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Abstract: Centralized control of voltage magnitude and reactive power (Volt-VAr) is a highly complex
combinatorial problem that seeks to determine the optimal adjustment of a set of control variables
such as active and reactive power generation of distributed generators (DGs), modules in operation of
capacitor banks, and voltage regulator taps; these with the purpose of ensuring an optimal operation
of distribution systems. Looking for tools that allow real-time automation of this type of control, this
study applies different intelligent system (ISs) techniques, such as decision trees, artificial neural
networks, and support vector machines. Voltage magnitudes at nodes, current flow magnitudes in
the circuits, and active and reactive power injections at the nodes at different grid points were used
as input data. Training was performed from available measurements and actions recorded at the
system control center. The tests were performed in a 42-bus distribution test system demonstrating
the efficiency and robustness of the proposed solution techniques when compared with the results of
a conventional mathematical model.

Keywords: artificial neural networks; centralized Volt/VAr control; decision trees; intelligent systems;
real-time operation; support vector machines

1. Introduction

Within the smart grids context, one of the problems in electrical distribution systems
(EDS) is the control of voltage magnitudes and reactive power (Volt-VAr), in which the
objective is to determine the optimum adjustment of a set of control variables to ensure
the proper operation of the EDS [1]. Among the main control variables, there are the active
and reactive power generation of distributed generators (DGs), number of modules in
operation of capacitor banks (CBs), and number of tap steps for on-load tap changer (OLTC)
transformers as well as voltage regulators (VRs) [2]. Given its importance, and according
to the smart grids philosophy, there is great interest in developing mechanisms that allow
this control to be carried out automatically [3,4].

1.1. Literature Review

The Volt-VAr control has been extensively studied in the case where only OLTC
transformers, VRs, and CBs modules are considered as control variables [5–11]. In [5], VRs
taps are controlled cooperatively in real-time, after programming the optimal dispatch of
CBs modules, using genetic algorithms (GAs). In [6], a dynamic programming algorithm is
used to determine the optimal dispatch of VRs taps and CBs modules in order to minimize
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active power losses or voltage magnitude deviation of the system. In both [5,6], the impact
of active and reactive DGs power injection on the Volt-VAr control is disregarded.

In [7], it is explained that the conventional control of the operation points of the
CBs modules in radial grids need to be revised to include DGs in the feeders. In [8], the
coordination of the taps of VRs and the modules of CBs is proposed to minimize active
power losses in EDS considering DGs impact. In [9], a method of coordinated control of CB
modules and taps of VRs is proposed. Although CBs, VRs, and DGs have a high presence
in modern EDS, the optimal simultaneous adjustment of these control variables has not
been fully studied. In fact, few works reported the coordinated control, considering all
these elements, among which [10,11] stands out.

A common feature in several studies [5–11] is the need to know in detail the physical
model of the EDS, that is, the need for a complete knowledge of the electrical parameters
and the profile of the EDS demand. Nonetheless, such information is usually outdated,
does not exist, cannot be easily estimated, or is not reliable [12].

In the trend of smart grids, modern EDS are migrating from an unsupervised and
passive structure to a supervised and active one due to the installation of metering devices
and the proliferation of digital protection systems [13,14]. In this context, the development
of new control, monitoring, automation, and protection techniques is indispensable to
meet the requirements of modern EDS. An important feature that these new techniques
must incorporate concerns how to use relevant information from monitoring and metering
systems available in several points of the electrical grid, which can be collected and stored
for use in centralized and optimized decision making. An important benefit that may be
obtained from this structure is the optimal centralized control of voltage magnitude and
reactive power [15–18].

Therefore, intelligent systems (ISs) can be applied with the intention of managing a
control system that allows a proper operation of EDS. ISs are built by extracting knowledge
from a human expert and encoding it so that it can be applied to similar problems with a
computer. ISs attempt to model human abilities through computational systems to find
and interpret problem-response patterns. An IS characteristic is that its strategy for solving
problems is dependent on the knowledge of an expert in the subject [19]. Among the
methodologies belonging to ISs, there are artificial neural networks (ANNs), decision trees
(DTs), and support vector machines (SVMs).

ANNs are able to computationally simulate human abilities such as learning, gener-
alization, association, and abstraction. Thus, an ANN can be interpreted as a processing
scheme capable of storing knowledge based on learning and making this knowledge avail-
able to its application. The use of ANNs to solve electrical energy systems problems is
an area of growing interest [20]. In turn, DTs correspond to multistage decision-making
approaches, which are widely used in many applications [21]. One of the main DTs charac-
teristics is the ability to divide a complex decision process into a simpler set of decisions,
providing successful solutions similar to the desired objectives [22]. SVMs are nonlinear
models based on statistical learning theory. The main SVMs objective is to build an optimal
decision function that, from a data set with expected inputs and outputs, classifies new
inputs while minimizing the classification error [23].

1.2. Article Contribution and Organization

This work uses ANNs, DTs, and SVMs to determine the centralized control Volt-VAr in
modern EDS by using electrical measurements. ISs define the most appropriate adjustment
of the active and reactive power generation of DGs, the number of modules in operation of
CBs, and the number of tap steps for OLTC and VRs, in order to minimize the active power
losses of the system, using the measurements available in the control center. ISs can be
trained from the available measurements and actions recorded at the system control center.
However, a mixed-integer linear programming (MILP) model proposed in [10] is used to
create this set of measurements and actions. The WEKA learning machine, version 3.7.10,
is used to manage the three ISs. WEKA uses the multilayer perceptron/backpropagation
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learning algorithms, the J48/C4.5 and the SMO/PoliyKernel to perform the training of
ANNs, DTs, and SVMs, respectively.

The main contributions of this work are as follows:

* An alternative solution to the problem of centralized control Volt-VAR in modern ESD
was proposed based on ISs techniques;

* The proposed methodology allowed one to determine in a simplified way the solution
of the centralized control problem Volt-VAR using different ISs techniques such as
ANNs, DTs, and SVMs;

* The software WEKA was used as an important computational tool to solve the problem
of centralized Volt-VAR control.

The MILP model was implemented in AMPL mathematical modeling language [24]
and was solved using the commercial CPLEX solver [25]. Several tests were performed
using a benchmark distribution system to demonstrate the efficiency of the proposed
solution techniques. The rest of the document is organized as follows: Section 2 presents a
general overview of the Intelligent Systems implemented in the paper; Section 3 describes
the proposed methodology for Volt-VAr centralized control; Section 4 presents the tests as
results carried out on a 42-bus distribution test system; and finally, Section 5 presents the
conclusions of the research.

2. Intelligent Systems

In the development of this work, we used a computational intelligence field known
as ISs due to the strong expansion of electrical energy systems and the growing need
for interdisciplinary cooperation. ISs have the ability to use knowledge to perform tasks
or solve problems as well as harness associations and inferences to work with complex
problems; furthermore, ISs have the ability to efficiently store and retrieve large amounts of
information to solve problems or make decisions [26].

Within the ISs context, it is necessary to consider the meaning of “knowledge”; there-
fore, some assumptions and delimitation are necessary. In the first instance, one can think
of levels of knowledge: facts, concepts, rules, and meta-rules. Knowledge may be repre-
sented as a combination of data structures and interpretive procedures that lead to a known
behavior, which provides information to a system that can plan and decide [27].

The type of knowledge needed to solve existing problems determines which sources
of information are used by individuals. Therefore, knowledge can be generated from the
combination of different information. Thus, a decision can occur through logical analysis
or be supported by heuristic or intuitive data [28].

The intelligent behavior of a system is the result of multiple chained decisions. The
choice of decision or decision control is based on performance, duration, and risk crite-
ria [29].

ISs can be developed using various techniques, which can be applied alone or together
to help decision making. The main techniques and methodologies used by ISs are: knowl-
edge acquisition, machine learning, ANNs, fuzzy logic, SVMs, evolutionary computing,
agents, multiagents, and data and text mining. Each of these techniques offers a variety of
degrees of ability to represent human knowledge. For the development of this research,
three techniques were used: ANNs, DTs, and SVMs. These techniques were chosen due
to the fact that they have proven to be successful in several areas, especially in electrical
engineering applications as evidenced in [30–33].

2.1. Artificial Neural Networks

In ISs, ANNs are mathematical models that resemble biological neural structures and
have computational capacity acquired through learning and generalization. Learning in
ANNs consists of the phase in which the neural network uses pairs of input and output
data to modify its learning parameters [20].

This step can be an ANN adaptation to the intrinsic characteristics of a problem, where
covering a large spectrum of values associated to the relevant variables is intended. This
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is performed so that ANN acquires, through a gradual improvement, a proper capacity
of response for the greater number of possible situations. In addition, the generalization
of an ANN associates with its ability to provide coherent responses to data not presented
to it during training. Therefore, a trained ANN is expected to have a good generalization
capacity regardless of whether it has been controlled during training [34]. One of the main
ANNs characteristics is the ability to acquire, store, and use experimental knowledge.

ANN structure is defined by the way in which these neurons are organized and
interconnected: that is, the number of layers, number of neurons per layer, and types
of connection between neurons and network topology, as shown in Figure 1 (adapted
from [35]).
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Figure 1. (a) Simple neural network with two input nodes and two output nodes. (b) Simple neural
network with two input nodes, one hidden layer with two nodes and two output nodes.

There are several models for implementing an ANN structure, such as SOM (self-
organizing map), RBF (radius basis function), LMS (least mean square) and MLP (multilayer
perceptron).

MLP is the ANN structure that we used in this study. These multilayer networks
are distinguished from single-layer networks by the number of intermediate layers. This
architecture has one or more hidden layers. According to [20], the hidden neuron function
is to intervene between the external input layer and the network output in a useful way. By
adding one or more hidden layers, the network is capable of extracting high-order statistics.
This ability of hidden neurons is particularly valuable when the size of the input layer is
large. Each layer of the MLP model has a specific function [34]:

* Input layer: This is a noncomputational layer in which there is no processing; it is
responsible for receiving and propagating input information to the next layer;

* Hidden or intermediate layers: These are computational layers that perform process-
ing; the information is transmitted to them through the connections between the input
and output units. These connections save the weights that are multiplied by the inputs,
ensuring the network knowledge;

* Output layer: This is made of computational neurons and receives information from
the hidden layers providing the response.

2.2. Decision Trees

A decision tree (DT) is a data structure defined recursively as a leaf node corresponding
to a class and decision nodes that contain a test on some attribute. For each test, results
correspond to an edge for a subtree. Each subtree has the same structure as the tree. DTs
are used as a predictive model [36] that can classify and represent regression models.
DTs are categorized as a supervised training method to find a logical connection between
input attributes and the purpose of the attributes that represent the logical connection in
structures as a model [37].

Figure 2, adapted from [38], depicts an example of a general DT for classification. The
circles denote the root and internal nodes while the square denote the leaf nodes. In this
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particular example, the DT is designed for classification, and thus, the leaf nodes hold
class labels.

Figure 2. General structure of a DT.

DTs are some of the most widely used and very popular techniques among searches
due their simplicity, intelligibility, and ease of development. DTs construction is faster and
more accurate than other classification algorithms. It is easy to observe that the tree can be
represented as a set of rules. Each rule has its beginning at the root of the tree and moves
toward one of its leaves. The key to success of the DTs learning algorithm depends on
the criteria used to choose the attribute that divides the set of examples into each of the
iterations [22].

DTs approach can be trained through several algorithms, which include J48, REPTree,
PART, Ridor, and JRip, among others. In this research, we used the J48 algorithm that
achieves a slightly higher correctness probability than the other classifiers. Algorithm J48
is a version of the traditional C4.5 algorithm, developed by J. Ross Quinlan [39]. This
algorithm can process attributes of any type of input, through the discretization of numeric
values by heuristics. However, the tree is not able to perform regression and plays only the
role of the classifier; that is, the class attribute must be discrete [40].

2.3. Support Vector Machines

SVM theory is based on the idea of structural risk minimization, which has presented
an excellent performance. According to [23], SVM structure is currently the most popular
prefabricated approach for supervised learning, due to the following three properties:
(a) SVMs construct a maximal margin separator; that is, a decision boundary with the
longest possible distance to example points. Thus, allowing a correct generalization;
(b) SVMs create a linear separation in hyperplane but have the capacity to incorporate
the data in a space of superior dimension, using the so-called Kernel; and (c) SVMs are
nonparametric methods; that is, they hold training examples and may need to store all of
them. Thus, SVM combines the advantages of nonparametric and parametric models since
they have the flexibility to represent complex functions but are resistant to overadaptation.

SVM is part of the family of linear classifiers, because they map the input points in a
space of characteristics of a larger dimension to find the hyperplane that separates them
and maximize the margin between classes. To separate two classes, the maximum margin
separator is used; the margin is the width of the delimited area, and the separator is defined
as a set of points {{x : w ∗ x}+ b = 0}. Thus, a separate hyperplane ({w, b}) should not
only classify the data correctly but should also make the margins as large as possible [41].
The SVM mathematical formulation varies depending on the nature of the data; therefore,
there is a formulation for linear cases and another formulation for nonlinear cases.

Figure 3, adapted from [35], illustrates an SVM. On the left side, two classes of points
can be seen (black and white circles), along with three candidate linear separators. On
the right side, there is a separator which is at the midpoint of the margin, that is, the area
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between the dashed lines. The support vector, represented in Figure 3 as points with large
circles, is the closest example of the separator [35].

Figure 3. (a) Two classes of points. (b) maximum margin separator.

However, real-world problems are generally not linearly separable, and this is where
the Kernel method is introduced [42]. The Kernel function can be applied to pairs of input
data to evaluate scalar products in some corresponding feature space. Thus, it is possible
to learn in the higher dimension space, but only Kernel functions are calculated instead
of a complete list of characteristics for each data point. According to [41], the intelligent
Kernel trick is connected to the chosen Kernel.

Although the high-dimensional feature space (d-degree polynomials in the input space
has (np) free parameters), the dimension estimate of the subset of polynomials that solve
practical problems (based on a given training set) can be low. If the expectation of this
estimate is low, then the expectation of error probability is small [23].

SVMs have been developed as a robust technique for classification and regression
applied to large complex and noise-rich data sets; that is, with variables inherent to the
model that for other techniques increase the error possibility in the results, because they
are difficult to quantify and observe. Further details on SVMs and the Kernel method can
be found in [43].

3. Proposed Methodology

In this study, an ISs-based methodology is presented, which allows one to define
the real-time centralized control of voltage magnitude and reactive power of an electrical
distribution system, using electrical measurements as an input database. These data are
submitted to a filtering process to later enter the intelligent system. The classification
process is carried out within the ISs. Finally, the most appropriate adjustments of modules
in operation of CBs, the number of tap steps of each OLTC transformer, and the active and
reactive power injections from each DG unit are obtained. Figure 4 shows a diagram with
the respective input and output variables of the IS.

Figure 4. Input and output variables of the proposed ISs.
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In this case, PDG
t−1 and QDG

t−1 are vectors of active and reactive power injections of the
distributed generation at time interval t− 1, TCB

t−1 is the vector of modules in operation of
capacitor banks at time t− 1, TT

t−1 is the vector of tap steps of transformers with on-load
tap changers at time t− 1, PS

t− and QS
t− are the injection of active and reactive power of

substation at time t−, VDG
t is the vector of voltage magnitudes at nodes of distributed

generators in operation at time t, VCB
t− is the vector of voltage magnitudes at the nodes

of capacitor banks in operation at time t, and VT
t− and IT

t− are the vectors of voltage and
current magnitudes at nodes controlled by transformers with on-load tap changers and
voltage regulator in operation at time t−. On the other hand, the control actions in the
time period t are: PDG

t and QDG
t , which correspond to the vectors of active and reactive

power injections of distributed generation, TCB
t , which indicates the vector of modules in

operation of capacitor banks and TT
t , which indicates the tap steps of transformers with

on-load tap changers.
Figure 5 shows a graphical representation of the steps required to create the database

used to perform ISs training. At time period t− 1, the system is operating on a steady state
with active and reactive demands given by PD

t−1 and QD
t−1, respectively, and with values

of control variables given by PDG
t−1 , QDG

t−1, TCB
t−1, and TT

t−1. Note that between time t− 1 and
t, there is a time labeled as t−; this time is before the system control changes; that is, the
controls defined in the time period t− 1 remain fixed on while the demand varies. Given
the controls defined in the fixed time period t− 1 and the variation of demand (PD

t , QD
t ),

a new operating point is defined in the system in time t−. This operating point can be
calculated using a backward/forward sweep load flow [44].

Figure 5. Graphical representation of the steps used to create the database.

With the load flow (LF) result, it is possible to store all the information in the meters
available in the system that can be accessed in the time interval t−. In this case, this
information includes: PS

t− , QS
t− , VDG

t− , VCB
t− , VT

t− , and IT
t− . Thus, it is possible to obtain all the

ISs input data. In the transition period between time t− and t, the demand of the system
(PD

t and QD
t ) remains constant. Control variables PDG

t , QDG
t , TCB

t , and TT
t at time t are

calculated using an MPLIM model presented in [10], which represents the ISs output data.
In addition, the database of this work was created following the method proposed in [45].

In order to perform the IS training, it is necessary to create databases with all measure-
ments of the system in time t− 1 and control actions in time t. In this study, we carried out
a system analysis for 365 days, hour by hour; therefore, a total of 8760 records was obtained.
To apply this methodology, the WEKA machine learning platform was used.

Machine Learning Platform

Algorithm J48, MLP, and PoliKernel were implemented using the free software WEKA.
This software has a wide variety of machine learning algorithms, developed in Java pro-
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gramming language, which are useful for being applied in databases making use of the
interfaces it offers. In addition, WEKA contains the tools necessary to perform transfor-
mations on data, classification tasks, regressions, clustering, association, and visualization.
WEKA is designed as an extensibility-oriented tool, meaning that adding new features is a
simple task; furthermore, it is a freely distributed and multiplatform software that is made
up of a series of open-source packages with different techniques; these packages can be
integrated into any project of data analysis and can even be extended with contributions
from users who develop new algorithms.

4. Tests and Results

The development of this work was performed considering a distribution network
composed of 42 buses, with 5 CBs, 2 DGs, and 4 VRs. The single-line diagram shown in
Figure 6 represents the configuration of the described system used in [10].
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Figure 6. 42-bus distribution system diagram.

The data created from the MPLIM solution of the distribution system operation
planning problem (POSD) and presented in [10] were used in this paper. The proposed
model was implemented to determine active and reactive power injections of DGs, the
number of capacitor modules in operation, and the number of tap steps of VRs, in order to
minimize the cost of the system daily energy losses, as represented in the POSD objective
function.

Through this mathematical model solution, a database was created with information of
the system control data of 365 days, hour per hour (8760 records). This database considers
a random variation of 5% demand relative to a daily demand curve divided into one-hour
intervals and is used to perform the training of DTs, SVMs, and ANNs.

In addition, four other databases were generated (also from the MILP model presented
in [10]), which are made up of data with a history of system control records for 7 days,
on an hourly basis (168 records). These data were used to carry out the validation of the
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three ISs; the difference between these four databases is the percentage of random variation
in demand at 5%, 10%, 15%, and 20%. The data were analyzed with the software WEKA
which allows one to perform the training and validation process of DTs, ANNs, and SVMs.
According to the tests carried out with ISs, the training data presented a high level of
veracity in their validation, which is analyzed in this section.

With each database used to perform the training and validation of DTs, SVMs, and
ANNs, tests were performed in which the different parameters of each ISs were calibrated;
one of the most critical cases were with ANNs, in which, after several tests in the training
process, it can be seen how difficult it is to find the optimal adjustment of the training
parameters that are needed when trying to achieve better results. These parameters are
selected by using time and training error criteria and shown in Table 1. The calibration of
ISs parameters is of utmost importance because they are directly related to the quality of
the results obtained.

Table 1. Parameters used for ANN training.

Hidden Layer Learning Rate Training Time Correctly Classified (%)

40 0.3 100 84.89

50 0.3 200 86.47

80 0.3 300 87.81

82 0.3 100 86.67

85 0.3 100 87.86

85 0.2 3000 94.91

90 0.3 100 86.55

100 0.3 400 87.12

To perform the training of DTs, SVMs, and ANNs, a number of discretizations was
considered; for DGs, a control measure of 20 was necessary, for CBs modules, a 4-control
measure was performed, and for VRs taps a control measure of 2 and 16 units were necessary.

Table 2 shows the percentages of correct classification according to the crossvalidation
test option chosen within the software WEKA to perform the ISs training and validation
using data with random variation of demand (5% and 20%).

Table 2. Classification percentage using crossvalidation.

Demand Variation Percentage (5%) Demand Variation Percentage (20%)

Correctly Classified (%) Correctly Classified (%)

DT SVM ANN DT SVM ANN

94.6005 94.8744 91.2536 94.1532 94.6685 91.3600

94.7032 95.0799 92.3025 94.3100 94.8141 91.2569

94.6689 95.1484 92.0415 94.2800 94.8589 91.4879

96.8607 95.0571 92.1698 94.1084 94.8701 91.0025

94.7374 98.4475 93.4890 94.1644 95.0045 91.4300

94.0860 94.2204 91.4875 94.1980 94.8477 91.2547

94.0972 94.2316 91.4045 94.3436 94.7581 91.5478

94.1980 94.2428 90.2568 94.4220 94.8701 91.2560

96.1644 94.2540 91.4050 94.3436 94.8801 91.2589

94.0972 94.3100 91.2356 94.2652 95.0180 91.3692
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4.1. Case A—Validation Process Using Input Data Generated by the MILP Model

Considering that the random variation of demand of 20% represents a greater compu-
tational effort, the performance of each proposed IS is compared for this particular case. In
order to analyze this case, four databases were created with the history of energy losses
of the system hour by hour during a week, to evaluate each one of the used ISs. Table 3
compares the results obtained by the ISs, and the results obtained after the simulation with
the MPLIM model.

Table 3. Comparison of daily energy losses results in KWh.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MPLIM 11,352.6 10,202.8 10,139.1 10,441.3 9464.2 9387.9 10,266.4

SVM 11,888.0 10,684.1 10,617.2 10,933.7 9910.5 9830.7 10,750.6

DT 12,090.7 10,866.2 10,798.3 11,120.2 10,079.5 9998.3 10,933.9

ANN 12,288.3 11,043.8 10,974.7 11,301.8 10,244.2 10,161.7 11,112.6

Thus, to validate the results, day 1 was chosen from this database, which is the day
with the highest levels of energy losses. Table 4 shows a comparison of the hourly values of
energy losses of the studied system, obtained by MPLIM and the three ISs for day 1, which
is the day with the highest levels of demand and highest levels of energy losses.

Figure 7 shows the power losses in the system for each time interval (control action
defined by ISs for 24 h) for the demand variation percentage of 20%. The values of the
losses obtained using the optimum control action are the results obtained in the simulation
of the conic MPLIM model, while the others correspond to the control action defined by
the ISs.

Figure 8 shows the minimum voltage in the system for each time interval (control
action defined by the ISs for 24 h) for the demand variation percentage of 20%.
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Figure 7. Energy losses calculated for 24 h.
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Table 4. Comparison of hourly energy loss results in kWh.

MPLIM SVM DT ANN

Hour Day 1 Day 1 Day 1 Day 1

0 63.92 69.90 71.95 71.57

1 71.78 71.95 71.78 71.78

2 63.92 71.78 72.15 71.78

3 71.78 71.95 72.15 83.13

4 71.95 71.95 72.15 83.13

5 83.13 87.54 91.40 91.40

6 562.01 586.73 586.73 586.73

7 531.70 562.01 586.73 586.73

8 1121.24 1146.07 1146.07 1159.75

9 586.73 586.73 586.73 655.90

10 562.01 586.73 586.73 586.73

11 562.02 586.77 586.73 586.73

12 531.70 586.77 586.73 562.01

13 586.73 586.77 586.77 655.90

14 531.70 586.73 562.01 562.01

15 562.01 586.73 586.77 562.01

16 880.87 880.87 905.62 905.62

17 507.00 531.70 531.70 586.73

18 1146.07 1159.75 1159.75 1159.75

19 1146.07 1146.07 1159.75 1159.75

20 507.00 531.70 586.73 586.73

21 343.27 383.18 485.96 485.96

22 189.56 335.69 335.69 343.26

23 68.46 71.95 71.95 83.13

Total 11,352.61 11,888.01 12,090.73 12,288.22

4.2. Case B—Validation Process Using Load Flow Results as Input Data

In study case B, ISs are autonomous, and once they are trained, they receive the input
database directly from the load flow and then return the control defined by the ISs; in this
case, we considered the random variation of demand of 10% to compare the performance
of each IS proposed for this particular case. In order to analyze this case, four databases
were created with the history of energy losses of the system hour by hour during a week,
to evaluate each one of the ISs. Table 5 compares the results obtained by the ISs and the
values calculated by the MPLIM model.

Table 5. Comparison of daily energy losses results in KWh.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MPLIM 6583.94 6831.15 6342.78 6561.45 5284.07 6119.19 6751.01

SVM 6631.58 6967.87 6412.27 6682.32 5496.82 5496.82 6217.77

DT 6716.04 6852.01 6344.20 6597.66 5607.33 6254.08 6887.78

NN 6588.99 6956.06 6350.29 6625.75 5547.43 6299.38 6843.53



Electronics 2022, 11, 446 12 of 18

5 10 15 20
0.93

0.94

0.95

0.96

Time(Hrs)

V
ol

ta
ge

(p
.u

.)

MPLIM

5 10 15 20
0.93

0.94

0.95

0.96

Time(Hrs)

V
ol

ta
ge

(p
.u

.)

SVM

5 10 15 20
0.93

0.94

0.95

0.96

Time(Hrs)

V
ol

ta
ge

(p
.u

.)

DT

5 10 15 20
0.93

0.94

0.95

0.96

Time(Hrs)

V
ol

ta
ge

(p
.u

.)

ANN

Figure 8. Minimum voltage calculated for 24 h.

Day 2 was chosen to validate the results from this database, which is the day with
the highest levels of energy losses. Table 6 shows a comparison of the hourly values of
energy losses of the studied system, obtained by MPLIM and by the three ISs for the day
that present higher levels of losses.

Figure 9 shows the power losses in the system for each time interval (control action
defined by ISs for 24 h) for a demand variation of 10%. The values of the losses obtained
using the optimum control action are the results obtained in the simulation of the conic
MPLIM model, while the others correspond to the control action defined by the ISs.
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Figure 9. Energy losses calculated for 24 h.
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Table 6. Comparison of hourly energy loss results in kWh.

MPLIM SVM DT ANN

Hour Day 2 Day 2 Day 2 Day 2

0 66.74 66.74 66.74 66.74

1 66.74 66.74 66.74 66.74

2 66.74 66.74 66.74 66.74

3 63.79 63.79 63.79 63.79

4 66.74 66.74 66.74 66.74

5 75.47 75.47 75.47 75.47

6 282.57 282.57 282.57 282.57

7 302.68 302.68 302.68 302.68

8 748.05 748.05 748.05 748.05

9 253.30 253.30 253.30 253.30

10 282.57 282.57 282.57 282.57

11 265.99 265.99 265.99 265.99

12 502.32 502.32 502.32 502.32

13 599.18 724.41 548.41 724.08

14 282,57 282,57 282,57 282,57

15 253.30 253.30 253.30 253.30

16 217.30 217.30 217.30 217.30

17 253.30 253.30 253.30 253.30

18 748.05 748.05 748.05 748.05

19 748.05 748.05 748.05 748.05

20 236.72 236.72 236.72 236.72

21 236.72 236.72 236.72 236.72

22 145.67 157.17 217.30 145.67

23 66.61 66.61 66.61 66.61

6831.15 6967.87 6852.01 6956.06

Figure 10 shows the minimum voltage in the system for each time interval (control
action defined by the ISs for 24 h) for the demand variation percentage of 10%.

For a better analysis of this proximity, the values that allow quantifying prediction
errors are presented in terms of absolute mean deviations (AMD). Table 7 shows the
validation set with 20% random variation, the AMD between discrete states, and the
percentages of correctness for each of the control elements of the system (DGs, CBs, and
VRs), when comparing the results assumed to be real (results obtained after the simulation
of the MPLIM model) with the results obtained by the ISs.

According to the results of Table 7, SVMs have better performance, with lower percent-
ages of absolute mean deviations and higher percentages of correctness. In addition, the
smallest correctness deviations for DTs, SVMs, and ANNs correspond to predictions of the
injected powers by the DGs, however, with percentages that can be considered acceptable.
Again, the results are acceptable, since, for the highest percentage of variation of demand
(20%), the percentages of correctness remains greater than 90% with the three ISs.

Tables 8–10 present the number of predicted values using IS that presented better
results, such as the SVM case; these values are classified according to the percentages
of absolute mean deviations when compared with the real values, both for minimum
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voltages (in kV) and for system losses. Other information resulting from these simulations
is the amount of predictions with infeasible results, which depend not on the IS but on
the increase in demand variation. Therefore, 10, 21, and 33 results were obtained for
percentages of demand variation of 5%, 10%, 15%, and 20%, respectively.
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Figure 10. Minimum voltage calculated for 24 h.

Table 7. Percentage of hits and AMD by variable for 20% variation in demand.

SVM DT ANN

AMD (%) Successes (%) AMD (%) Successes (%) AMD (%) Successes (%)

P1 0.6550 88.6910 0.9820 86.3090 1.2500 77.9760

P2 0.6840 87.5000 1.2800 83.3330 1.3090 79.1670

Q1 0.5360 89.2860 0.5360 89.2860 0.6840 86.9050

Q2 0.5060 89.8810 0.7140 85.7140 0.7140 85.7140

CB1 0.1190 97.6190 0.2380 95.2380 0.2080 95.8330

CB2 0.1786 97.0238 0.4464 92.8571 0.5060 91.0714

CB3 0.0000 100.0000 0.0000 100.0000 0.0000 100.0000

CB4 0.0893 98.2143 0.1786 96.4286 0.1786 96.4286

CB5 0.1190 97.6190 0.2679 94.6429 0.2976 94.0476

VR1 0.0000 100.0000 0.0000 100.0000 0.0000 100.0000

VR2 0.0000 100.0000 0.0000 100.0000 0.0000 100.0000

VR3 0.3571 92.8571 0.4167 91.6667 0.7738 85.7143

VR4 0.0000 100.0000 0.0000 100.0000 0.0000 100.0000

0.2495 95.2839 0.3892 93.4982 0.4556 91.7582
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Table 8. AMD of the values obtained (5% variation in demand).

0–20% 20–40% 40–60% 60–80% 80–100%

Minimum voltage 161 2 1 0 4

Energy losses 148 12 4 1 3

Table 9. AMD of the values obtained (10% variation in demand).

0–20% 20–40% 40–60% 60–80% 80–100%

Voltage Minimum 139 4 4 0 11

Energy losses 127 12 11 2 6

Table 10. AMD of the values obtained (20% variation in demand).

0–20% 20–40% 40–60% 60–80% 80–100%

Minimum voltage 120 2 6 0 7

Energy losses 103 10 10 4 8

Note that there is a significant amount of predicted results with absolute mean devia-
tions between 0% and 20% indicated in Table 11, also in percentages. This shows the high
proximity of the expected results when compared with the values assumed to be real.

Table 11. Percentage of predicted results with AMD values between 0% and 20%.

Variation

5% 10% 15% 20%

Minimum voltage 95.83 82.74 75.60 71.43

Energy losses 88.10 75.60 66.07 61.31

5. Conclusions

In this work, the voltage magnitude and reactive power control problem was ad-
dressed using three ISs methodologies to determine the real-time centralized control of
voltage and reactive power magnitude (Volt-VAr) of distribution systems using electrical
measurements. The free software WEKA was used to train and evaluate the three ISs (DTs,
SVMs, and ANNs) in the calculation of the operating points of DGs, CBs, and VRs.

The comparison between the results obtained in the solution of an MPLIM model
with the objective of minimizing power losses, and the results obtained using ISs show low
prediction errors that lead one to consider the use of these methodologies to be fast and
efficient alternatives. The results show low errors compared to the those provided by a
mathematical model, which evidences the usefulness of the proposed method.

According to the results presented by the IS-based methods, for the test conditions, the
SVMs presented a better performance with lower AMD percentages and higher percentages
of correctness. The lowest percentages of correctness, for DTs, SVMs, and ANNs (for 20%
random variation of demand), correspond to predictions of the injected powers by DGs but
with percentages that can be considered acceptable.

For the three ISs, tests were performed for percentages of random variation of demand
(5%, 10%, 15%, and 20%). The absolute mean deviations between discrete states and
percentages of correctness are acceptable since, for example, for the highest percentage of
variation of demand (20%), the percentages of correctness remains greater than 90%.

The decision-making process can be carried out without the detailed representation of
the network physical model, since measurement data can be used as input for IS training.
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The ISs training times were reasonable considering the complexity of the Volt-VAr
centralized control problem. In addition, the response times of a maximum of 1 second
indicate that the time it takes for the ISs to obtain a solution to the problem is similar to
that obtained by the devices used in real time.

Future research will include other ISs techniques such as machine learning, fuzzy
logic, and evolutionary computing. Furthermore, the use of other benchmark distribution
system will be considered along with the effect of distributed energy resources within the
Volt-VAr control problem.
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Nomenclature

The notation used throughout this paper is shown below for quick reference.

PDG
t Vector of active power injections of distributed generators in operation at time t.

QDG
t Vector of reactive power injections of distributed generators in operation at time t.

TCB
t Vector of modules in operation of capacitor banks at time t.

TT
t Vector of tap steps of transformers with on-load tap changers at time t.

PS
t Injection of active power of substation at time t.

QS
t Injection of reactive power of substation at time t.

PD
t Demand of active system power at time t.

QD
t Demand of reactive system power at time t.

VDG
t Vector of voltage magnitudes at nodes of distributed generators in operation at time t.

VCB
t Vector of voltage magnitudes at nodes of capacitor banks in operation at time t.

VT
t

Vector of voltage magnitudes at nodes controlled by the transformers with tap changer
under load and voltage regulator in operation at time t.

IT
t

Vector of current magnitudes in transformers with tap changer under load and voltage
regulator in operation at time t.
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