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Abstract: Analog circuits are a critical part of industrial electronics and systems. Estimates in the 
literature show that, even though analog circuits comprise less than 20% of all circuits, they are 
responsible for more than 80% of faults. Hence, analog circuit fault diagnosis and isolation can be a 
valuable means of ensuring the reliability of circuits. This paper introduces a novel technique of 
learning time–frequency representations, using learnable wavelet scattering networks, for the fault 
diagnosis of circuits and rotating machinery. Wavelet scattering networks, which are fixed time–
frequency representations based on existing wavelets, are modified to be learnable so that they can 
learn features that are optimal for fault diagnosis. The learnable wavelet scattering networks are 
developed using the genetic algorithm-based optimization of second-generation wavelet transform 
operators. The simulation and experimental results for the diagnosis of analog circuit faults demon-
strates that the developed diagnosis scheme achieves greater fault diagnosis accuracy than other 
methods in the literature, even while considering a larger number of fault classes. The performance 
of the diagnosis scheme on benchmark datasets of bearing faults and gear faults shows that the 
developed method generalizes well to fault diagnosis in multiple domains and has good transfer 
learning performance, too. 

Keywords: wavelet scattering networks; analog circuits; rotating machinery; fault diagnosis;  
scattering networks; fault isolation; second-generation wavelet transform 
 

1. Introduction 
Electronic circuits are ubiquitous in our everyday lives, in applications ranging from 

the commercial domain to the safety-critical domain. As a result, unforeseen circuit fail-
ures can have enormous consequences for the safety and financial well-being of their us-
ers and producers [1,2]. Analog circuit failures can be attributed to interconnected failures 
or component faults, which are associated with either parametric drift (soft faults) or short 
circuit/open circuit [3] (hard faults). Analog circuits have become increasingly complex 
and consequentially, fault diagnosis is increasingly difficult, due to: (a) component toler-
ances, (b) interactions among components, (c) inadequate accessible measurement nodes; 
and (d) the inherent non-linearity in the behavior of analog circuits. Compared to digital 
circuits, analog circuits are more susceptible to interference and have fewer measurement 
nodes. Interestingly, even though analog circuits account for less than 20% of all circuits, 
they are responsible for more than 80% of circuit faults [4,5] Therefore, the fault diagnosis 
of analog circuits has become a highly important research area in recent years. 

There are two broad categories for fault diagnosis approaches for circuits: analytical 
methods and data-driven methods. Circuit transfer function equations are required to ap-
ply analytical methods [6]. If these equations are unavailable, they can be determined us-
ing design principles or parameter identification techniques [7], and fault diagnosis is 
then achieved by exposing the circuit to a test stimulus and using the response to estimate 
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the circuit parameters. This technique is suitable for linear analog circuits but is not feasi-
ble for nonlinear analog circuits because of the complexity involved [8]. 

Data-driven methods [9–12] require data obtained under faulty conditions to be 
available either through testing, operation, or simulation such that a comparison can be 
made to data obtained under healthy conditions for fault diagnosis. Features of the data 
are used for this comparison and can be time domain, frequency domain, or time–fre-
quency domain. Various machine learning approaches such as neural networks, support 
vector machines, Naïve Bayes classifier, etc., have been used for fault diagnosis under the 
broad umbrella of data-driven methods. Neural-network-based fault-diagnosis ap-
proaches [13,14] have included, for feature generation: kurtosis and entropy [15], wavelet 
transforms [16], and fractional wavelet transforms [17]; and for dimensionality reduction: 
kernel PCA (kPCA) [16,17]. Support vector machine (SVM)-based [18] fault-diagnosis ap-
proaches have further included, for feature generation: fractional Fourier transform [19], 
cross-wavelet transform [20,21], deep belief networks (DBN) [22,23], and empirical mode 
decomposition [24]; for dimensionality reduction: parametric t-SNE [20] and principal 
component analysis [21]; and for SVM hyperparameter optimization: the double-chains 
quantum genetic algorithm [24], the fruitfly algorithm [25], the barnacles mating opti-
mizer algorithm [26], and the firefly algorithm [27]. Naïve-Bayes-classifier-based [28] 
fault-diagnosis approaches include, for feature generation: cross-wavelet transform [29]; 
and for dimensionality reduction: bilateral 2D linear discriminant analysis. 

The standard approach that the vast majority of the methods followed is to extract 
features and apply a dimensionality reduction algorithm to obtain a lower-dimensional 
feature set which is then fed to a classification algorithm. Extracting features informative 
for fault diagnosis requires technical expertise which restricts its application as a general-
ized method. Recently, techniques have been proposed involving the direct application of 
deep learning methods for fault diagnosis. These techniques use input data to learn fea-
tures autonomously through a multi-layered neural network. This avoids the need for 
manual feature extraction and feature selection. For example, different 2D representations 
[30,31] have been developed for circuit outputs for use with state-of-the-art deep learning 
networks such as ResNet50 [32] to achieve fault diagnosis. However, the creation of an 
optimal custom deep learning network structure for the problem at hand requires subject 
matter expertise and extensive trial-and-error [33]. Inspired by wavelet scattering theory 
[34] and second-generation wavelet transform [35], we propose a novel technique that 
does not need to be optimized for structure and learns wavelet filters instead of random 
filters from the data. Hence, it overcomes the shortcomings of deep learning networks. 
The remainder of the paper is organized as follows: Section 2 presents a theoretical back-
ground of the techniques involved in the approach. Section 3 details the developed fault 
diagnosis methodology. Section 4 details the application of the approach to the fault di-
agnosis of two circuits and a bearing and a gears dataset. The conclusions follow in Section 
5. 

2. Theoretical Background 
As mentioned earlier, in this paper, time–frequency representations are learnt from 

the circuit outputs for fault diagnosis using learnable wavelet scattering networks 
(LWSNs). This involves modifying wavelet scattering networks, which are fixed time–
frequency representations based on existing wavelets, such that they can learn features 
that are optimal for fault diagnosis. Learnable wavelet scattering networks are developed 
using the genetic-algorithm-based optimization of second-generation wavelet transform 
operators. Support vector machines (SVMs) are used as classifiers for the features learned 
by the LWSN. In the following subsections, we review the basics of a wavelet transform, 
a wavelet scattering network, a genetic algorithm, and a support vector machine and in-
troduce the concept of learnable wavelet scattering networks. 
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2.1. Wavelet Transform 
A wavelet transform is a collection of bandpass filters with progressively broader 

bandwidths at higher frequencies. A wavelet is a time-limited waveform that has a non-
zero norm and zero average value. Often, signals are piecewise smooth but have momen-
tary transients; for example, edges in images or transients caused by rapid changes in 
economic conditions in financial time series. The Fourier basis is not suited for the sparse 
representation of these signals, as their sinusoids have infinite duration and would require 
sine waves of various frequencies for representation. Wavelets, being irregular and of lim-
ited time, require the break-up of a signal into a limited number of variations of the orig-
inal wavelet ଵ√௦ 𝜓(௧ି௨௦ ). The scale parameter s is inversely proportional to the frequency. A 
small scale s leads to a compressed wavelet, which is ideal for high-frequency signals with 
rapidly changing details. A long scale s leads to a stretched wavelet, which is ideal for 
slowly changing signals with coarse features; i.e., a low-frequency signal. This increases 
the flexibility of the time–frequency analysis. The wavelet transform (1) has scale-varying 
basis functions. 𝑊𝑓(𝑢, 𝑠) = න 𝑓(𝑡) 1√𝑠 𝜓 ൬𝑡 − 𝑢𝑠 ൰ 𝑑𝑡  ஶ

ିஶ  (1)

The continuous wavelet transform (CWT) (2) compares a signal with shifted and 
scaled versions of the mother wavelet. 𝜓(𝑢, 𝑠) = 12௩ 𝜓 ൭𝑡 − 𝑚2௩ ൱  (2)

Here, 𝑣 is the number of voices per octave, as it requires 𝑣 intermediate scales to 
increase the scale by an octave. Higher values of 𝑣 result in a finer discretization of the 
scale parameter 𝑠 and an increase in the amount of computation required. The discrete 
wavelet transform (DWT) has a much coarser discretization of the scale parameter such 
that the number of voices per octave is always one. Depending on the translation param-
eter discretization, there are two broad types of DWT: decimated DWT and non-deci-
mated DWT. 

Decimated DWT (3): The translation parameter is 2jm, where m is a non-negative in-
teger and 𝑗 is the scale. The decimated DWT is a sparse representation; hence, it is used 
for compression, denoising, signal transmission, etc. 𝜓(𝑢, 𝑠) = 1√2 𝜓 ቆ𝑡 − 2𝑚2 ቇ (3)

Non-decimated DWT (4): Like in the case of the CWT, the translation parameter is 
independent of the scale parameter. The non-decimated DWT is a more redundant repre-
sentation than the decimated DWT and is translation invariant. 𝜓(𝑢, 𝑠) = 1√2 𝜓 ൬𝑡 − 𝑚2 ൰ (4)

2.2. Wavelet Scattering Networks (WSNs) 
In an effort to create interpretable networks that mimic human performance on vision 

and auditory tasks, some researchers use wavelet-transform-based methods, as wavelets 
are an approximation of the response of the human visual cortex and cochlea to stimuli 
[36]. For example, the wavelet transform renders a time domain signal to the time–fre-
quency plane with a decreasing frequency resolution with increasing frequency, which is 
similar to the human cochlear response. 

Mallat [37] proposed WSNs (Figure 1) as a first step in understanding the success of 
Convolutional Neural Networks (CNNs). A wavelet scattering network computes a rep-
resentation that preserves high-frequency information, is stable to deformations, and is 
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translation invariant, which makes it a good feature extractor for classification. It is a cas-
cade (tree) of convolutions between Gabor wavelet transforms (represented by 𝜓 in Fig-
ure 1) and non-linear modulus and averaging operators (represented by 𝜙 in Figure 1), 
which “scatter” the signal along multiple paths. The number of paths at each node of the 
WSN is the scale of the wavelet transform (scale = 3 in Figure 1), and the number of layers 
of wavelet transforms is typically two. Discrete versions of WSNs were proposed by Wia-
towski [36] and involve existing discrete orthogonal and biorthogonal wavelets. 

 
Figure 1. Wavelet scattering network. 

Unlike CNNs, a scattering network outputs coefficients at all layers, not just the last 
layer, and filters are not learned from data but are predefined wavelets. Thus, the filters 
retain their physical meaning, which cannot be said of the filters that are developed 
through the learning process in a typical convolution neural network. Operations in both 
CNNs and wavelet scattering networks can be represented as 𝑃 ൫𝜌 (𝑥 ∗ 𝑤)൯, where 𝑥 is 
the input signal, 𝑤 is the filter weight, 𝜌 is the nonlinearity, and 𝑃 is the pooling oper-
ator. In CNNs, the weights 𝑤 are weights of learned random filters, while in WSNs, the 
weights 𝑤 are the weights of the fixed wavelet filters. Scattering networks provide state-
of-the-art classification accuracies on simple to moderately complex datasets, such as tex-
tures in CUReT dataset [34], or musical genre and environmental sound classification [37], 
and images in MNIST dataset [38]. However, for extremely complex datasets such as 
ImageNet [39] or TIMIT Acoustic–Phonetic Continuous Speech Corpus [40], CNNs are 
still more accurate than scattering networks. A major reason for this is that scattering net-
works are fixed-feature generators, while CNNs learn features from the data. As a result, 
an effort is made to make the discrete wavelet scattering networks have the learnability 
property, such that they can learn features from the data. 

2.3. Learnable Wavelet Scattering Networks (LWSNs) 
Instead of the fixed wavelet filters of the WSN, the wavelet filters in the LWSN are 

learnable using a second-generation wavelet transform (SGWT). The classical wavelet 
transform is realized through the translation and expansion of the mother wavelet func-
tion. This definition is very restrictive, so the SGWT does away with it. The lifting method 
[35] or the lifting scheme (Figure 2) is a space domain wavelet construction method used 
to construct the SGWT filters, and it builds sparse representations by exploiting the cor-
relation inherent in most real-world data. It consists of three basic steps: 
1. Split: Let 𝑥(𝑛) be an original signal. In this step, 𝑥(𝑛) is divided into two subsets: 

the even subset 𝑥(𝑛) and odd subset 𝑥(𝑛). The subsets are correlated according to 
the correlation structure of the original signal. 
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𝑥(𝑛) = 𝑥(2𝑛) (5)𝑥(𝑛) = 𝑥(2𝑛 + 1) (6)

2. Predict: The odd coefficients 𝑥(𝑛) are predicted from the neighboring even coeffi-
cients 𝑥(𝑛), and the prediction differences 𝑑(𝑛) are defined as the detail signal, 𝑑(𝑛) = 𝑥(𝑛) − 𝑃(𝑥(𝑛)) (7)

where 𝑃 = [𝑝(1), ⋯ ⋯ , 𝑝(𝑁)]் is the prediction operator. 
3. Update: Coarse approximation 𝑐(𝑛) to the original signal is created by combining 

the even coefficients and the linear combination of the prediction differences  𝑐(𝑛) = 𝑥(𝑛) + 𝑈(𝑑(𝑛)) (8)

where 𝑈 = [𝑢(1), ⋯ ⋯ , 𝑢(𝑁)]் is the update operator. By iterating on the approximation 
signal 𝑐(𝑛) using the three steps, the approximation and the detail signal are obtained at 
different levels. The optimization of the lifting scheme’s Update (U) and Predict (P) oper-
ators in the LWSN is carried out using the genetic algorithm (GA). The optimized Update 
(U) and Predict (P) operators are converted to the wavelet (𝜓) and averaging operators 
(𝜙) using Claypoole’s algorithm [35], such that the structure in Figure 1 can be used to 
learn time–frequency representations from the data. 

 
Figure 2. Lifting scheme. 

Table 1 illustrates the differences between deep learning networks, wavelet scatter-
ing networks, and learnable wavelet scattering networks. 

Table 1. Differences between networks. 

 Deep Learning Networks 
Wavelet Scattering Net-

works 
Learnable Wavelet Scat-

tering Networks 

Features Learnt from data 
Fixed wavelet type and co-
efficients (not learnt from 

data) 

Wavelet type and 
coefficients learnt from 

data 
Features Output at Last layer Every layer Every layer 

Number of Layers Variable number of hidden  
(convolutional) layers 

Two layers (typically) of 
fixed wavelets 

Two layers of learned 
wavelets 

Nonlinearity Modulus/Rectified Linear Unit/ 
Hyperbolic Tangent, etc. Modulus Modulus 

Pooling Max/Averaging, etc. Averaging Averaging 

Learning Algorithm Gradient Descent and  
Backpropagation 

NA Lifting method and genetic 
algorithm 

Classifier SoftMax Any (e.g., SVM) Any (e.g., SVM) 
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Architecture 
Various architectures, e.g., ResNet [32] 
Alexnet [41], , Recurrent Neural Net-

work [42] etc. 
See Figure 1. See Figure 1. 

2.4. Genetic Algorithm (GA) 
The GA [43] mimics the theory of natural selection. As in the case with evolution, a 

population consists of individuals which reproduce to create the next generation. This 
reproduction involves the combination of genetic material from parents to create an off-
spring. Each subsequent generation will be created by parent individuals by combining 
their genes. The selection of parents (individuals) to combine is based on their fitness, and 
the fitness of an individual is based on the fitness function. A total of 10% of the individ-
uals with the best fitness move on to the next generation. This mechanism is called elitism, 
and the percentage of the elite individuals can be changed. The remaining individuals 
take part in crossover, where the genes of two individuals (parents) are combined to create 
the genes of the individual of the next generation (child). Crossover is carried out until 
the required number of individuals (children) is created in the next generation. Analogous 
to mutation in natural reproduction, random changes are added to the genes of a fraction 
of the children created. This helps to avoid getting stuck in the local minima of the opti-
mization of the fitness function. The process repeats for the new generation and the sub-
sequent generations until the predefined maximum number of generations is reached or 
there is no improvement in the fitness in consecutive generations. 

2.5. Support Vector Machine (SVM) 
An SVM is based on the concept of finding decision planes or hyperplanes that max-

imize the separation between classes. If the classes are not linearly separable, a kernel trick 
is used to map the data into higher dimensions in an effort to separate them. To find the 
support vectors and hence construct an optimal hyperplane, the following optimization 
problem [44] is solved:  

𝑚𝑖𝑛 𝜙(𝑤) = 12 ‖𝑤‖ଶ + 𝐶  𝜉ே
ୀଵ   

𝑠. 𝑡.         𝑦(𝑤்𝜙(𝑥) + 𝑏) ≥ 1 − 𝜉 
(9)

where 𝐶 is the penalty parameter to guard against overfitting, and 𝜉 are the slack vari-
ables introduced to handle inseparable data. The input data consists of 𝑥 and 𝑦, which 
are the independent and the dependent variable (class label), respectively. The kernel 
function 𝜙 transforms the input data 𝑥 into higher dimensions. 

3. Fault Diagnosis Methodology 
The implementation of the diagnostic scheme is depicted in Figure 3. Firstly, a dataset 

of signals when the circuit components are degrading is obtained via simulation or exper-
imentation. This dataset is randomly split into a training dataset [𝑋𝑇𝑟𝑎𝑖𝑛, 𝑌𝑇𝑟𝑎𝑖𝑛] and a 
testing dataset [𝑋𝑇𝑒𝑠𝑡, 𝑌𝑇𝑒𝑠𝑡], where 𝑋𝑇𝑟𝑎𝑖𝑛 and 𝑋𝑡𝑒𝑠𝑡 represent the circuit output sig-
nals in the training and the testing dataset, respectively, and 𝑌𝑇𝑟𝑎𝑖𝑛 and 𝑌𝑇𝑒𝑠𝑡 repre-
sent the corresponding labels (degrading components). A subset of signals (30%), 𝑋𝑇𝑟𝑎𝑖𝑛′, is randomly selected from the entire training dataset to be used with the GA. This 
is done to prevent overfitting to the training dataset and to reduce the time taken for GA 
optimization. The fitness function used is the Davies–Bouldin (DB) index [45], as it con-
siders the ratio of within-class and between-class distances. As a result, the minimization 
of the DB index leads to maximum separation between the classes. The GA is used to 
optimize the Predict and Update operators of the SGWT, such that the DB index is mini-
mized. The genes in each individual in the GA are the coefficients for the P and U opera-
tors that need to be optimized by the GA. The P and U operators are assumed to be of 
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length 8; hence, the number of genes in each individual is 16. Other hyperparameters cho-
sen for the GA include population size: 100, elite count: 10%, crossover fraction: 90%, mu-
tation rate: 5%, and the stopping criterion of the GA is when there is no appreciable im-
provement in the fitness function for 30 consecutive generations. The feature space 
(𝑋𝑇𝑟𝑎𝑖𝑛𝑀𝑜𝑑) created by the LWSN, with the optimized P and U operators, is classified 
using the SVM as the classifier. Since SVM hyperparameter optimization is not the focus 
of this paper, the hyperparameter optimization was carried out using built-in MATLAB 
functions. 

 
Figure 3. Fault diagnosis methodology. 

4. Experiments and Results 
The proposed method was verified using two analog circuits, the Sallen–Key band-

pass filter circuit and the two-switch forward convertor circuit, and two rotating machin-
ery datasets, CWRU bearing faults dataset and UoC gear faults dataset. Fault data for the 
circuits is generated by varying component values around their nominal values within 
SPICE, i.e., if the nominal value of a component is Y, the lower range and the upper range 
of the deviation constituting the parametric fault of the component is [0.25*Y − 0.9*Y] and 
[1.1*Y − 1.75*Y], respectively. When the component value is between 0.9*Y and 1.1*Y, it is 
considered to be within its tolerance range, i.e., a tolerance range of 10%. The training data 
were obtained by conducting 1000 SPICE simulations, where components are varied in 
the aforementioned ranges one at a time, while the other components are held at their 
nominal values. 

4.1. Sallen–Key Bandpass Filter 
The first circuit under test (CUT1) is the Sallen–Key bandpass filter (Figure 4), which 

is the most frequently studied circuit for analog circuit fault diagnosis. Unlike other pa-
pers that only consider the fault diagnosis of four of the seven passive components, we 
considered all seven passive components for fault diagnosis. The parametric fault ranges 
for the seven components considered are shown in Table 2. As can be seen from Table 2, 
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we considered a single class for each component as opposed to other papers in the litera-
ture that consider two classes for each component. The data for each class were split into 
training and testing data sets via a 75%–25% split. The LWSN was trained on the training 
data, and the testing accuracy of the LWSN is reported in Table 3, along with the testing 
accuracy of the original wavelet scattering network and the Gaussian–Bernoulli Deep Be-
lief Network (GB-DBN)-based approach [22], which was used for comparison. This paper 
was used for comparison because it uses a deep-learning-based feature extractor, the 
DBN, along with an SVM for classification. Hence, it is conceptually similar to our paper. 
The confusion matrix for the fault diagnosis of the Sallen–Key bandpass filter using LWSN 
is shown in Table 4. 

 
Figure 4. Sallen–Key bandpass filter. 

Table 2. Nominal values and parametric fault range of Sallen–Key bandpass filter components. 

Fault Class Fault Code Nominal Value Faulty Range 
Healthy F0 NA NA 𝑅ଵ F1 1 kΩ [0.25 k 0.9 k] and [1.1 k 1.75 k] 𝑅ଶ F2 1 kΩ [0.25 k 0.9 k] and [1.1 k 1.75 k] 𝑅ଷ F3 2 kΩ [0.5 k 1.8 k] and [2.2 k 3.5 k] 𝑅ସ F4 2 kΩ [0.5 k 1.8 k] and [2.2 k 3.5 k] 𝑅ହ F5 2 kΩ [0.5 k 1.8 k] and [2.2 k 3.5 k] 𝐶ଵ F6 5 nF [1.25 n 4.50 n] and [5.50 n 8.75 n] 𝐶ଶ F7 5 nF [1.25 n 4.50 n] and [5.50 n 8.75 n] 

Table 3. Fault diagnosis accuracy of LWSN and comparison with other methods. 

Circuit Literature  
(GB-DBN) [22] 

Wavelet Scattering Networks Proposed Method (LWSN) 

CUT1 99.12% 90.01% 99.72% 
CUT2 84.34% 82.45% 92.93% 
CUT2  

(Experimental Validation) NA 81.12% 90.71% 

Table 4. Confusion matrix for LWSN for Sallen–Key bandpass filter. 

Tr
ue

 C
la

ss
 

F0 99.4 0.6       
F1  99.8     0.2  
F2   99.8 0.2     
F3    100     
F4     100    
F5      100   
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F6  1.8     98.2  
F7        100 

 F0 F1 F2 F3 F4 F5 F6 F7 
 Predicted Class 

The Sallen–Key bandpass filter circuit involved seven fault types and one healthy 
class to detect and identify, which correspond to the 14 fault types for methods used in 
the literature. From Table 3, it can be seen that the proposed LWSN method achieved a 
marginal improvement of 0.7% in the fault diagnosis accuracy over comparable methods 
in the literature [18] and a 9% improvement in the fault diagnosis accuracy over a tradi-
tional WSN. As can be seen from the confusion matrix in Table 4, fault type F6, which 
corresponds to capacitor C1, was misdiagnosed most often; however, the diagnosis of 
other fault types was almost perfect. 

4.2. Two-Switch Forward Convertor 
The second circuit under test (CUT2) is the two-switch forward convertor circuit (Fig-

ure 5). A forward converter is a switching power supply circuit that is used for energy 
transfer when the two switches (transistors) are simultaneously turned on. The parametric 
fault ranges for the components considered after sensitivity analysis are shown in Table 
5, along with the values for experimental verification. As can be seen from Table 5, we 
considered a single class for each single fault (single component degradation) as opposed 
to other papers in the literature that consider two classes for each single fault. The ad-
vantage of doing so is that we could consider one class for every double fault (two com-
ponents degrading simultaneously), as can be seen from Fault Codes F14 and F15. If we 
were to consider two classes for each single fault, we would have to consider four classes 
for every double fault. The data for each class were split into training and testing data sets 
via a 75%–25% split. The testing accuracy of the LWSN on both the simulation and exper-
imental data is reported in Table 3, along with the testing accuracy of the original wavelet 
scattering network and the Gaussian–Bernoulli Deep Belief Network (GB-DBN)-based ap-
proach [22], which were used for comparison. The confusion matrix for the fault diagnosis 
of the two-switch forward convertor circuit using LWSN is shown in Table 6. 

 
Figure 5. Two-switch forward convertor circuit. 
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The experimental setup that was used to demonstrate our approach is shown in Fig-
ure 6. The two-switch forward convertor circuit (CUT2) was used with pulse width wave-
forms to trigger the two switches, generated using an Agilent Arbitrary Waveform Gen-
erator 33250A. The circuit components were swapped out with the components with val-
ues shown in the Experimental values column of Table 5. For instance, to mimic the deg-
radation of resistor R1 from its nominal value of 33 Ω, resistors of 10 Ω, 20 Ω, 40 Ω, and 50 
Ω were substituted, and the circuit output was captured at every instance. The circuit 
responses captured at the output using an Agilent Digital Oscilloscope 54853A were clas-
sified using the developed fault diagnosis methodology, and the results are provided in 
Table 3. 

Table 5. Nominal values and parametric fault range of two-switch forward convertor circuit components. 

Fault Class Fault Code Nominal Value Faulty Range Experimental Values 
Healthy F0 NA NA NA 𝑅ଵ F1 33 Ω [8.25 Ω 29.7 Ω] and 

[36.3 Ω 57.75 Ω] 
10 Ω, 20 Ω, 40 Ω, 50 Ω 

𝐶ସ F2 0.1 μF 
[0.025 μF 0.09 μF] 
and [0.11 μF 0.175 

μF] 
0.025 μF, 0.05 μF, 0.12 μF, 0.15 μF 

𝑅 F3 100 Ω [25 Ω 90 Ω] and [110 
Ω 175 Ω] 

30 Ω, 80 Ω, 120 Ω, 170 Ω 𝐿ଷ F4 100 μH [25 μH 90 μH] and 
[110 μH 175 μH] 

30 μH, 75 μH, 156 μH, 170 μH 𝑅ହ F5 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 𝑅 F6 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 𝑅 F7 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 𝑅଼ F8 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 𝑅ଵ F9 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 𝑅ଵଵ F10 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 𝑅ଵଶ F11 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 𝑅ଵଷ F12 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 𝑅ଵ F13 0 Ω [0.1 Ω 10 Ω] 2 Ω, 4 Ω, 6 Ω, 8 Ω 

𝑅 ∗ 𝐶ସ F14 100 Ω ∗ 10 μF 

([25 Ω 90 Ω] and [110 
Ω 175 Ω]) ∗ ([0.025 
μF 0.09 μF] and [0.11 

μF 0.175 μF]) 

(30 Ω 0.025 μF), (30 Ω 0.175 μF), 
(170 Ω 0.025 μF), (170 Ω 0.175 μF) 

𝑅ଵ ∗ 𝑅ଶ F15 33 Ω ∗ 33 Ω 

([8.25 Ω 29.7 Ω] and 
[36.3 Ω 57.75 Ω]) ∗ (10 Ω, 20 Ω), (10 Ω, 40 Ω), (30 Ω, 

10 Ω), (50 Ω, 50 Ω), ([8.25 Ω 29.7 Ω] and 
[36.3 Ω 57.75 Ω]) 𝑅ଶ F16 33 Ω 

[8.25 Ω 29.7 Ω] and 
[36.3 Ω 57.75 Ω] 10 Ω, 20 Ω, 40 Ω, 50 Ω 

Table 6. Confusion matrix for LWSN for two-switch forward convertor circuit. 

Tr
ue

 C
la

ss
 F0 91.7     0.7  3.5    0.5 3.5     

F1  94.4 0.2             5.3  
F2  0.5 89.9        9.6       
F3 0.8   78.4 3.8 0.8 1.3  14.0    0.8 0.3    
F4 0.5 0.3  1.6 89.7 0.3 5.7  0.5    0.8 0.8    
F5 0.3   0.3  98.2  0.5     0.5 0.3    
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F6 0.5   1.2 3.9 1.2 92.0  0.2 0.2   0.5 0.2    
F7 3.1       94.8 0.3    1.3 0.5    
F8 0.2   14.4 2.0  0.5 0.7 81.9     0.2    
F9  0.3      0.3  99.2    0.3    

F10   9.9        88.3     1.8  
F11 1.0   0.3 0.3 0.8      97.1 0.3    0.3 
F12 4.2 0.2   1.0 1.7 0.2 1.0     90.3 1.2    
F13 0.5    0.5   0.2   0.2  0.2 98.3    
F14               100   
F15  4.1         0.7     94.9 0.3 
F16  4.7    2.3 2.3     2.3  4.7   83.7 

 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 
 Predicted Class 

 
Figure 6. Experimental setup for demonstrating the developed approach. 

The sixteen fault types and one healthy class considered for the two-switch forward 
convertor correspond to 28 fault types for methods in the literature, and this is a much 
more challenging fault diagnosis problem compared to CUT1. From Table 3, it can be seen 
that the proposed LWSN method achieved a significant improvement of 8.9% in the fault 
diagnosis accuracy over the comparable method in the literature [22] and a 10.9% im-
provement in the fault diagnosis accuracy over the traditional WSN. As can be seen from 
the confusion matrix in Table 6, fault type F3, which corresponds to resistor RL, was mis-
diagnosed as fault type F8 (resistor R8). Other notable misclassifications include the single 
fault F1 (resistor R1) and the double fault F15 (resistor R1 and R2). This highlights the 
complexity of analog circuit fault diagnosis. However, the developed LWSN method 
stands out in terms of fault diagnosis performance in comparison to existing methods. 

4.3. Bearing Fault Diagnosis 
In rotating machinery applications, rolling bearing faults are the most common, lead-

ing to the performance deterioration of machinery. Hence, bearing fault diagnosis plays a 
vital role in the health management of machinery [46]. To test the effectiveness of the 
method across different domains of fault diagnosis, the developed method was tested on 
a bearing faults benchmark dataset. The Case Western Reserve University (CWRU) motor 
bearing dataset was generated using a test rig consisting of a 2 hp Reliance Electric motor, 
a torque transducer/encoder, a dynamometer, and drive-end and fan-end Svenska Kul-
lager-Fabriken deep-groove ball bearings. Inner ring, outer ring, and rolling element de-
fects were manufactured into the bearings. The motor was run at a near-constant speed 
(1720–1797 r/min) with different loads (0–3 hp) provided by the dynamometer. Vibration 
data were collected using accelerometers, which were vertically attached to the housing 
with magnetic bases. Sampling frequencies were 12 kHz for some of the tests and 48 kHz 
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for the others. Further details can be found at the CWRU Bearing Data Center website 
[47]. As shown in Table 7, one healthy bearing and three fault modes, including the inner 
ring fault, the rolling element fault, and the outer ring fault, were classified into ten cate-
gories (one health state and nine fault states) according to different fault sizes. A plot of 
the data can be seen in Figure 7. The data were resampled such that the entire dataset had 
a constant sampling rate, and then, the data were split into chunks with sizes of 1024. The 
dataset was then split into training and testing datasets in the ratio of 75%:25% using strat-
ified sampling. The LWSN achieved 99.2% accuracy for the testing dataset, which is com-
parable to the state-of-the-art methods [48]. The confusion matrix is shown in Table 8. 

Table 7. CWRU faults. 

Fault Mode Description 
Health State the normal bearing at 1791 rpm and 0 HP 
Inner ring 1 0.007-inch inner ring fault at 1797 rpm and 0 HP 
Inner ring 2 0.014-inch inner ring fault at 1797 rpm and 0 HP 
Inner ring 3 0.021-inch inner ring fault at 1797 rpm and 0 HP 

Rolling Element 1 0.007-inch rolling element fault at 1797 rpm and 0 HP 
Rolling Element 2 0.014-inch rolling element fault at 1797 rpm and 0 HP 
Rolling Element 3 0.021-inch rolling element fault at 1797 rpm and 0 HP 

Outer ring 1 0.007-inch outer ring fault at 1797 rpm and 0 HP 
Outer ring 2 0.014-inch outer ring fault at 1797 rpm and 0 HP 
Outer ring 3 0.021-inch outer ring fault at 1797 rpm and 0 HP 

 
Figure 7. Vibration signals of the different faults in the CWRU dataset. 

Table 8. Confusion matrix for LWSN for the CWRU dataset. 

Tr
ue

 C
la

ss
 

Healthy 100.0          
Inner  
Ring 1  100.0         

Inner  
Ring 2   96.7 3.3       

Inner  
Ring 3    100.0       
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Rolling 
Element 1     100.0      

Rolling 
Element 2      100.0     

Rolling 
Element 3       100.0    

Outer Ring 
1        100.0   

Outer Ring 
2 4.0        96.0  

Outer Ring 
3          100.0 

 Healthy 
Inner 
Ring 1 

Inner 
Ring 2 

Inner 
Ring 3 

Rolling 
Element 1 

Rolling 
Element 2 

Rolling 
Element 3 

Outer 
Ring 1 

Outer 
Ring 2 

Outer 
Ring 3 

 Predicted Class  

The CWRU bearing dataset involves nine fault classes and one healthy class. As can 
be seen from the confusion matrix in Table 8, for the bearing fault diagnosis, fault types 
F3 and F9 were misdiagnosed most often; however, the diagnosis of other fault types was 
perfect.  

4.4. Gear Fault Diagnosis 
The second rotating machinery fault diagnosis dataset considered was the University 

of Connecticut (UoC) gear fault dataset [49]. The CWRU dataset and the UoC dataset were 
ranked the simplest and the most difficult benchmark dataset, respectively [48], for rotat-
ing machinery fault diagnosis. The average RMS and the average power of the signals in 
the CWRU and the UoC dataset were 0.27, −9.36 dB and 0.07, −21.91 dB, respectively. Pre-
processing methods such as stochastic resonance [50] can be used to enhance weak fault 
characteristics in datasets such as UoC; however, in this paper, the LWSN method was 
applied directly to the raw vibration data. 

In the UoC dataset, nine different gear conditions were introduced to the pinions on 
the input shaft, including healthy condition, root crack, missing tooth, spalling, and chip-
ping tip with five different levels of severity. All the collected datasets were used and 
classified into nine categories (one health state and eight fault states missing, crack, spall, 
chip5a, chip4a, chip3a, chip2a, and chip1a) to test the performance. The data were 
resampled such that the entire dataset had a constant sampling rate, and then, the data 
were split into chunks with sizes of 1024. The dataset was then split into training and 
testing datasets in the ratio 75%:25% using stratified sampling. The LWSN achieved 
96.51% accuracy for the testing dataset, and the confusion matrix is shown in Table 9. Our 
result is marginally better, as the best result reported in [48] was 96.19%. Since the UoC 
dataset had 3600 samples per fault class and there were nine fault classes, the developed 
method is able to process the big data of rotating machinery. 

Table 9. Confusion matrix for LWSN for the UoC dataset. 

Tr
ue

 C
la

ss
 

Healthy 99.0 0.1 0.1 0.1 0.1 0.1 0.3   
Missing 
Tooth 0.3 98.6 0.3 0.3   0.3 0.1 0.1 

Root 
Crack 0.7 1.3 91.6 1.1 1.4 0.9 0.9 1.3 0.9 

Spalling 0.3   98.2 0.1 0.8  0.3 0.3 
Chipping 

Tip 1a 1.0 0.3 0.4 0.4 95.5 0.6 0.7 0.4 0.7 
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Chipping 
Tip 2a 0.4 0.3 0.1  0.6 98.2  0.1 0.3 

Chipping 
Tip 3a 0.1  0.1 0.1 0.1 0.1 99.0 0.1 0.1 

Chipping 
Tip 4a 0.1  0.3 0.6 0.1 0.1 0.3 98.2 0.3 

Chipping 
Tip 5a 0.1      0.1 0.1 99.5 

 Healthy 
Missing 
Tooth 

Root 
Crack Spalling 

Chipping 
Tip 1a 

Chipping 
Tip 2a 

Chipping 
Tip 3a 

Chipping 
Tip 4a 

Chipping 
Tip 5a 

 Predicted Class 

4.5. Transfer Learning 
In recent years, transfer learning has been gaining importance, as it enables 

knowledge acquired through training on data to be transferred from a source domain to 
gain insight in the target domain. This importance rises from the fact that it is very chal-
lenging to collect data from all possible conditions that machinery may encounter. Um-
dale et al. [51] created different datasets by dividing the original CWRU dataset based on 
speed and load, as can be seen in Table 10. For instance, in dataset D1, the goal was to 
determine if training on lower speeds in the source data set would still enable us to 
achieve acceptable fault diagnosis on a dataset with higher rotational speeds, as can be 
seen from the target dataset of D1. In dataset D2, the opposite was true—the goal was to 
determine if datasets with higher speeds would have vital information for fault diagnosis 
at lower speeds, whereas mixtures of speeds were considered in datasets D3 and D4. The 
maximum training and testing accuracies reported by [51] are shown in Table 10, where 
testing accuracies are an indication of the effectiveness of transfer learning. As can be seen 
from Table 10, the developed LWSN is more effective for transfer learning across all four 
datasets. Exploratory work suggests that LWSN can perform at least as well as deep learn-
ing networks at transfer learning, but further work needs to be undertaken to determine 
if there is a fundamental improvement. 

Table 10. Comparison of transfer learning accuracies across different datasets. 

Dataset Source Dataset Target Dataset 
Training 

Accuracy [51] 
Testing 

Accuracy [51] 

Training 
Accuracy 
(LWSN) 

Testing 
Accuracy 
(LWSN) 

D1 
1730 RPM and 3 

HP 1750 RPM 
and 2 HP 

1772 RPM and 1 
HP 1797 RPM 

and 0 HP 
97.22 97.02 100 99.96 

D2 
1772 RPM and 1 

HP 1797 RPM 
and 0 HP 

1730 RPM and 3 
HP 1750 RPM 

and 2 HP 
94.17 92.88 100 99.87 

D3 
1730 RPM and 3 

HP 1797 RPM 
and 0 HP 

1750 RPM and 2 
HP 1772 RPM 

and 1 HP 
96.92 95.77 100 99.39 

D4 
1750 RPM and 2 

HP 1772 RPM 
and 1 HP 

1730 RPM and 3 
HP 1797 RPM 

and 0 HP 
95.77 94.48 100 99.93 

These results imply that the LWSN network can extract discriminative information 
from raw data effectively and achieve fault classification with high accuracy, irrespective 
of the complexity and domain of the dataset.  
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5. Conclusions 
Traditional fault diagnosis methods involve the extraction of fixed representations in 

the time domain, frequency domain, or time–frequency domain. These methods require 
technical expertise for designing appropriate features from the fixed representations. In 
this paper, a new feature extraction technique based on learnable wavelet scattering net-
works was developed to diagnose faults primarily in analog circuits and rotating machin-
ery. By learning a time–frequency representation from the data, the developed method 
has a better ability to extract essential features of the fault signals. This results in better 
fault diagnosis accuracy, by almost 9%, compared to the state-of-the-art fault diagnosis 
method in the literature. By considering more classes for fault diagnosis than any other 
paper in the literature, a more thorough fault diagnosis was demonstrated. The fault di-
agnosis performance of this method was verified by experiments on the two-switch for-
ward convertor circuit. The experiments indicated that the fault diagnosis model trained 
on simulation data is able to effectively diagnose faults from the actual circuit. Analog 
circuits and gears/bearings are the predominant sources of faults in electronic systems and 
rotary mechanical systems, respectively. The developed fault diagnosis approach was ap-
plied to the CWRU bearing faults and the UoC gear faults benchmark datasets and 
achieved fault diagnosis accuracy that is comparable to state-of-the-art methods. Since the 
UoC gear faults benchmark dataset is considered the most challenging benchmark dataset 
in rotating machinery fault diagnosis, this speaks to the ability of the developed method 
to extract weak fault signatures. Hence, the generalizability of the developed fault diag-
nosis approach across the most common industrial fault diagnosis domains was demon-
strated. Initial experiments indicated that the developed approach is also effective in 
transfer learning; however, further experiments need to be carried out to confirm these 
observations. 

The incorporation of learnability in traditional wavelet scattering networks resulted 
in a 10% improvement in fault diagnosis accuracy. As opposed to deep learning networks, 
the developed learnable wavelet scattering networks do not require an extensive trial-
and-error process to optimize their structure. Additionally, the developed learnable wave-
let scattering networks learn wavelet filters as opposed to the random filters learnt in deep 
learning networks. Hence, the filters learnt by learnable wavelet scattering networks are 
interpretable, which enables wavelets to be used to gain further insight into circuit faults. 
The interpretability of the wavelets learnt by the learnable wavelet scattering networks 
and digital circuit fault diagnosis are possible avenues for future research. 
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