
names in traffic during a fixed time frame are extracted using a CNN-based auto-encoder;
vectors that represent the visiting order of domain names are extracted using an embedding
scheme where a series of domain names is considered as a series of words in NLP; vectors
that represent lexical features of domain names are extracted using an LSTM. These three
vectors are combined into a comprehensive feature vector for each domain name. Graph
analysis algorithms are used next to group domain names from the same DGA family. By
considering thresholds for the number of domain names visited, the most visited domain
name, the dispersion of the length of visited domain names, and the dispersion of time
intervals in which domain names are visited, it is determined whether a host is infected.

3.4. Datasets

The 42 studies in our literature review as listed in Tables 1–3 used various datasets
with benign and malicious domain names to obtain experimental results.

The Alexa dataset https://www.alexa.com/topsites has been used most frequently (in
74% of the reviewed studies) as a source of benign domain names. The Alexa dataset
contains the domain names of the most popular web sites in the world. The Alexa
dataset with the top 1 million sites was freely available until 2016; afterwards only the
top 500 web sites has been freely available. Occasionally other datasets have been used,
such as the Majestic dataset https://majestic.com/reports/majestic-million, OpenDNS
https://www.opendns.com/, and Cisco Umbrella https://s3-us-west-1.amazonaws.com/
umbrella-static/top-1m.csv.zip.

Several sources have been used for DGA-generated domain names. The dataset from
Bambenek http://osint.bambenekconsulting.com/feeds/, DGArchive https://dgarchive.
caad.fkie.fraunhofer.de, and Netlab https://data.netlab.360.com/feeds/dga/dga.txt have
been used most frequently (in 26%, 21%, and 17% of the reviewed studies). The Bambenek
dataset is an OSINT DGA domain feed from Bambenek Consulting. DGArchive, as intro-
duced by Plohmann et al. in 2016 [7], originally contained lists of domain names generated
by 43 DGA families, and has been extended later on.

4. Research Method

We applied the method as outlined in Figure 1. We trained and tested different multi-
class classification models, using both ML and DL, for which we applied TF-IDF features.
We also trained and tested an LSTM model without TF-IDF that contains an embedding
layer to convert domain names. We consider such LSTM model as state-of-the-art, and
hence, by comparing the results obtained with the LSTM model and the TF-IDF based
models, we can evaluate the effectiveness of TF-IDF based models.

https://www.alexa.com/topsites
https://majestic.com/reports/majestic-million
https://www.opendns.com/
https://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
https://s3-us-west-1.amazonaws.com/umbrella-static/top-1m.csv.zip
http://osint.bambenekconsulting.com/feeds/
https://dgarchive.caad.fkie.fraunhofer.de
https://dgarchive.caad.fkie.fraunhofer.de
https://data.netlab.360.com/feeds/dga/dga.txt


Electronics 2022, 11, 414 12 of 28

Figure 1. Method.

In the following subsections we provide details on the datasets in Section 4.1, on the
usage of TF-IDF in Section 4.2, on the ML and DL models in Section 4.3, on the evaluation
metrics in Section 4.4, on the experimental results in Section 4.5, and a discussion on the
experimental results in Section 4.6.

4.1. Datasets

We obtained datasets with benign domain names and malicious domain names as
generated by DGAs from public sources.

We derived our dataset with benign domain names from the TRANCO list of the
top one million most popular domains on the web https://tranco-list.eu. The TRANCO
list is based on available rankings from Alexa, Cisco Umbrella, Majestic, and Quantcast,
but improves upon each of these rankings by addressing agreement on the set of popular
domains, stability over time by averaging the rankings over the past 30 days, popularity
and availability of the listed websites, and lack of malicious domains [57]. We performed
the following operations:

• We downloaded 10 separate TRANCO lists during 2019 on 8 January, 5 February,
7 May, 4 June, 2 July, 8 August, 3 September, 1 October, 5 November, and 3 December,
and took the intersection of these 10 lists.

• We removed domain names that were also in the list of malicious domain names.

Our final dataset contains 583,954 benign domain names. The length of these domain
names varies from 4 to 67 characters.

We derived our dataset with malicious domain names from DGArchive, a free service
offered by Fraunhofer FKIE [7]. We downloaded the DGArchive dataset at the end of
2018, which contained 110,497,746 malicious domain names from 87 DGA families. We
performed the following operations on this dataset:

• We removed duplicate malicious domain names per DGA family and across DGA
families.

• We removed domain names that are also in the list of benign domain names.
• We removed the DGA families for which less than 1000 domain names are available.
• We selected all domain names for the DGA families for which between 1000 and 10,000

domain names are available.
• We randomly selected 10,000 domain names from each DGA family for which more

than 10,000 domain names are available.

Our final dataset contains 492,800 malicious domain names from 57 DGA families.
Table 5 shows details of the malicious domain names per DGA family. The column

’DGA type’ indicates whether the DGA is arithmetic-based (A), hash-based (H), or wordlist-
based (W), see Section 2.2. The column ’Count’ indicates the number of domain names;
the column ’Length’ indicates the length (min, max) of the domain names. The last two
columns show examples of domain names.

https://tranco-list.eu


Electronics 2022, 11, 414 13 of 28

Table 5. Characteristics of DGA families.

DGA Family DGA Type Count Length Sample 1 Sample 2

banjori A 10,000 11–30 eihspartbulkyf.com ochqfordlinnetavox.com
bedep A 7458 16–22 vhljakiutpq7.com csejdvmqgmqj.com
chinad A 10,000 19–21 3vainry4stex8arf.cn vfuupsix5ki5omg0.cn
conficker A 10,000 8–16 qzvwnnije.biz dovcujbpg.biz
corebot A 10,000 15–32 kr105hivgrqvo8e8ijqh1bc.ws i472uvy6qjyvgh18mhw4k85.ws
cryptolocker A 10,000 15–21 leojfthetfvk.com thtatcpfomflk.com
dnschanger A 10,000 14–14 xxxfuhkjzu.com viwnolcsqf.com
ebury A 2000 17–18 r2g1v3mau7h4k.info k1i5q3w5r1x4i.net
emotet A 10,000 19–19 iqpucsfnnijdnbii.eu olahnvuhbiitauve.eu
fobber A 2000 14–21 phtatognxg.com vzuopketsrtaqttgk.net
gameover A 10,000 18–37 iz6tx9jwre387brksimxpkcp.net d2u8ds1aif9oryzft8f1u052m5.org
locky A 10,000 8–23 viuoabuc.fr rkwaoicjullpc.click
murofet A 10,000 13–21 prkwwoswewwkfzuy.com udumozptkqqpo.info
murofetweekly A 10,000 35–51 jyi35d10gwgqlrmrhupudxdqoyc69n40d20dq.ru buiuj26gvhxk57pvmrk17d50bwfzlxa17hrls.ru
necurs A 10,000 10–28 yaatqhjjgicemhoeiu.nf inlclnelid.ug
nymaim A 10,000 8–16 xhhtaldw.net uckvk.net
oderoor A 3833 10–16 uyftputndw.cc mdnaizofvm.cc
padcrypt A 10,000 19–24 fkaokkbfaalfbdeb.info menccfmdkcmaemfk.de
proslikefan A 10,000 9–17 zrimegy.in vnmwww.co
pushdo A 10,000 11–16 katcetutyx.kz lakeotux.kz
pushdotid A 6000 13–14 gxmdgfmjcx.com opgrexsbif.net
pykspa A 10,000 10–17 rldbwwarp.net myhmexr.net
pykspa2 A 10,000 10–19 iugzosiugkeq.net wkuglwiugkeq.biz
pykspa2s A 9957 10–19 pkpycifox.com wudmdgeoya.biz
qadars A 10,000 16–16 ysmoq4esi0q0.org gt6b8tirkh2r.net
qakbot A 10,000 12–30 xvvluuabuftqilmnynimpipb.info tugfpmprjspprbwxdzi.biz
ramdo A 6000 20–20 skuqesksmewsckwg.org iqgieiyuigamowca.org
ramnit A 10,000 11–25 ixrghbaytyaksgug.com bwqkmskfwpvljd.com
ranbyus A 10,000 17–21 ndgpkwlmftaryloae.cc gttfhnegjtmegkhrt.cc
rovnix A 10,000 21–22 jaitc336ybcds71ykg.cn oar7juqajea1wnyopo.cn
shifu A 2331 10–12 vhqrdfg.info xxuissv.info
simda A 10,000 8–14 rynezev.info qebol.eu
sisron A 8800 16–17 mjcwmziwmtqa.net mjmwotiwmtga.net
sphinx A 10,000 20–20 libuybegcrlrfyof.com oixwkitoiqseltry.com
sutra A 9882 19–29 gweqifjejtoaemgw.info hpwazeehjwpfwgaj.ru
symmi A 10,000 17–24 oqmievkeedloovm.ddns.net esitkoelmei.ddns.net
szribi A 10,000 12–12 ddpuuddd.com grawspwe.com
tempedrevetdd A 1380 12–14 gbuxwrwx.org crwhchuda.org
tinba A 10,000 10–23 bcjwxxumttmh.net rwtopxoocwtt.cc
tofsee A 3140 10–11 drndrng.biz drodroi.biz
torpig A 10,000 11–13 bfcmulj.net bhksvgrpa.com
urlzone A 10,000 8–19 ehw5jdkwkv.com rc5iycl4suf.com
vawtrak A 2700 10–15 dmzqvyn.top misohnatl.com
vidro A 10,000 11–23 prjbemepgzkp.com rakrfxs.com
virut A 10,000 10–10 yzraho.com ehuquf.com
xxhex A 4400 12–13 xxa5c1b019.sg xx3603da38.sg

bamital H 10,000 36–38 43f3d094f08dd1a2df2869352e2a9712.cz.cc f0b79a9253cf7c58f0e1f54426f45bf4.cz.cc
dyre H 10,000 37–37 rdf36ed41339f9abd57a5a1c9f2143f513.ws u28c43d53bb3ecafbdfd29fa34a47dae09.to
ekforward H 2919 8–11 80a118c7.eu 9356c774.eu
infy H 10,000 12–14 1e60c5f5.space a56bc6c6.top
pandabanker H 10,000 16–17 52efedef74d4.com 0b16dca48547.com
tinynuke H 10,000 36–36 ec893776679264b90cfff916cc5f0eaf.com 84b4a55d8ac046a9816dda8b866893b7.top
wd H 10,000 36–38 wd679ab775d15bbee733b8545f20452504.win a0e433f4c96c6b8f3ece607d791d6546.pro

gozi W 10,000 15–29 formsworkfreeall.com allowdisalloallow.me
matsnu W 10,000 16–28 bitpersuadebutton.com structuresurvey.com
nymaim2 W 10,000 11–33 sculpturenegative.net shuttlefatty.it
suppobox W 10,000 11–30 senseinto.ru threeslept.net

In total, our dataset contains 1,076,754 domain names. For our experiments, we
divided the dataset into two disjoint subsets: 70% is included in the training dataset for
training the models (containing 753,727 domain names), and 30% is included in the test
dataset for evaluating the trained models (containing 323,027 domain names).

The distribution of the average frequency of unigram occurrences in malicious do-
main names per DGA family as well as in benign domain names from the topsites, is
shown in Figure 2. We derived these distributions from the domain names in the training
dataset as follows: Since domain names are case insensitive, we first lowercased all domain
names. The resulting domain names contain characters from a dictionary of 39 characters
{a, . . . , z, 0, . . . , 9,−, ., _} (i.e., letters, digits, hyphen, dot, and underscore). Next, we computed
the relative frequency of each character, which is the number of occurrences of the character
divided by the length of the domain name. Finally, we computed the average frequency of
each character for each category of domain names (which is either a DGA family or topsites).



Electronics 2022, 11, 414 14 of 28

Figure 2. Unigram distributions.



Electronics 2022, 11, 414 15 of 28

The figure shows that different types of DGA families have different distributions.
Of the DGA-A families (banjori to xxhex), some have a rather uniform distribution (e.g.,
chinad and gameover), but in most distributions no digits are present. Since the second-
level domain names of DGA-H families (bamital to wd) are hexadecimal numbers, the
distributions mainly contain characters {a, . . . , f , 0, . . . , 9}; other characters are rare and
occur in the top-level domain name. Since the domain names of DGA-W families (gozi to
suppobox) contain words, the distributions are similar to the distribution of the domain
names of topsites. However, this also holds for some of the distributions of DGA-A families
(e.g., banjori and pykspa2).

The differences in distributions show that these can be used as a basis for multi-class or
binary classification of domain names. Hence, classifiers in which features are applied that
rely on n-gram distributions (such as TF-IDF as we propose in this paper), look promising.

4.2. TF-IDF

We use TF-IDF (as explained in Section 2.3) as the single feature type in various
classifiers. In general, TF-IDF yields a weighting factor for each term which indicates
how relevant the term is to a document in a collection of documents. We apply TF-IDF to
obtain weighting factors to evaluate how relevant n-grams are to a domain name in a set of
domain names.

We applied the code as shown in Listing 1 to derive the TF-IDF for the top 5000 n-
grams in the training dataset, using the class TfidfVectorizer from scikit-learn. We first
determine the top 5000 of n-grams (for n ∈ {1, 2, 3}) that occur most often in the training
dataset, and learn the IDF for each of these n-grams (i.e., the inverse frequency of each
n-gram in the domain names in the training dataset). The training dataset is transformed
from a set of domain names into a set of vectors with dimension 5000 representing the
TF-IDF of the top 5000 n-grams. Next, the TF-IDF is determined for these 5000 n-grams in
the test dataset. Hence, also the test dataset is transformed from a set of domain names into
a set of vectors with dimension 5000 representing the TF-IDF of the top 5000 n-grams, using
the vocabulary and IDF of n-grams derived from the training dataset. TF-IDF for n-gram x
in domain name y is computed by Equation (1), where TFx,y denotes the frequency of x in y,
DFx the number of domain names containing x, and N the total number of domain names.

TF-IDFx,y = (1 + log(TFx,y))× log(
N

DFx
) (1)

Listing 1. Deriving TF-IDF.

tfidf = TfidfVectorizer(sublinear_tf=True, lowercase=True, analyzer=’char’, ngram_range=(1,3), dtype=np.float32,
max_features=5000)
X_train_tfidf = tfidf.fit_transform(X_train)
X_test_tfidf = tfidf.transform(X_test)

4.3. ML and DL Models

As indicated in our literature review in Section 3.1 (see in Table 1), different ML models
have been applied in prior studies for DGA-based botnet detection, including Decision
Trees, K-Nearest Neighbours, Logistic Regression, Naive Bayes, Neural Networks, Support
Vector Machine, and ensemble approaches constituted by boosting (such as AdaBoost, BT,
C5.0, GB, GBM, GBT, XGBoost) or bagging (such as CART, ET, RF). RF and SVM are applied
most often. In line with these prior studies, we considered 7 ML models, all with TF-IDF
feature vectors: Decision Tree (DT), Gradient Boosting (GB), K-Neighbours (KN), Logistic
Regression (LR), Multinomial Naive Bayes (MNB), Random Forest (RF), and Support Vector
Machine (SVM). All models are multi-class classifiers with 58 outputs (corresponding to
the 57 DGA families and topsites).

We applied TensorFlow with Keras and Scikit-learn in our experiments. We tuned
the hyperparameters for each ML model using RandomizedSearchCV on the training set
with 2-fold cross-validation and 20 iterations. The hyperparameters involved are shown in



Electronics 2022, 11, 414 16 of 28

Table 6. In each iteration, a different hyperparameter setting was tried. The hyperparameter
settings that yielded the best classification results (by means of the mean F1-score) are
shown in bold.

Table 6. Values of hyperparameters tried in randomized search.

Classifier Parameter Candidate Values

DT min_samples_split 2, 5, 10
min_samples_leaf 1, 2, 4
max_features auto, sqrt, log2, None
max_depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None
criterion gini, entropy

GB subsample 0.5, 0.7, 1.0
n_estimators 10, 100, 1000
max_depth 3, 7, 9
learning_rate 0.001, 0.01, 0.1

KN n_neighbours 1, 3, 5, 7
metric euclidean, manhattan, minkowski
weights uniform, distance

LR solver newton-cg, lbfgs, liblinear, sag, saga
penalty l1, l2, elasticnet, none
C 100, 10, 1.0, 0.1, 0.01
class_weight balanced, None

MNB alpha 1, 0.1, 0.01, 0.001, 0.0001, 1e-05, 1e-06, 1e-07, 1e-08, 1e-09, 0
fit_prior True, False

RF n_estimators 10, 132, 255, 377, 500
min_samples_split 2, 5, 10, 15, 20
min_samples_leaf 1, 2, 5, 10, 15
max_features auto, sqrt, log2
max_depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None
criterion gini, entropy
bootstrap True, False

SVM kernel poly, rbf, sigmoid
gamma scale, auto
C 50, 10, 1.0, 0.1, 0.01

We also considered two DL models: Multi-Layer Perceptron (MLP) with TF-IDF
feature vectors, and Long Short-Term Memory (LSTM) with embedding (without TF-IDF).
For training the DL models, we used ’Adam’ as optimizer, ’categorical_crossentropy’ as
loss function, and ’accuracy’ as metric. The ’validation_split’ is set to 0.3, which means
that 70% of the training set is used for training and 30% for validation. We trained the
DL models for 20 epochs with a batch size of 512. We used an early stopping mechanism,
configured by EarlyStopping(monitor = ’val_categorical_crossentropy’, patience = 5) which
means that training is stopped after five epochs without improvement.

We tried MLP models using two to five dense layers, with and without dropout. All
models are multi-class with 58 outputs (corresponding to the 57 DGA families and topsites).
Best results (by means of mean F1-score) were obtained using the model as shown in
Table 7.

Table 7. Details of MLP model.

Layer Type Output Shape #Params

dense_10 Dense (ReLU activation, L2 regularization 0.0001) 352 1,760,352
dropout_2 Dropout (0.2) 352 0
dense_11 Dense (ReLU activation, L2 regularization 0.0001) 352 124,256
dropout_3 Dropout (0.2) 352 0
dense_12 Dense (ReLU activation, L2 regularization 0.0001) 352 124,256
dropout_4 Dropout (0.2) 352 0
dense_13 Dense 58 20,474

Total params 2,029,338
Trainable params 2,029,338
Non-trainable params 0



Electronics 2022, 11, 414 17 of 28

For comparison, we also applied an LSTM model without TF-IDF. We used an embed-
ding layer to convert a domain name into a vector representation. We derived a dictionary
of 39 characters and assigned a unique id to each character. We lowercased and tokenized
each domain name into a sequence of characters, which we next transformed into a numeric
vector by assigning the character id’s from the dictionary. We used vectors with a fixed
length of 67. For domain names containing less than 67 characters, we padded the corre-
sponding vector with 0 values. For domain names that contained more than 67 characters,
we discarded the extra characters. In addition, our LSTM model is multi-class with 58
outputs (corresponding to the 57 DGA families and topsites). Details of the model are
shown in Table 8.

Table 8. Details of LSTM model.

Layer Type Output Shape #Params

embedding_2 Embedding 67,128 5120
lstm_2 LSTM 128 131,584
dropout_2 Dropout (0.1) 128 0
dense_2 Dense 58 7482
activation_2 Activation (softmax) 58 0

Total params 144,186
Trainable params 144,186
Non-trainable params 0

4.4. Metrics

We evaluated the accuracy of our models by considering how well the models are
able to correctly classify domain names. Consider for instance the actual positive class of
domain names that are generated by the banjori DGA, and the actual negative class of all
other domain names (including benign domain names and domain names generated by
other DGAs). We can express the classification results, i.e., the predictions as output by a
model, by considering the positive predictions (i.e., domain names that are classified as
being generated by the banjori DGA) and the negative predictions (i.e., domain names that
are classified as not being generated by the banjori DGA), and whether the predicted class
matches the actual class. A classification result is either a true positive (TP) in case of a
correct positive prediction, a false positive (FP) in case of an incorrect positive prediction, a
true negative (TN) in case of a correct negative prediction, or a false negative (FN) in case
of an incorrect negative prediction. The ratio between these classifications can be expressed
by different metrics. Common metrics are precision, which is the fraction of correct positive
predictions among all correct and incorrect positive predictions (TP/(TP + FP)) and recall,
which is the fraction of correct positive predictions among all elements in the actual positive
class (TP/(TP + FN)). Precision and recall may not be particularly useful when used in
isolation, since deviations in FP and FN may lead to considerable differences between
recall and precision. This is addressed by the F1-score, which takes the harmonic mean of
precision and recall:

F1-score =
2

precision−1 + recall−1 =
TP

TP + 1
2 (FP + FN)

(2)

We evaluated all our DL and ML models using the held-out test set and computed
the F1-score. For further analysis of the results, we also considered confusion matrix,
precision-recall curve, and ROC-curve of each model as metrics. In a confusion matrix,
each row represents an actual class, while each column represents a predicted class. A
precision-recall curve shows the trade-off between precision and recall for different settings
of the classification threshold. An ROC-curve shows the true positive rate against the false
positive rate at various settings of the classification threshold.



Electronics 2022, 11, 414 18 of 28

4.5. Results

Table 9 shows the F1-score for different ML and DL models. The corresponding
results for precision and recall are shown in Tables A1 and A2 in Appendix A. The last
two columns show the number of vectors in the training set and the test set for each class.
The top rows show the results for each DGA family and for the benign domain names
(’topsites’). The bottom rows show the aggregated results for all the 57 DGA families, for
the arithmetic-based DGAs (DGA-A: banjori to xxhex), the hash-based DGAs (DGA-H:
bamital to wd), and the wordlist-based DGAs (DGA-W: gozi to suppobox), and the overall
results (for all malicious and benign domain names). The aggregated results are expressed
as the average results (’macro average’), the weighted average results (where the weights
correspond to the number of vectors in the test set; ’micro-average’), and the corresponding
standard deviations.

Table 9 shows that best results overall are obtained with the LSTM model, yielding
90.69% weighted average F1-score. The MLP model performed second best (89.08%), closely
followed by the SVM model (88.08%). The LR model (86.30%) performed better than the
GB (81.02%), DT (80.52%), MNB (80.01%), and RF (78.54%) models, while the KN model
(63.00%) performed worst.

Although the LSTM model yielded best results, there are some notable exceptions.
The best results for the DGA-W families were obtained with the SVM model, with the MLP
model as second best. For the topsites, best results were obtained with the MLP model,
with the SVM model as second best.

The aggregated results in Table 9 also show that the best performing models in terms
of the highest average F1-score also have the smallest standard deviation and hence the
smallest spread in F1-scores. Nevertheless, the standard deviations of 14.68 for the LSTM
model and 17.17 for the MLP model still are rather large.

The spread in F1-scores is also shown in the boxplots in Figure 3. The LSTM model
clearly performs best, with the MLP model as second best, when considering all mali-
cious and benign domain names (’Total’), all malicious domain names (’DGA-all’), and
the domain names generated by arithmetic-based DGAs (’DGA-A’). All models, except
the KN model, perform rather well for domain names generated by hash-based DGAs
(’DGA-H’). The SVM model performs best for domain names generated by wordlist-based
DGAs (’DGA-W’).

Figure 3. Boxplots of F1-score.



Electronics 2022, 11, 414 19 of 28

Table 9. F1-score (expressed as percentage).

Class DT GB KN LSTM LR MLP MNB RF SVM Test Training

banjori 94.44 98.36 98.39 99.61 99.52 99.81 95.34 99.14 99.83 2936 7064
bedep 39.81 49.20 0.37 73.56 51.59 61.79 47.06 33.79 60.99 2150 5308
chinad 69.43 67.35 0.73 99.20 71.48 84.81 50.73 67.83 79.01 2996 7004
conficker 22.91 29.42 5.63 39.41 29.80 38.44 19.28 22.92 35.91 3050 6950
corebot 85.97 88.34 51.26 99.79 99.31 99.47 98.38 90.95 99.32 3038 6962
cryptolocker 40.58 45.69 1.59 67.25 39.70 56.77 32.42 38.24 48.80 2929 7071
dnschanger 46.70 44.18 1.16 83.09 34.69 69.13 20.80 37.50 52.53 3051 6949
ebury 54.86 61.85 91.60 99.17 92.09 93.23 94.32 57.27 93.57 605 1395
emotet 96.75 94.16 51.11 99.60 94.11 97.84 86.82 95.06 96.54 3000 7000
fobber 22.29 20.51 0 35.16 3.26 9.78 0 15.87 4.77 607 1393
gameover 90.66 94.25 0.33 98.91 88.04 97.61 65.28 95.75 96.10 3023 6977
locky 41.64 49.96 10.43 65.12 52.86 55.95 45.33 44.60 53.10 3079 6921
murofet 58.64 63.57 0.96 80.46 60.17 72.03 48.46 59.36 67.62 3062 6938
murofetweekly 95.67 99.14 87.27 99.90 99.83 99.87 99.33 99.68 100 3019 6981
necurs 64.92 71.43 0.65 87.60 77.42 82.01 70.44 58.88 80.34 3024 6976
nymaim 31.88 46.78 8.10 51.44 41.05 48.65 24.51 43.32 45.77 2952 7048
oderoor 26.07 33.13 79.78 48.40 73.84 51.78 75.71 23.55 73.45 1123 2710
padcrypt 90.59 92.51 66.46 99.93 99.71 99.72 93.37 97.97 99.71 3045 6955
proslikefan 34.18 41.66 5.12 53.09 42.31 48.61 27.03 33.32 46.23 3016 6984
pushdo 80.58 88.14 72.87 95.51 96.15 96.03 91.92 83.93 95.92 2984 7016
pushdotid 39.80 42.21 11.45 97.32 80.68 86.51 75.07 30.41 83.38 1792 4208
pykspa 24.12 29.96 6.90 50.19 30.23 43.36 21.26 31.00 39.96 2994 7006
pykspa2 47.77 45.34 45.67 50.44 47.84 53.63 46.29 49.77 49.67 3003 6997
pykspa2s 44.57 52.60 44.39 56.05 47.83 48.88 43.20 51.82 49.28 3002 6955
qadars 74.80 80.75 76.80 99.35 98.74 98.58 98.09 81.19 99.26 3053 6947
qakbot 45.03 50.22 0.33 62.91 39.97 55.45 33.84 46.59 45.53 2976 7024
ramdo 98.13 95.46 31.20 100 96.57 99.40 85.40 97.47 98.08 1735 4265
ramnit 25.57 18.12 1.43 52.11 27.71 29.54 27.71 9.86 28.12 2946 7054
ranbyus 65.72 70.86 2.70 86.24 65.21 74.88 48.60 69.00 71.71 3049 6951
rovnix 77.11 79.17 0.48 99.42 76.26 87.69 62.85 80.88 82.10 2924 7076
shifu 38.26 39.55 6.04 79.83 25.93 52.68 5.41 21.90 31.80 710 1621
simda 75.92 73.49 71.36 97.54 95.67 96.08 93.67 72.26 96.77 3070 6930
sisron 99.93 100 98.65 100 99.98 99.96 99.96 100 99.98 2699 6101
sphinx 59.85 58.30 5.06 91.31 59.20 71.04 45.82 54.77 63.85 2984 7016
sutra 96.18 97.32 92.36 99.75 98.56 98.66 94.30 97.44 99.10 2979 6903
symmi 99.79 99.69 94.94 100 99.92 99.98 98.92 99.80 99.98 3056 6944
szribi 93.45 77.81 84.22 98.11 96.37 97.86 91.95 90.92 98.01 3008 6992
tempedrevetdd 4.32 1.63 0.88 48.41 5.33 15.75 0 0 9.50 401 979
tinba 53.51 44.48 15.51 82.83 61.59 74.44 53.45 33.14 68.07 2955 7045
tofsee 97.92 99.57 63.91 99.09 98.67 99.30 97.15 97.93 98.93 929 2211
torpig 80.26 94.29 85.99 98.58 98.31 98.71 94.24 87.46 98.85 2967 7033
urlzone 62.70 70.60 2.44 93.68 81.70 87.25 63.93 68.05 85.03 3046 6954
vawtrak 16.20 17.40 20.43 76.49 57.21 57.91 34.07 9.30 56.29 778 1922
vidro 44.19 48.07 50.30 50.93 46.57 48.43 47.96 48.83 50.64 3074 6926
virut 42.56 38.00 6.39 77.88 40.47 69.43 23.14 17.21 49.93 2960 7040
xxhex 99.05 99.81 96.47 99.73 100 99.96 98.68 100 100 1312 3088

bamital 99.47 99.66 60.29 99.98 99.98 99.91 96.61 99.98 99.98 2922 7078
dyre 98.86 99.75 25.73 100 99.98 99.98 94.65 100 100 2965 7035
ekforward 97.60 98.73 79.34 99.94 99.83 99.94 99.32 99.66 99.71 874 2045
infy 98.40 96.95 71.62 99.90 98.91 99.63 97.75 99.12 99.37 2952 7048
pandabanker 98.81 99.16 74.40 99.93 99.32 99.78 98.35 99.62 99.62 3016 6984
tinynuke 99.27 99.67 51.10 99.98 99.88 99.97 94.50 99.95 99.97 3009 6991
wd 99.93 100 83.63 100 99.97 99.98 99.92 100 100 2983 7017

gozi 52.23 68.12 51.84 76.58 85.19 84.32 52.08 64.01 87.60 2988 7012
matsnu 24.07 8.81 31.71 52.62 58.17 60.77 4.04 0.06 70.30 3097 6903
nymaim2 48.09 49.45 20.46 81.86 81.28 80.34 47.64 12.92 82.33 3039 6961
suppobox 60.63 52.11 76.83 82.17 86.83 89.37 56.42 60.76 94.61 3013 6987

topsites 92.34 91.70 82.76 96.78 96.58 97.24 93.12 89.74 96.94 175,078 408,876

DGA macro average 64.43 66.26 39.95 82.76 72.51 77.59 63.38 62.84 75.73 147,949 344,851
stddev 28.23 28.25 35.50 20.13 27.88 24.10 31.71 32.30 26.02

micro average 66.54 68.38 39.62 83.49 74.14 79.42 64.51 65.29 77.60
stddev 26.32 26.28 35.03 19.36 25.63 21.72 29.79 30.46 23.45

DGA-A macro average 60.77 63.14 35.87 80.97 67.90 74.10 60.25 59.69 71.38 117,091 272,790
stddev 27.35 27.06 36.93 20.82 28.55 24.93 31.22 30.58 26.82

micro average 63.46 65.95 35.48 81.93 69.68 76.24 61.86 63.02 73.42
stddev 25.19 24.59 36.68 20.04 26.28 22.51 28.88 28.16 24.21

DGA-H macro average 98.91 99.13 63.73 99.96 99.70 99.88 97.30 99.76 99.81 18,721 44,198
stddev 0.70 0.97 18.64 0.04 0.39 0.12 1.99 0.30 0.23

micro average 99.05 99.18 62.01 99.96 99.68 99.88 97.07 99.77 99.82
stddev 0.58 1.01 18.86 0.04 0.40 0.13 1.97 0.32 0.24

DGA-W macro average 46.26 44.62 45.21 73.31 77.87 78.70 40.05 34.44 83.71 12,137 27,863
stddev 13.58 21.87 21.44 12.15 11.55 10.84 21.02 28.34 8.88

micro average 46.09 44.34 45.05 73.18 77.72 78.57 39.79 34.09 83.61
stddev 13.66 21.97 21.42 12.23 11.62 10.90 21.15 28.37 8.92

Total macro average 64.91 66.70 40.69 83.00 72.92 77.93 63.89 63.31 76.10 323,027 753,727
stddev 28.22 28.20 35.63 20.04 27.81 24.02 31.68 32.21 25.94

micro average 80.52 81.02 63.00 90.69 86.30 89.08 80.01 78.54 88.08
stddev 21.97 21.24 32.00 14.68 20.64 17.17 24.69 23.94 18.57



Electronics 2022, 11, 414 20 of 28

Figure 4 shows the confusion matrices of the LSTM, MLP, SVM, and LR models. All
matrices show that false classifications of DGA-W domain names are classified as topsites.
As observed in Section 4.1, the DGA-W domain names closely resemble benign domain
names. In the LSTM and MLP models, false classifications are often classified as topsites,
pykspa and vidro, while in the SVM and LR models, false classifications are often classified
as topsites, dnschanger, and ramnit.

to
ps

ite
s

ba
nj
or
i

be
de

p
ch

in
ad

co
nf
ick

er
co

re
bo

t
cr
yp

to
lo
ck

er
dn

sc
ha

ng
er

eb
ur

y
em

ot
et

fo
bb

er
ga

m
eo

ve
r

lo
ck

y
m
ur
of
et

m
ur
of
et
we

ek
ly

ne
cu

rs
ny

m
ai
m

od
er
oo

r
pa

dc
ry
pt

pr
os

lik
ef
an

pu
sh

do
pu

sh
do

tid
py

ks
pa

py
ks

pa
2

py
ks

pa
2s

qa
da

rs
qa

kb
ot

ra
m
do

ra
m
ni
t

ra
nb

yu
s

ro
vn

ix
sh

ifu
sim

da
sis

ro
n

sp
hi
nx

su
tra

sy
m
m
i

sz
rib

i
te
m
pe

dr
ev

et
dd

tin
ba

to
fs
ee

to
rp

ig
ur

lzo
ne

va
wt

ra
k

vi
dr
o

vi
ru

t
xx

he
x

ba
m
ita

l
dy

re
ek

fo
rw

ar
d

in
fy

pa
nd

ab
an

ke
r

tin
yn

uk
e wd go
zi

m
at
sn

u
ny

m
ai
m
2

su
pp

ob
ox

Predicted label

topsites
banjori
bedep
chinad

conficker
corebot

cryptolocker
dnschanger

ebury
emotet
fobber

gameover
locky

murofet
murofetweekly

necurs
nymaim
oderoor

padcrypt
proslikefan

pushdo
pushdotid

pykspa
pykspa2

pykspa2s
qadars
qakbot
ramdo
ramnit

ranbyus
rovnix
shifu

simda
sisron
sphinx
sutra

symmi
szribi

tempedrevetdd
tinba

tofsee
torpig

urlzone
vawtrak

vidro
virut

xxhex
bamital

dyre
ekforward

infy
pandabanker

tinynuke
wd

gozi
matsnu

nymaim2
suppobox

Tr
ue

 la
be

l

Confusion Matrix of LSTM

0.0

0.2

0.4

0.6

0.8

1.0

(a) Confusion matrix for LSTM model

to
ps

ite
s

ba
nj

or
i

be
de

p
ch

in
ad

co
nf

ick
er

co
re

bo
t

cr
yp

to
lo

ck
er

dn
sc

ha
ng

er
eb

ur
y

em
ot

et
fo

bb
er

ga
m

eo
ve

r
lo

ck
y

m
ur

of
et

m
ur

of
et

we
ek

ly
ne

cu
rs

ny
m

ai
m

od
er

oo
r

pa
dc

ry
pt

pr
os

lik
ef

an
pu

sh
do

pu
sh

do
tid

py
ks

pa
py

ks
pa

2
py

ks
pa

2s
qa

da
rs

qa
kb

ot
ra

m
do

ra
m

ni
t

ra
nb

yu
s

ro
vn

ix
sh

ifu
sim

da
sis

ro
n

sp
hi

nx
su

tra
sy

m
m

i
sz

rib
i

te
m

pe
dr

ev
et

dd
tin

ba
to

fs
ee

to
rp

ig
ur

lzo
ne

va
wt

ra
k

vi
dr

o
vi

ru
t

xx
he

x
ba

m
ita

l
dy

re
ek

fo
rw

ar
d

in
fy

pa
nd

ab
an

ke
r

tin
yn

uk
e wd go
zi

m
at

sn
u

ny
m

ai
m

2
su

pp
ob

ox

Predicted label

topsites
banjori
bedep
chinad

conficker
corebot

cryptolocker
dnschanger

ebury
emotet
fobber

gameover
locky

murofet
murofetweekly

necurs
nymaim
oderoor

padcrypt
proslikefan

pushdo
pushdotid

pykspa
pykspa2

pykspa2s
qadars
qakbot
ramdo
ramnit

ranbyus
rovnix
shifu

simda
sisron
sphinx
sutra

symmi
szribi

tempedrevetdd
tinba

tofsee
torpig

urlzone
vawtrak

vidro
virut

xxhex
bamital

dyre
ekforward

infy
pandabanker

tinynuke
wd

gozi
matsnu

nymaim2
suppobox

Tr
ue

 la
be

l

Confusion Matrix of MLP

0.0

0.2

0.4

0.6

0.8

1.0

(b) Confusion matrix for MLP model

to
ps

ite
s

ba
nj
or
i

be
de

p
ch

in
ad

co
nf
ick

er
co

re
bo

t
cr
yp

to
lo
ck

er
dn

sc
ha

ng
er

eb
ur

y
em

ot
et

fo
bb

er
ga

m
eo

ve
r

lo
ck

y
m
ur
of
et

m
ur
of
et
we

ek
ly

ne
cu

rs
ny

m
ai
m

od
er
oo

r
pa

dc
ry
pt

pr
os

lik
ef
an

pu
sh

do
pu

sh
do

tid
py

ks
pa

py
ks

pa
2

py
ks

pa
2s

qa
da

rs
qa

kb
ot

ra
m
do

ra
m
ni
t

ra
nb

yu
s

ro
vn

ix
sh

ifu
sim

da
sis

ro
n

sp
hi
nx

su
tra

sy
m
m
i

sz
rib

i
te
m
pe

dr
ev

et
dd

tin
ba

to
fs
ee

to
rp

ig
ur

lzo
ne

va
wt

ra
k

vi
dr
o

vi
ru

t
xx

he
x

ba
m
ita

l
dy

re
ek

fo
rw

ar
d

in
fy

pa
nd

ab
an

ke
r

tin
yn

uk
e wd go
zi

m
at
sn

u
ny

m
ai
m
2

su
pp

ob
ox

Predicted label

topsites
banjori
bedep
chinad

conficker
corebot

cryptolocker
dnschanger

ebury
emotet
fobber

gameover
locky

murofet
murofetweekly

necurs
nymaim
oderoor

padcrypt
proslikefan

pushdo
pushdotid

pykspa
pykspa2

pykspa2s
qadars
qakbot
ramdo
ramnit

ranbyus
rovnix
shifu

simda
sisron
sphinx
sutra

symmi
szribi

tempedrevetdd
tinba

tofsee
torpig

urlzone
vawtrak

vidro
virut

xxhex
bamital

dyre
ekforward

infy
pandabanker

tinynuke
wd

gozi
matsnu

nymaim2
suppobox

Tr
ue

 la
be

l

Confusion Matrix of SVM

0.0

0.2

0.4

0.6

0.8

1.0

(c) Confusion matrix for SVM model

to
ps

ite
s

ba
nj
or
i

be
de

p
ch

in
ad

co
nf
ick

er
co

re
bo

t
cr
yp

to
lo
ck

er
dn

sc
ha

ng
er

eb
ur

y
em

ot
et

fo
bb

er
ga

m
eo

ve
r

lo
ck

y
m
ur
of
et

m
ur
of
et
we

ek
ly

ne
cu

rs
ny

m
ai
m

od
er
oo

r
pa

dc
ry
pt

pr
os

lik
ef
an

pu
sh

do
pu

sh
do

tid
py

ks
pa

py
ks

pa
2

py
ks

pa
2s

qa
da

rs
qa

kb
ot

ra
m
do

ra
m
ni
t

ra
nb

yu
s

ro
vn

ix
sh

ifu
sim

da
sis

ro
n

sp
hi
nx

su
tra

sy
m
m
i

sz
rib

i
te
m
pe

dr
ev

et
dd

tin
ba

to
fs
ee

to
rp

ig
ur

lzo
ne

va
wt

ra
k

vi
dr
o

vi
ru

t
xx

he
x

ba
m
ita

l
dy

re
ek

fo
rw

ar
d

in
fy

pa
nd

ab
an

ke
r

tin
yn

uk
e wd go
zi

m
at
sn

u
ny

m
ai
m
2

su
pp

ob
ox

Predicted label

topsites
banjori
bedep
chinad

conficker
corebot

cryptolocker
dnschanger

ebury
emotet
fobber

gameover
locky

murofet
murofetweekly

necurs
nymaim
oderoor

padcrypt
proslikefan

pushdo
pushdotid

pykspa
pykspa2

pykspa2s
qadars
qakbot
ramdo
ramnit

ranbyus
rovnix
shifu

simda
sisron
sphinx
sutra

symmi
szribi

tempedrevetdd
tinba

tofsee
torpig

urlzone
vawtrak

vidro
virut

xxhex
bamital

dyre
ekforward

infy
pandabanker

tinynuke
wd

gozi
matsnu

nymaim2
suppobox

Tr
ue

 la
be

l

Confusion Matrix of LogisticRegression

0.0

0.2

0.4

0.6

0.8

1.0

(d) Confusion matrix for LR model

Figure 4. Confusion matrices.

Figure 5 shows the precision-recall curves for the micro-average of all classes. This
figure confirms that the LSTM model performs best overall, yielding 0.974 area under the
curve, closely followed by the MLP model, yielding 0.965 area under the curve. A high
area under the curve represents high precision and high recall, which indicates low false
positive rates and low false negative rates.



Electronics 2022, 11, 414 21 of 28

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

Micro-average Precision-Recall Curve over all classes

MLP: AP=0.965
LSTM: AP=0.974
DecisionTree: AP=0.766
LogisticRegression: AP=0.946
MultinomialNB: AP=0.899
KNN: AP=0.696
GradientBoosting: AP=0.909
RandomForest: AP=0.909

Figure 5. Precision-recall curves.

Figure 6 shows the ROC-curves. We aggregated the outputs of our multi-class classifi-
cation models into binary classification by aggregating the 57 DGA outputs into class_1
and taking the topsites as class_0. The figure shows that the MLP model performs best,
yielding 0.995 area under the ROC-curve (AUC), closely followed by the LSTM model and
the LR model that both yield 0.994 AUC. The partial AUC (PAUC) for the false positive
rate in the range from 0 to 0.04 is 0.881 for the LSTM model, 0.878 for the MLP model, and
0.829 for the LR model.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os
iti
ve
 ra

te

ROC curves

MLP (AUC=0.995, PAUC=0.878)
LSTM (AUC=0.994, PAUC=0.881)
DecisionTree (AUC=0.937, PAUC=0.507)
LogisticRegression (AUC=0.994, PAUC=0.829)
MultinomialNB (AUC=0.978, PAUC=0.672)
KNN (AUC=0.93, PAUC=0.599)
GradientBoosting (AUC=0.976, PAUC=0.72)
RandomForest (AUC=0.982, PAUC=0.773)

(a) ROC-curves

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os
iti
ve
 ra

te

ROC curves

MLP (AUC=0.995, PAUC=0.878)
LSTM (AUC=0.994, PAUC=0.881)
DecisionTree (AUC=0.937, PAUC=0.507)
LogisticRegression (AUC=0.994, PAUC=0.829)
MultinomialNB (AUC=0.978, PAUC=0.672)
KNN (AUC=0.93, PAUC=0.599)
GradientBoosting (AUC=0.976, PAUC=0.72)
RandomForest (AUC=0.982, PAUC=0.773)

(b) ROC-curves zoomed-in

Figure 6. ROC-curves.

Table 10 shows the optimum true positive and false positive rate for each model. The
MLP model yields best results (96.54% TPR and 2.53% FPR) and performs slightly better
than the LR model (96.11% TPR and 3.13% FPR) and the LSTM model (95.67% TPR and
2.68% FPR).



Electronics 2022, 11, 414 22 of 28

Table 10. Optimum true positive and false positive rates.

Model True Positive Rate (%) False Positive Rate (%)

DT 88.88 5.58
GB 90.81 4.96
KN 88.22 7.41
LR 96.11 3.13
LSTM 95.67 2.68
MLP 96.54 2.53
MNB 92.61 7.39
RF 92.20 4.39

4.6. Discussion

In our experiments, the DL models clearly yielded better results than the ML models
in multi-class classification, as shown by the F1-scores. This is as expected, since DL models
are more advanced and allow deeper analysis of the input data either by applying several
hidden layers (in the MLP model) or feedback (in the LSTM model). This is in line with
previous studies [40,46], which also showed that DL methods tend to outperform basic
ML methods. Cucchiarelli et al. [34] on the other hand showed that ML methods with
careful feature selection and classifier tuning can still outperform DL methods. Although
our experiments show that ML methods perform worse than DL methods with multi-class
classification, the AUC results with binary classification for the DL models and the best
performing ML models (SVM and LR) are similar, which confirms the importance of feature
selection (as demonstrated by our TF-IDF feature selection) and classifier tuning.

We used TF-IDF features with the MLP model, and with all ML models. We argued
that TF-IDF features are promising due to the differences in the n-gram distributions of
benign domain names and malicious domain names from different DGA families. Our
experiments indicate that models using TF-IDF features indeed perform well. The results
obtained with TF-IDF in the MLP model are comparable with the results obtained with the
LSTM model in which we applied standard embedding.

Our experiments also show that there are notable differences among domain names
from different DGA types. DGA-H domain names are distinguishable since they represent
hexadecimal numbers, and hence they are easier to classify. This also shows in our results,
as the highest aggregated F1-scores are for DGA-H (up to 99.96% with the LSTM model).
DGA-W domain names are close to regular domain names, and hence they are more
difficult to classify. This also shows in our results, as the F1-scores for DGA-W are much
lower than for DGA-A and DGA-H. For DGA-W, both the LSTM and MLP model do not
perform very well (73.18% and 78.57% micro average F1-score) and the SVM model shows
better results (83.61%).

Unfortunately it is not straightforward to compare our results to prior results as
published in scientific literature. This is mainly due to differences in the datasets used in
experiments. As discussed in Section 3, nearly all studies used different datasets of benign
and malicious domain names. Even if the same datasets are used as sources, the datasets
originate from different time periods and also different subsets are taken with different
numbers and types of DGA families. As discussed above, the mix of DGA families included
in the dataset has a large impact.

Comparison with prior work therefore would require to implement the models from
prior work and evaluate them with our datasets. There is a vast amount of prior work,
and criteria would be needed for deciding which models from prior work to consider.
Furthermore, often details are missing in literature that hinder reproducing models, such as
the values of all hyperparameters and default settings, and the configurations of software
tools. And even when reproducing the models is feasible, training and evaluating the
models takes considerable effort.



Electronics 2022, 11, 414 23 of 28

5. Conclusions

We presented the results of an extensive literature review on the application of ML
and DL for detection of DGA-generated domain names. We observed that this is an active
research field to which numerous groups all over the world are contributing. We also
observed that there is no common methodology for performing experiments and reporting
on results. Different ML and DL models are being used. Arbitrary combinations of features
for ML models are being used and a common ground for features is missing. Different
datasets from various sources are being used, with different subsets of DGA families. These
differences cause that it is hard to compare experimental results.

We proposed the usage of TF-IDF as single feature type. We apply TF-IDF for eval-
uating how relevant n-grams are to a domain name in a set of domain names. We used
TF-IDF of the 5000 most popular n-grams (for n = 1, 2, 3) as features for popular ML and DL
models. For comparison, we also used an LSTM model with embedding layer to convert
domain names from a sequence of characters into a vector representation. Our results
show that the DL models outperform ML models. The LSTM and MLP model provide the
highest overall F1-scores (micro-averages of 90.69% and 89.08%), the highest area under
the precision-recall curve (micro-averages of 0.974 and 0.965), the highest area under the
ROC-curve (0.994 and 0.995), and the highest true positive rates (95.67% and 96.54%) with
the lowest false positive rates (2.68% and 2.53%). Hence, the performance of the MLP
model with TF-IDF features and the LSTM model with embedding is rather similar.

A limitation of any approach that relies on a single feature type, is that an adversary
can tune the DGA such that the feature values of malicious domain names match those of
benign domain names. This is also the case for our TF-IDF based approach: an adversary
may tune a DGA to generate domain names for which the n-gram distributions match those
of benign domain names, although this might be difficult to implement due to the large
number of n-grams. We also observe that results differ for different DGA types. Our LSTM
and MLP models perform well for classifying arithmetic-based and hash-based DGAs, but
less for wordlist-based DGAs where domain names resemble regular domain names.

In our future work we intend to look at the effectiveness of features for ML models
as mentioned in scientific literature. We observed that a large variety and rather arbitrary
combinations of features have been applied, and it is not clear yet which features are effec-
tive in what cases. We also plan to look into hybrid learning models, where different types
of models are combined. We observed that different models perform best for classifying
domain names from different types of DGAs. We also intend to explore more advanced
deep-learning models to derive features and to classify DGA-generated domain names.

Author Contributions: H.V.: literature review, paper writing, project lead, funding acquisition; H.A.:
TF-IDF methodology, model creation, experiments, figures. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Open Universiteit and SIDN Labs in the Dagobert-project.
The APC was funded by Open Universiteit.

Acknowledgments: We kindly thank IT and Facility Services at Open Universiteit and SURF for
providing the compute servers for performing our experiments. We kindly thank Daniel Plohmann
at Fraunhofer FKIE for providing access to DGArchive.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Electronics 2022, 11, 414 24 of 28

Appendix A. Precision and Recall

Table A1. Precision (expressed as percentage).

Class DT GB KNN LSTM LR MLP MNB RF SVM

banjori 93.38 99.51 98.76 99.36 99.49 99.80 99.41 100 99.73
bedep 36.44 61.67 12.12 85.80 55.75 70.84 71.29 58.40 69.29
chinad 67.76 76.24 32.35 99.63 85.75 91.80 57.37 84.51 95.68
conficker 21.70 47.01 10.59 55.58 34.05 41.55 26.70 49.40 42.16
corebot 85.93 97.57 97.33 99.74 99.34 99.28 97.11 98.43 99.44
cryptolocker 37.83 51.12 29.27 68.73 40.90 57.19 28.86 57.25 48.16
dnschanger 43.47 42.87 8.09 74.41 33.34 58.66 22.64 42.63 44.10
ebury 58.40 74.13 94.08 99.67 98.31 93.08 98.38 91.64 95.84
emotet 95.67 89.61 96.48 99.34 89.19 95.96 79.82 90.85 93.45
fobber 22.03 46.24 0 83.85 9.23 48.53 0 63.95 25.00
gameover 90.45 94.96 71.43 99.90 89.73 98.58 56.44 95.67 98.71
locky 42.42 72.54 53.45 83.45 56.79 59.73 53.92 75.94 61.41
murofet 58.57 64.84 28.30 76.99 57.73 65.60 37.81 62.12 65.12
murofetweekly 95.84 99.37 100 99.87 99.97 99.87 98.66 99.90 100
necurs 66.96 93.38 29.41 96.28 86.08 92.89 76.43 94.05 94.74
nymaim 32.16 64.00 18.55 67.31 44.17 55.02 31.75 63.18 54.09
oderoor 27.77 52.83 77.50 75.09 83.82 67.19 94.53 56.61 92.08
padcrypt 89.49 95.98 97.77 99.90 99.48 99.67 87.60 99.39 99.44
proslikefan 36.19 63.77 14.35 64.94 51.83 69.42 47.89 69.43 62.81
pushdo 82.34 93.07 94.01 98.02 96.43 96.39 93.15 94.73 96.92
pushdotid 41.13 57.57 41.61 95.34 76.08 78.55 62.97 69.38 79.31
pykspa 24.96 32.50 15.04 40.58 29.95 36.41 22.98 34.42 36.56
pykspa2 46.92 53.46 45.05 54.01 47.93 51.53 49.18 54.66 49.01
pykspa2s 46.73 52.71 45.49 52.71 48.10 51.77 49.46 54.53 49.80
qadars 78.06 93.07 90.42 99.25 98.69 99.43 97.02 88.77 99.28
qakbot 48.94 65.05 6.25 72.19 39.55 63.58 33.98 75.11 50.22
ramdo 97.77 93.97 90.58 100 93.43 98.92 74.55 96.13 96.23
ramnit 26.27 31.05 17.19 46.95 25.19 38.85 23.24 50.47 26.54
ranbyus 67.11 72.00 70.00 81.09 64.83 75.82 45.66 72.91 71.59
rovnix 78.04 75.96 31.82 99.76 73.2 85.68 55.40 74.96 77.50
shifu 38.08 37.07 10.60 69.10 32.55 52.68 31.34 42.17 36.50
simda 76.00 70.64 61.85 96.17 94.28 94.40 93.79 66.47 95.44
sisron 99.93 100 97.33 100 99.96 99.93 99.93 100 99.96
sphinx 59.19 49.86 78.79 85.16 53.92 60.02 39.52 48.13 54.62
sutra 95.71 96.38 97.82 99.70 97.32 97.45 89.43 95.31 98.22
symmi 99.87 99.54 90.53 100 99.84 99.97 97.85 99.77 99.97
szribi 93.42 78.53 72.81 96.41 93.63 96.39 88.16 90.67 96.19
tempedrevetdd 5.67 4.40 3.57 83.03 14.94 64.29 0 0 51.22
tinba 53.86 57.89 67.27 73.67 60.29 75.91 45.23 57.27 69.03
tofsee 97.24 99.89 46.97 98.20 97.48 98.93 97.20 96.45 97.99
torpig 84.44 95.16 78.84 98.07 97.42 98.20 97.41 86.54 98.04
urlzone 66.56 78.40 25.49 98.44 81.76 90.83 64.65 73.40 86.00
vawtrak 25.70 71.96 51.83 75.25 65.94 75.31 78.97 97.44 76.26
vidro 48.86 61.01 82.21 50.19 49.98 43.10 72.03 71.71 59.39
virut 47.46 51.41 8.13 77.79 44.61 70.33 34.12 68.96 59.71
xxhex 99.23 99.62 93.18 99.47 100 99.92 97.40 100 100

bamital 99.39 99.62 71.36 99.97 99.97 99.83 93.44 99.97 99.97
dyre 98.59 99.73 63.73 100 99.97 99.97 97.98 100 100
ekforward 97.49 99.53 81.20 99.89 99.89 99.89 98.87 99.66 99.66
infy 98.05 97.60 58.21 99.80 99.15 99.53 97.63 98.66 99.42
pandabanker 98.33 99.07 61.18 99.87 98.66 99.57 96.91 99.28 99.24
tinynuke 99.37 99.57 65.78 99.97 99.87 99.97 89.84 99.90 99.93
wd 99.93 100 83.16 100 99.93 99.97 99.83 100 100

gozi 53.51 88.72 93.62 83.69 91.87 92.49 94.30 96.37 97.46
matsnu 25.18 66.67 70.29 59.75 75.75 81.17 92.75 100 91.96
nymaim2 52.05 87.13 82.37 84.51 89.61 88.51 88.86 99.06 95.60
suppobox 60.46 72.12 85.98 79.47 87.00 86.42 92.51 96.67 93.74

topsites 91.49 85.60 70.89 95.94 95.13 96.20 90.49 81.67 95.02



Electronics 2022, 11, 414 25 of 28

Table A1. Cont.

Class DT GB KNN LSTM LR MLP MNB RF SVM

DGA macro average 65.16 74.90 57.92 85.57 74.28 80.82 69.20 79.00 79.47
stddev 27.66 22.74 31.94 16.81 26.65 20.02 29.22 22.16 23.13

micro average 67.17 76.55 59.30 85.16 75.54 81.25 70.00 80.25 80.25
stddev 25.91 20.81 30.99 17.50 24.88 20.15 27.26 19.89 22.38

DGA-A macro average 61.56 70.87 54.01 84.14 69.40 77.38 63.07 74.21 75.06
stddev 26.87 22.91 34.00 17.36 27.25 20.61 29.34 22.11 23.67

micro average 64.12 72.70 55.48 83.67 70.61 77.67 63.55 75.30 75.64
stddev 24.90 20.97 33.32 18.21 25.49 20.98 27.13 19.55 22.99

DGA-H macro average 98.74 99.30 69.23 99.93 99.63 99.82 96.36 99.64 99.75
stddev 0.80 0.74 9.03 0.07 0.48 0.18 3.25 0.47 0.29

micro average 98.88 99.28 67.88 99.93 99.60 99.81 96.07 99.64 99.75
stddev 0.72 0.78 8.53 0.07 0.50 0.19 3.32 0.49 0.30

DGA-W macro average 47.80 78.66 83.07 76.86 86.06 87.15 92.11 98.03 94.69
stddev 13.44 9.48 8.42 10.06 6.20 4.08 2.00 1.54 2.05

micro average 47.64 78.57 82.95 76.74 85.98 87.10 92.10 98.04 94.67
stddev 13.52 9.50 8.44 10.13 6.23 4.09 1.99 1.55 2.05

Total macro average 65.62 75.09 58.14 85.75 74.64 81.08 69.56 79.05 79.74
stddev 27.64 22.59 31.71 16.72 26.56 19.95 29.10 21.97 23.02

micro average 80.35 81.45 65.59 91.00 86.15 89.35 81.11 81.02 88.26
stddev 21.32 14.79 21.75 13.00 19.46 15.54 21.09 13.48 16.84

Table A2. Recall (expressed as percentage).

Class DT GB KNN LSTM LR MLP MNB RF SVM

banjori 95.54 97.24 98.02 99.86 99.56 99.83 91.59 98.30 99.93
bedep 43.86 40.93 0.19 64.37 48.00 54.79 35.12 23.77 54.47
chinad 71.19 60.31 0.37 98.77 61.28 78.81 45.46 56.64 67.29
conficker 24.26 21.41 3.84 30.52 26.49 35.77 15.08 14.92 31.28
corebot 86.01 80.71 34.79 99.84 99.28 99.67 99.67 84.53 99.21
cryptolocker 43.77 41.31 0.82 65.82 38.58 56.37 36.98 28.71 49.47
dnschanger 50.44 45.56 0.62 94.07 36.15 84.14 19.24 33.46 64.93
ebury 51.74 53.06 89.26 98.68 86.61 93.39 90.58 41.65 91.40
emotet 97.87 99.20 34.77 99.87 99.60 99.80 95.17 99.67 99.83
fobber 22.57 13.18 0 22.24 1.98 5.44 0 9.06 2.64
gameover 90.87 93.55 0.17 97.95 86.40 96.66 77.41 95.83 93.62
locky 40.89 38.10 5.78 53.39 49.43 52.61 39.10 31.57 46.77
murofet 58.72 62.34 0.49 84.26 62.83 79.85 67.47 56.83 70.31
murofetweekly 95.50 98.91 77.41 99.93 99.70 99.87 100 99.47 100
necurs 63.00 57.84 0.33 80.36 70.34 73.41 65.31 42.86 69.74
nymaim 31.61 36.86 5.18 41.63 38.35 43.60 19.95 32.96 39.67
oderoor 24.58 24.13 82.19 35.71 65.98 42.12 63.13 14.87 61.09
padcrypt 91.72 89.29 50.34 99.97 99.93 99.77 99.97 96.58 99.97
proslikefan 32.39 30.94 3.12 44.89 35.74 37.40 18.83 21.92 36.57
pushdo 78.89 83.71 59.48 93.13 95.88 95.68 90.72 75.34 94.94
pushdotid 38.56 33.31 6.64 99.39 85.88 96.26 92.91 19.48 87.89
pykspa 23.35 27.79 4.48 65.76 30.53 53.57 19.77 28.19 44.05
pykspa2 48.65 39.36 46.32 47.32 47.75 55.91 43.72 45.69 50.35
pykspa2s 42.60 52.50 43.34 59.83 47.57 46.30 38.34 49.37 48.77
qadars 71.80 71.31 66.75 99.44 98.79 97.74 99.18 74.81 99.25
qakbot 41.70 40.89 0.17 55.75 40.39 49.16 33.70 33.77 41.63
ramdo 98.50 97.00 18.85 100 99.94 99.88 99.94 98.85 100
ramnit 24.92 12.80 0.75 58.55 30.79 23.83 34.32 5.47 29.90
ranbyus 64.38 69.76 1.38 92.10 65.60 73.96 51.95 65.50 71.83
rovnix 76.20 82.66 0.24 99.08 79.58 89.81 72.61 87.82 87.28
shifu 38.45 42.39 4.23 94.51 21.55 52.68 2.96 14.79 28.17
simda 75.83 76.58 84.33 98.96 97.10 97.82 93.55 79.15 98.14
sisron 99.93 100 100 100 100 100 100 100 100
sphinx 60.52 70.17 2.61 98.42 65.62 87.03 54.49 63.54 76.84
sutra 96.64 98.29 87.48 99.80 99.83 99.90 99.73 99.66 100
symmi 99.71 99.84 99.80 100 100 100 100 99.84 100
szribi 93.48 77.09 99.87 99.87 99.27 99.37 96.08 91.16 99.90
tempedrevetdd 3.49 1.00 0.50 34.16 3.24 8.98 0 0 5.24
tinba 53.16 36.11 8.76 94.59 62.94 73.03 65.31 23.32 67.14
tofsee 98.60 99.25 100 100 99.89 99.68 97.09 99.46 99.89



Electronics 2022, 11, 414 26 of 28

Table A2. Cont.

Class DT GB KNN LSTM LR MLP MNB RF SVM

torpig 76.47 93.43 94.57 99.09 99.22 99.22 91.27 88.41 99.66
urlzone 59.26 64.22 1.28 89.36 81.65 83.95 63.23 63.43 84.08
vawtrak 11.83 9.90 12.72 77.76 50.51 47.04 21.72 4.88 44.60
vidro 40.34 39.66 36.24 51.69 43.59 55.27 35.95 37.02 44.14
virut 38.58 30.14 5.27 77.97 37.03 68.55 17.50 9.83 42.91
xxhex 98.86 100 100 100 100 100 100 100 100

bamital 99.56 99.69 52.19 100 100 100 100 100 100
dyre 99.12 99.76 16.12 100 100 100 91.53 100 100
ekforward 97.71 97.94 77.57 100 99.77 100 99.77 99.66 99.77
infy 98.75 96.31 93.06 100 98.68 99.73 97.87 99.59 99.32
pandabanker 99.30 99.24 94.89 100 100 100 99.83 99.97 100
tinynuke 99.17 99.77 41.77 100 99.90 99.97 99.67 100 100
wd 99.93 100 84.11 100 100 100 100 100 100

gozi 51.00 55.29 35.84 70.58 79.42 77.48 35.98 47.93 79.55
matsnu 23.05 4.71 20.47 47.01 47.21 48.56 2.07 0.03 56.89
nymaim2 44.69 34.52 11.68 79.37 74.37 73.54 32.54 6.91 72.29
suppobox 60.80 40.79 69.43 85.06 86.66 92.53 40.59 44.31 95.49

topsites 93.20 98.75 99.40 97.63 98.07 98.31 95.91 99.58 98.94

DGA macro average 63.94 62.49 38.09 82.12 71.52 76.84 63.09 58.61 74.18
stddev 28.67 30.87 38.05 22.94 28.90 26.01 34.19 35.42 27.54

micro average 66.07 64.58 37.23 83.14 73.33 78.97 64.37 61.15 76.28
stddev 26.71 29.12 37.19 21.35 26.60 23.23 32.36 33.74 24.82

DGA-A macro average 60.24 59.44 34.21 80.41 67.18 73.65 60.78 55.27 70.10
stddev 27.73 29.46 38.79 23.89 29.59 26.91 33.53 33.83 28.39

micro average 62.99 62.28 33.20 81.77 69.26 76.25 62.77 58.75 72.55
stddev 25.47 27.22 37.82 22.13 27.25 23.96 31.17 31.71 25.60

DGA-H macro average 99.08 98.96 65.67 100 99.76 99.96 98.38 99.89 99.87
stddev 0.65 1.26 27.50 0 0.45 0.09 2.88 0.17 0.24

micro average 99.23 99.08 64.40 100 99.77 99.95 98.23 99.91 99.88
stddev 0.49 1.27 28.71 0 0.47 0.10 3.00 0.16 0.25

DGA-W macro average 44.89 33.83 34.36 70.51 71.92 73.03 27.80 24.80 76.06
stddev 13.85 18.42 22.02 14.51 14.92 15.80 15.12 21.50 13.89

micro average 44.72 33.58 34.21 70.36 71.73 72.85 27.61 24.54 75.91
stddev 13.92 18.49 22.00 14.60 15.00 15.88 15.22 21.51 13.93

Total macro average 64.44 63.12 39.14 82.38 71.97 77.21 63.65 59.32 74.60
stddev 28.68 30.96 38.55 22.83 28.86 25.94 34.16 35.52 27.49

micro average 80.78 83.10 70.93 90.99 86.74 89.45 81.47 81.98 88.57
stddev 22.57 26.04 39.91 16.15 21.82 18.44 26.95 29.80 20.24

References
1. Khattak, S.; Ramay, N.R.; Khan, K.R.; Syed, A.A.; Khayam, S.A. A Taxonomy of Botnet Behavior, Detection, and Defense. IEEE

Commun. Surv. Tutor. 2014, 16, 898–924. [CrossRef]
2. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988, 24, 513–523. [CrossRef]
3. Barabosch, T.; Wichmann, A.; Leder, F.; Gerhards-Padilla, E. Automatic extraction of domain name generation algorithms

from current malware. In Proceedings of the STO Information Systems and Technology Panel (IST) Symposium: Information
Assurance and Cyber Defense, Koblenz, Germany, 24–25 September 2012 ; NATO: Brussels, Belgium, 2012; pp. 2.1–2.13.

4. Royal, P. Analysis of the Kraken Botnet; Technical Report; Damballa, Inc.: Atlanta, GA, USA, 2008.
5. Stone-Gross, B.; Cova, M.; Cavallaro, L.; Gilbert, B.; Szydlowski, M.; Kemmerer, R.; Kruegel, C.; Vigna, G. Your Botnet is My

Botnet: Analysis of a Botnet Takeover. In Proceedings of the 16th ACM Conference on Computer and Communications Security,
Chicago, IL, USA, 9–13 November 2009; ACM: New York, NY, USA , 2009; pp. 635–647. [CrossRef]

6. Leder, F.; Werner, T. Know Your Enemy: Containing Conficker. To Tame A Malware; 7 April 2009 (rev2). Available online:
https://www.honeynet.org/papers/kye-kyt/know-your-enemy-containing-conficker (accessed on 1 July 2021).

7. Plohmann, D.; Yakdan, K.; Klatt, M.; Bader, J.; Gerhards-Padilla, E. A Comprehensive Measurement Study of Domain Generating
Malware. In Proceedings of the 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016;
USENIX Association: Austin, TX, USA, 2016; pp. 263–278.

8. Mockapetris, P. RFC 1035 Domain Names Implementation and Specification; IETF Request for Comments: 1035; IETF: Fremont, CA,
USA, 1987.

9. Klensin, J. RFC 5890 Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework; IETF Request for
Comments: 5890; IETF: Fremont, CA, USA, 2010.

http://doi.org/10.1109/SURV.2013.091213.00134
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1145/1653662.1653738
https://www.honeynet.org/papers/kye-kyt/know-your-enemy-containing-conficker


Electronics 2022, 11, 414 27 of 28

10. Beel, J.; Gipp, B.; Langer, S.; Breitinger, C. Research-paper recommender systems: A literature survey. Int. J. Digit. Libr. 2016,
17, 305–338. [CrossRef]

11. Luhn, H. A Statistical Approach to Mechanized Encoding and Searching of Literary Information. IBM J. Res. Dev. 1957, 1, 309–317.
[CrossRef]

12. Sparck Jones, K. A statistical interpretation of term specificity and its application in retrievel. J. Doc. 1972, 28, 11–21. [CrossRef]
13. Zago, M.; Pérez, M.G.; Pérez, G.M. Scalable detection of botnets based on DGA. Soft Comput. 2020, 24, 5517–5537. [CrossRef]
14. Chiba, D.; Yagi, T.; Akiyama, M.; Shibahara, T.; Mori, T.; Goto, S. DomainProfiler: toward accurate and early discovery of domain

names abused in future. Int. J. Inf. Secur. 2018, 17, 661–680. [CrossRef]
15. Schüppen, S.; Teubert, D.; Herrmann, P.; Meyer, U. FANCI: Feature-based Automated NXDomain Classification and Intelligence.

In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018 ; USENIX
Association: Austin, TX, USA, 2018; pp. 1165–1181.

16. Ashiq, M.I.; Bhowmick, P.; Hossain, M.S.; Narman, H.S. Domain Flux-based DGA Botnet Detection Using Feedforward Neural
Network. In Proceedings of the MILCOM 2019—2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA,
12–14 November 2019 ; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [CrossRef]

17. Fu, Y.; Yu, L.; Hambolu, O.; Ozcelik, I.; Husain, B.; Sun, J.; Sapra, K.; Du, D.; Beasley, C.T.; Brooks, R.R. Stealthy Domain
Generation Algorithms. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1430–1443. [CrossRef]

18. He, W.; Gou, G.; Kang, C.; Liu, C.; Li, Z.; Xiong, G. Malicious Domain Detection via Domain Relationship and Graph Models. In
Proceedings of the 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC), London,
UK, 29–31 October 2019 ; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [CrossRef]

19. Li, W.; Jin, J.; Lee, J. Analysis of Botnet Domain Names for IoT Cybersecurity. IEEE Access 2019, 7, 94658–94665. [CrossRef]
20. Liu, Z.; Yun, X.; Zhang, Y.; Wang, Y. CCGA: Clustering and Capturing Group Activities for DGA-Based Botnets Detection. In Pro-

ceedings of the 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th
IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 136–143. [CrossRef]

21. Selvi, J.; Rodríguez, R.J.; Soria-Olivas, E. Detection of algorithmically generated malicious domain names using masked N-grams.
Expert Syst. Appl. 2019, 124, 156–163. [CrossRef]

22. Yang, L.; Zhai, J.; Liu, W.; Ji, X.; Bai, H.; Liu, G.; Dai, Y. Detecting Word-Based Algorithmically Generated Domains Using
Semantic Analysis. Symmetry 2019, 11, 176. [CrossRef]

23. Akhila, G.P.; Gayathri, R.; Keerthana, S.; Gladston, A. A machine learning framework for domain generating algorithm based
malware detection. Secur. Priv. 2020, 3, e127. [CrossRef]

24. Alaeiyan, M.; Parsa, S.; Vinod, P.; Conti, M. Detection of algorithmically-generated domains: An adversarial machine learning
approach. Comput. Commun. 2020, 160, 661–673. [CrossRef]

25. Almashhadani, A.O.; Kaiiali, M.; Carlin, D.; Sezer, S. MaldomDetector: A system for detecting algorithmically generated domain
names with machine learning. Comput. Secur. 2020, 93, 101787. [CrossRef]

26. Anand, P.M.; Kumar, T.G.; Charan, P.S. An Ensemble Approach For Algorithmically Generated Domain Name Detection Using
Statistical And Lexical Analysis. Procedia Comput. Sci. 2020, 171, 1129–1136. [CrossRef]

27. Hwang, C.; Kim, H.; Lee, H.; Lee, T. Effective DGA-Domain Detection and Classification with TextCNN and Additional Features.
Electronics 2020, 9, 1070. [CrossRef]

28. Liang, Z.; Zang, T.; Zeng, Y. MalPortrait: Sketch Malicious Domain Portraits Based on Passive DNS Data. In Proceedings of the
2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020 ; IEEE: Piscataway, NJ,
USA, 2020; pp. 1–8. [CrossRef]

29. Mao, J.; Zhang, J.; Tang, Z.; Gu, Z. DNS anti-attack machine learning model for DGA domain name detection. Phys. Commun.
2020, 40, 101069. [CrossRef]

30. Palaniappan, G.; Sangeetha, S.; Rajendran, B.; Goyal, S.; Bindhumadhava, B.S. Malicious Domain Detection Using Machine
Learning On Domain Name Features, Host-Based Features and Web-Based Features. Procedia Comput. Sci. 2020, 171, 654–661.
[CrossRef]

31. Sivaguru, R.; Peck, J.; Olumofin, F.; Nascimento, A.; De Cock, M. Inline Detection of DGA Domains Using Side Information. IEEE
Access 2020, 8, 141910–141922. [CrossRef]

32. Wu, J. Artificial Neural Network Based DGA Botnet Detection. J. Phys. Conf. Ser. 2020, 1578, 012074. [CrossRef]
33. Zhang, Y. A Ensemble Learning method for Domain Generation Algorithm Detection. Acad. J. Comput. Inf. Sci. 2020, 3, 31–40.

[CrossRef]
34. Cucchiarelli, A.; Morbidoni, C.; Spalazzi, L.; Baldi, M. Algorithmically generated malicious domain names detection based on

n-grams features. Expert Syst. Appl. 2021, 170, 114551. [CrossRef]
35. Patsakis, C.; Casino, F. Exploiting statistical and structural features for the detection of Domain Generation Algorithms. J. Inf.

Secur. Appl. 2021, 58, 102725. [CrossRef]
36. Woodbridge, J.; Anderson, H.S.; Ahuja, A.; Grant, D. Predicting Domain Generation Algorithms with Long Short-Term Memory

Networks. arXiv 2016, arXiv:1611.00791.
37. Lison, P.; Mavroeidis, V. Automatic Detection of Malware-Generated Domains with Recurrent Neural Models. arXiv 2017,

arXiv:1709.07102.

http://dx.doi.org/10.1007/s00799-015-0156-0
http://dx.doi.org/10.1147/rd.14.0309
http://dx.doi.org/10.1108/eb026526
http://dx.doi.org/10.1007/s00500-018-03703-8
http://dx.doi.org/10.1007/s10207-017-0396-7
http://dx.doi.org/10.1109/MILCOM47813.2019.9020730
http://dx.doi.org/10.1109/TIFS.2017.2668361
http://dx.doi.org/10.1109/IPCCC47392.2019.8958718
http://dx.doi.org/10.1109/ACCESS.2019.2927355
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00027
http://dx.doi.org/10.1016/j.eswa.2019.01.050
http://dx.doi.org/10.3390/sym11020176
http://dx.doi.org/10.1002/spy2.127
http://dx.doi.org/10.1016/j.comcom.2020.04.033
http://dx.doi.org/10.1016/j.cose.2020.101787
http://dx.doi.org/10.1016/j.procs.2020.04.121
http://dx.doi.org/10.3390/electronics9071070
http://dx.doi.org/10.1109/WCNC45663.2020.9120488
http://dx.doi.org/10.1016/j.phycom.2020.101069
http://dx.doi.org/10.1016/j.procs.2020.04.071
http://dx.doi.org/10.1109/ACCESS.2020.3013494
http://dx.doi.org/10.1088/1742-6596/1578/1/012074
http://dx.doi.org/10.25236/AJCIS.2020.030404
http://dx.doi.org/10.1016/j.eswa.2020.114551
http://dx.doi.org/10.1016/j.jisa.2020.102725


Electronics 2022, 11, 414 28 of 28

38. Koh, J.J.; Rhodes, B. Inline Detection of Domain Generation Algorithms with Context-Sensitive Word Embeddings. In Proceedings
of the 2018 IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018; IEEE: Piscataway, NJ, USA, 2018;
pp. 2966–2971. [CrossRef]

39. Tran, D.; Mac, H.; Tong, V.; Tran, H.A.; Nguyen, L.G. A LSTM based framework for handling multiclass imbalance in DGA botnet
detection. Neurocomputing 2018, 275, 2401–2413. [CrossRef]

40. Vinayakumara, R.; Somana, K.; Poornachandranb, P.; Kumara, S.S. Evaluating Deep Learning Approaches to Characterize and
Classify the DGAs at Scale. J. Intell. Fuzzy Syst. 2018, 34, 1265–1276. [CrossRef]

41. Xu, C.; Shen, J.; Du, X. Detection method of domain names generated by DGAs based on semantic representation and deep
neural network. Comput. Secur. 2019, 85, 77–88. [CrossRef]

42. Yu, B.; Pan, J.; Hu, J.; Nascimento, A.; De Cock, M. Character Level based Detection of DGA Domain Names. In Proceedings of
the International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 1–8. [CrossRef]

43. Akarsh, S.; Sriram, S.; Poornachandran, P.; Menon, V.K.; Soman, K.P. Deep Learning Framework for Domain Generation
Algorithms Prediction Using Long Short-term Memory. In Proceedings of the 5th International Conference on Advanced
Computing Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 666–671. [CrossRef]

44. Qiao, Y.; Zhang, B.; Zhang, W.; Sangaiah, A.K.; Wu, H. DGA Domain Name Classification Method Based on Long Short-Term
Memory with Attention Mechanism. Appl. Sci. 2019, 9, 4205. [CrossRef]

45. Liu, Z.; Zhang, Y.; Chen, Y.; Fan, X.; Dong, C. Detection of Algorithmically Generated Domain Names Using the Recurrent
Convolutional Neural Network with Spatial Pyramid Pooling. Entropy 2020, 22, 1058. [CrossRef]

46. Ren, F.; Jiang, Z.; Wang, X.; Liu, J. A DGA domain names detection modeling method based on integrating an attention mechanism
and deep neural network. Cybersecurity 2020, 3, 4. [CrossRef]

47. Vij, P.; Nikam, S.; Bhatia, A. Detection of Algorithmically Generated Domain Names using LSTM. In Proceedings of the
International Conference on COMmunication Systems and NETworkS (COMSNETS), Bengaluru, India, 7–11 January 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 1–6. [CrossRef]

48. Highnam, K.; Puzio, D.; Luo, S.; Jennings, N.R. Real-Time Detection of Dictionary DGA Network Traffic Using Deep Learning.
SN Comput. Sci. 2021, 2, 110. [CrossRef]

49. Namgung, J.; Son, S.; Moon, Y.S. Efficient Deep Learning Models for DGA Domain Detection. Secur. Commun. Netw. 2021,
2021, 8887881. [CrossRef]

50. Yilmaz, I.; Siraj, A.; Ulybyshev, D. Improving DGA-Based Malicious Domain Classifiers for Malware Defense with Adversarial
Machine Learning. In Proceedings of the IEEE 4th Conference on Information and Communication Technology (CICT), Chennai,
India, 3–5 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [CrossRef]

51. Wang, T.S.; Lin, H.T.; Cheng, W.T.; Chen, C.Y. DBod: Clustering and detecting DGA-based botnets using DNS traffic analysis.
Comput. Secur. 2017, 64, 1–15. [CrossRef]

52. Satoh, A.; Fukuda, Y.; Hayashi, T.; Kitagata, G. A Superficial Analysis Approach for Identifying Malicious Domain Names
Generated by DGA Malware. IEEE Open J. Commun. Soc. 2020, 1, 1837–1849. [CrossRef]

53. Sun, X.; Yang, J.; Wang, Z.; Liu, H. HGDom: Heterogeneous Graph Convolutional Networks for Malicious Domain Detection. In
Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24
April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–9. [CrossRef]

54. Yan, F.; Liu, J.; Gu, L.; Chen, Z. A Semi-Supervised Learning Scheme to Detect Unknown DGA Domain Names Based on
Graph Analysis. In Proceedings of the IEEE 19th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), Guangzhou, China, 29 December 2020–1 January 2021; IEEE: Piscataway, NJ, USA, 2020;
pp. 1578–1583. [CrossRef]

55. Yin, L.; Luo, X.; Zhu, C.; Wang, L.; Xu, Z.; Lu, H. ConnSpoiler: Disrupting C&C Communication of IoT-Based Botnet Through
Fast Detection of Anomalous Domain Queries. IEEE Trans. Ind. Inform. 2020, 16, 1373–1384. [CrossRef]

56. Mac, H.; Tran, D.; Tong, V.; Nguyen, L.; Tran, H. DGA botnet detection using supervised learning methods. In Proceedings of the
Eighth International Symposium on Information and Communication Technology (SoICT), Nha Trang, Vietnam, 7–8 December
2017; ACM: New York, NY, USA, 2017; pp. 211–218.

57. Pochat, V.L.; Goethem, T.V.; Tajalizadehkhoob, S.; Maciej Korczyński, W.J. Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation. arXiv 2018, arXiv:1806.01156v3.

http://dx.doi.org/10.1109/BigData.2018.8622066
http://dx.doi.org/10.1016/j.neucom.2017.11.018
http://dx.doi.org/10.3233/JIFS-169423
http://dx.doi.org/10.1016/j.cose.2019.04.015
http://dx.doi.org/10.1109/IJCNN.2018.8489147
http://dx.doi.org/10.1109/ICACCS.2019.8728544
http://dx.doi.org/10.3390/app9204205
http://dx.doi.org/10.3390/e22091058
http://dx.doi.org/10.1186/s42400-020-00046-6
http://dx.doi.org/10.1109/COMSNETS48256.2020.9027342
http://dx.doi.org/10.1007/s42979-021-00507-w
http://dx.doi.org/10.1155/2021/8887881
http://dx.doi.org/10.1109/CICT51604.2020.9311925
http://dx.doi.org/10.1016/j.cose.2016.10.001
http://dx.doi.org/10.1109/OJCOMS.2020.3038704
http://dx.doi.org/10.1109/NOMS47738.2020.9110462
http://dx.doi.org/10.1109/TrustCom50675.2020.00218
http://dx.doi.org/10.1109/TII.2019.2940742

	Introduction
	Background
	Botnets and Fluxing
	DGA
	TF-IDF

	Literature Review
	ML-Based Methods
	Models
	Context-Free Features
	Context-Aware Features

	DL-Based Methods
	CNN Models
	RNN Models
	Hybrid CNN-RNN Models

	Other Methods
	Datasets

	Research Method
	Datasets
	TF-IDF
	ML and DL Models
	Metrics
	Results
	Discussion

	Conclusions
	Precision and Recall
	References

