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Abstract: Person re-identification (ReID) plays a crucial role in video surveillance with the aim
to search a specific person across disjoint cameras, and it has progressed notably in recent years.
However, visible cameras may not be able to record enough information about the pedestrian’s
appearance under the condition of low illumination. On the contrary, thermal infrared images can
significantly mitigate this issue. To this end, combining visible images with infrared images is a
natural trend, and are considerably heterogeneous modalities. Some attempts have recently been
contributed to visible-infrared person re-identification (VI-ReID). This paper provides a complete
overview of current VI-ReID approaches that employ deep learning algorithms. To align with the
practical application scenarios, we first propose a new testing setting and systematically evaluate
state-of-the-art methods based on our new setting. Then, we compare ReID with VI-ReID in three
aspects, including data composition, challenges, and performance. According to the summary of
previous work, we classify the existing methods into two categories. Additionally, we elaborate on
frequently used datasets and metrics for performance evaluation. We give insights on the historical
development and conclude the limitations of off-the-shelf methods. We finally discuss the future
directions of VI-ReID that the community should further address.

Keywords: visible-infrared person re-identification; non-generative-based model; generative-based
model; literature survey

1. Introduction

Person re-identification (ReID) is a fundamental building block in various tasks of
computer vision, such as intelligent surveillance, video analysis [1], and criminal investiga-
tion [2]. With the advancement of intelligent monitoring and the enormous expansion of
video data in recent years, conventional human power has been challenging and insufficient
to deal with intricate surveillance scenarios. ReID aims at searching for a given individual
across disjoint cameras. Numerous algorithms designed for ReID have been proposed
with impressive results on some publicly available datasets, e.g., 98.1% and 94.5% Rank-1
accuracy on Market-1501 [3] and DukeMTMC-ReID [4] datasets, respectively [5]. However,
the images captured by visible cameras may be unavailable in a dark environment. In such
a case, infrared imaging equipment, which does not rely on visible light, should be applied.
In 2017, Wu et al. [6] first introduced visible-infrared person re-identification (VI-ReID) and
proposed a dataset named SYSU-MM01.

As shown in Figure 1a, for a certain pedestrian, the images of the corresponding
identity (ID) should be matched from the other modality set. In addition to the common
challenges, e.g., low-resolution, viewpoint change, pose variation, and occlusion, VI-ReID is
an effortful problem that encounters additional modality discrepancy due to the significant

Electronics 2022, 11, 454. https://doi.org/10.3390/electronics11030454 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11030454
https://doi.org/10.3390/electronics11030454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5242-0467
https://orcid.org/0000-0001-8683-7327
https://orcid.org/0000-0002-4055-7503
https://orcid.org/0000-0002-4417-6628
https://orcid.org/0000-0003-3846-9157
https://doi.org/10.3390/electronics11030454
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11030454?type=check_update&version=1


Electronics 2022, 11, 454 2 of 18

differences between the two modalities. The two modalities can be considered heteroge-
neous data, as visible images contain three rich color information channels. In contrast,
infrared images only include one channel with near-infrared light intensity information.
Additionally, from the aspect of the imaging principle, the two modalities have differences
in terms of the wavelength range. Moreover, the datasets are relatively single and small in
scale. Some works expanded the VI-ReID datasets, but these datasets cannot be disclosed
because of privacy issues.

(b) Illustration of new setting

Query Gallery

Search

Query Gallery

(a) Illustration of existing setting

Search

Search

Figure 1. Comparison of two testing settings. Images with the same color of bounding boxes denote
the same person identity. (a) The query and gallery only contain images from single modality.
(b) Both the query and gallery contain images from two modalities.

To improve the practical application ability of VI-ReID, researchers previously achieved
remarkable progress on VI-ReID. We divide existing methods into two categories—non-
generative-based and generative-based—which were proposed in [7]. As shown in Fig-
ure 2a, the non-generative-based model mainly utilizes conventional methods, including
feature representation learning and distance metric learning, to maximize the similarity be-
tween two images with the same ID and minimize the similarity between two images with
different IDs [8–10]. In contrast, Figure 2b shows a generative-based model that unifies the
modality on the data level, bridging the gap between two heterogeneous modalities [11,12].

Shared
Weights

Identity Loss

Identity Loss

Loss

Unify
Modality
Module

ℒ

(a) Non-generative-based Model (b) Generative-based Model

Figure 2. Illustration of two different pipelines of VI-ReID.

To the best of our knowledge, almost all VI-ReID systems evaluated their performance
based on the setting as shown in Figure 1a. However, this may not be in line with the
actual scene. Taking the visible image V as an example, it may be more similar with
some negative visible samples than positive infrared samples. The existing testing setting
removes all visible images in the gallery to avoid this challenge. In this paper, we propose
a novel testing setting that is closer to the practical scene. As shown in Figure 1b, instead of
containing images from only one modality in query and gallery, we simultaneously put
visible and infrared images into the query and gallery. This setting makes VI-ReID more
challenging. Existing works created various two-stream architectures to learn modality-
specific information in order to alleviate the cross-modality discrepancy. However, this
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kind of two-stream network may not extract effective features of visible and infrared images
simultaneously in our new setting. Considering the realistic value of this setting, we believe
that researchers should pay more attention to it.

In recent years, many excellent review papers have appeared in ReID. For exam-
ple, Wang et al. [13] considered four different cross-modality application scenarios: low-
resolution, infrared, sketch, text and then analyzed typical approaches. Ye et al. [8] catego-
rized related works into closed-world ReID and open-world ReID, and proposed a strong
baseline named AGW. Leng et al. [14] sorted out the papers in open-world ReID based
on specific application scenarios. Inspired by them, we conduct a thorough overview for
VI-ReID.

Our contributions are threefold:

• We propose a new testing setting which is closer to practical application scenar-
ios and conduct preliminary experiments to verify the significant challenges of the
new setting.

• We compare VI-ReID with ReID in detail and provide a thorough review of VI-ReID
techniques, including datasets and performance metrics.

• We conclude the necessary components of networks and discuss possible future
directions of VI-ReID.

2. Visible-Infrared Person Re-Identification
2.1. ReID vs. VI-ReID

Generally, there is just visible modality in ReID, while VI-ReID contains two modalities:
visible and infrared. As all know, visible images have three channels containing rich color
information, while infrared images contain intensity information with the red channel
only. As shown in Figure 3, there is a noticeable modality gap between visible and infrared
images [11]. As the inter-modality discrepancy is substantially greater than the intra-
modality discrepancy, bridging the modality gap between the two heterogeneous modalities
is a major aspect of VI-ReID research.

Figure 3. Comparison of visible three-channel brightness-gradient histograms of visible-infrared
image pairs with the same ID on RegDB dataset.

For ReID, it only faces challenges of intra-modality, e.g., people’s appearance change,
viewpoint change, and occlusion. In contrast, VI-ReID confronts not only the difficulties that
appear in ReID, but also the cross-modality discrepancy. The networks designed for ReID
are not suitable for VI-ReID since the solutions to intra- and inter-modality discrepancies
are completely different.

To our knowledge, the performance gap between VI-ReID and ReID is also large.
Ref. [15], for example, achieved 95.7% rank-1 on Market-1501, while the rank-1 of [10] just
reached 70.58% on the SYSU-MM01 dataset. The performance of VI-ReID is far lower than
that of ReID. However, the VI-ReID is more valuable in practical application scenarios, and
we should pay more attention to it.
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2.2. A New Testing Setting

In a VI-ReID dataset, V = {Xi
v}Nv

i=1 and T = {Xi
t}

Nt
i=1 represent the visible and infrared

images, respectively, where Nv and Nt denote the number of samples in a single modality,
respectively. Every image has a corresponding ID label y ∈ {Yi}

Np
i=1, where Np denotes the

number of IDs. Given a certain image as the query, the purpose of VI-ReID is to match
images with the same label from the other modality according to the similarity.

However, this setting is not in line with practical scenarios. Just imagine that, given an
image of a criminal who has been escaped for several days, we have to search for him via
cross visible and infrared cameras. The off-the-shelf methods may not be useful in such
a case. Instead of containing images from only one modality, as shown in Figure 1b, we
set the probe P = Vp ∪ Tp and gallery G = Vg ∪ Tg to simultaneously contain visible and
infrared images, where ∪ denotes union. Vp, Vg, and Tp, Tg are the mutually exclusive
subsets of V and T, respectively. When researchers evaluate methods with our new setting,
the images with the same ID and modality as the probe cannot appear in the gallery to avoid
the impact of ReID in the same modality. When training with this setting, the mainstream
dual-branch network structure may not extract effective features because of the effect of
mixed modalities. The P and G first generate features Fp = {Fp

i }
N
i=1 and Fg = {Fg

i }
N
i=1

through the feature extraction module, and then they are matched by the feature matching
module.

3. VI-ReID Methods

According to our investigation, there are no other types of articles published on
mainstream conferences or journals except those that are deep-learning-based. Hence, only
deep-learning-based approaches are included in this review. For the non-generative-based
model, we subdivide the model into feature learning, metric learning, and training strategy.
For the generative-based model, we subdivide the model into modality translation and
extra modality. Besides, we introduce some methods using other technologies. We also
summarize some algorithms intended for general ReID or other domains that perform well
in VI-ReID. Some methods may be appropriate for multiple categories; however, we will
take them to the most suitable position.

3.1. Milestones of Existing VI-ReID Studies

VI-ReID has achieved significant progress in a variety of areas thanks to the unwaver-
ing efforts of artificial intelligence researchers. We introduce these crucial milestones for
VI-ReID following a timeline and present them in Figure 4. Note that the main basis of
a paper selected as a milestone is its citations. We select the paper with highest citations
among all papers in a category after dividing the papers into different categories.

Deep Zero-Padding
[Wu et al.]

Dual-Constrained 
Top-Ranking

[Ye et al.]

Fake IR Image
[Kniaz et al.]

Unify Image Domain
[Wang et al.]

Hypersphere Manifold
Embedding

[Hao et al.]

Colorization
[Zhong et al.]

Nuances Discovery
[Wu et al.]

A Strong Baseline
[Ye et al.]

Introduce Third
Modality

[Li et al.]

2017

2018

2019

2020

2021

Figure 4. Milestones of existing methods of VI-ReID. Since the problem was proposed, researchers
have proposed various methods to bridge the modality discrepancy. Note that the top row and
bottom row denote a generative-based model and non-generative-based model, respectively.
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3.2. Non-Generative-Based Model
3.2.1. Feature Representation Learning

It aims to extract robust and discriminative features to help the VI-ReID system
correctly classify images into different fine-grained classes. We review three kinds of
feature representation learning strategies.

Global Feature Representation Learning. As far as we know, most existing methods
focus on extracting global features. An illustration is shown in Figure 5a. To obtain modality
specific information, Feng et al. [16] established two individual branches for visible and
infrared images, respectively. In [17], the authors thought only learning shared features
means a massive loss of information, which reduces the difference of features. Therefore,
they proposed a cross-modality shared-specific feature transfer algorithm. Ye et al. [18]
pointed out that the consistency at the feature and classifier levels is essential when dealing
with modality differences. To learn discriminative representations in each modality, Wei
et al. [19] developed an attention-lifting mechanism. Wang et al. [20] excavated spatial
and channel information of images to reduce the discrepancy between two heterogeneous
modalities.

(b) Local Feature(a) Global Feature

Two-Stream
Network

Two-Stream
Network

Figure 5. Two alternative ways for learning feature representations. (a) Global feature, learning
modality specific and -shared feature representations. (b) Local feature, learning part-aggregated
local feature.

In addition, some works extract ID-invariant features by disentanglement to boost
the performance. To achieve more robust retrieval for VI-ReID, Pu et al. [21] disentangled
an ID-discriminable and an ID-ambiguous cross-modality feature subspace, respectively.
In [22], the authors thought existing methods do not explicitly ignore spectrum information
that is not related to VI-ReID. As a result, they disentangled the spectrum information in
order to maximize invariant ID information while minimizing the influence of spectrum
information. Zhao et al. [23] learned color-irrelevant features through color-irrelevant con-
sistency learning and aligned the ID-level feature distributions by the ID-aware modality
adaptation. Hao et al. [24] confused two modalities to learn modality irrelevant representa-
tion. In [10], the authors extracted modality irrelevant features by channel attention-guided
instance normalization (IN).

Local Feature Representation Learning. As shown in Figure 5b, compared to the
global feature, the local feature is more focused on the differences in details. Lin et al.
proposed an attribute–person recognition network to make full use of the information
contained in attributes [25]. Hao et al. [26] replaced global features with part-level features
so that fine-grained camera-invariant information can be extracted. In [27], the authors
proposed an adaptive body partition model for automatically detecting and distinguish-
ing effective component representations. Liu et al. [28] presented a network that jointly
learns global and local features to cope with viewpoint change and pose variation. Ye
et al. [29] excavated contextual cues at the intra-modality components and cross-modality
graph levels. Wang et al. [30] utilized global features and partial features to realize the
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complement of global information and detailed information. To select useful features, Wei
et al. [31] designed a flexible body partition module to distinguish part representations
automatically. Zhang et al. concatenated the global feature and local feature to create
a more powerful feature descriptor [32]. In [33], aiming to eliminate the interference of
background information, the authors exploited the knowledge of human body parts to
extract robust features. Wu et al. [10] utilized pattern alignment to discover nuances in
different patterns. Zhang et al. [34] also made an attempt to discover semantic differences
between contrastive features by cross correlation.

Auxiliary Feature Representation Learning. Ye et al. [35] exploited auxiliary informa-
tion, including the distribution of cross-modality features and contextual information, to
bridge the gap between heterogeneous modalities. In [36], the authors designed camera-
based batch normalization (BN) to guarantee an invariant input distribution independent
of all cameras.

3.2.2. Metric Learning

The purpose of metric learning is to guide feature representation learning. We will go
through some prevalent loss functions and training strategies.

Loss Function Design. Generally, researchers design different loss functions to solve
targeted problems based on the observed phenomenon. A large cross-modal discrepancy
and intra-modal variations generated by varied camera angles, human postures, etc., impact
the VI-ReID. As shown in Figure 6a, the function of identity loss is to classify a sample
into a correct class in the training phase, which is widely used. For contrastive loss, as
shown in Figure 6b, it mainly constrains the training of Siamese networks. For instance, Ye
et al. [37] proposed a hierarchical cross-modal matching model, which jointly optimized the
modality shared and -specific matrix, aiming at the problem of perspective changing when
different cameras record a person. To minimize the difference between same modality
and cross similarities, Wu et al. [38] guided the learning of cross-modality similarity by
same-modality similarity.

anchor

negative

positive

anchor

negative

positive

(c) Triplet Loss

anchor

negative 1

positive

anchor

negative 1

positive

(d) Quadruplet Loss

negative 2

negative 2

(b) Contrastive Loss

positive pair

positive pair

CNN

“Jenny”

(a) Identity Loss

CNN

Figure 6. Four widely used loss functions. Different shapes denote different IDs, while the different
color represents different modality. (a) Identity loss, (b) contrastive loss, (c) triplet loss, (d) quadruplet
loss. Many works employ their combinations.

Figure 6c shows the triplet loss, which is contributed to pull the distance between
positive sample pairs and push the distance between negative sample pairs. The samples
with the same ID form clusters in feature space. The approach constrains the features by a
set of triplets to obtain high performance [39]. Wang et al. [40] proposed an improved triplet
loss to realize matching a video by an image. Ye et al. [9] proposed a bi-directional dual-
constrained top-ranking loss to guide the feature learning objectives. Then, they improved
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this work by replacing the similarity between two samples with similarity between sample
and center [41]. To alleviate the strict constraint of classical triplet loss, Liu et al. [2]
proposed an improved triplet loss with the mode of center to center instead of instance to
instance. Zhang et al. mitigated the modality discrepancy by mapping the heterogeneous
representations into a common space [42]. To learn an angularly separable common feature
space, Ye et al. [1] constrained the angles between feature vectors. Cai et al. [43] proposed
a dual-modality hard mining triplet-center loss (DTCL) which can reduce computational
cost and mine hard triplet samples. In order to eliminate the effect of inconsistent feature
distribution in different modalities, Zhang et al. [44] mapped the feature space to angular
space and proposed several loss functions to conduct specific angular metric learning.

Figure 6d shows quadruplet loss, which is an improved version of triplet loss. It adds
relative distance between the samples with different IDs. In [45], current approaches, ac-
cording to the authors, primarily combine classification and metric learning to train models
in order to generate discriminative and robust representations. However, these methods
ignore the relationship between the classification and feature embedding subspaces. The
authors presented a hyperspherical manifold-embedded network with classification and
recognition constraints based on this information. Jia et al. [46] utilized the similarity
transitivity to tackle the problem of mismatching hard positive samples.

Training Strategy. To incorporate different loss functions into an organic whole, re-
searchers have proposed different training strategies. Dai et al. [47] proposed a generative
adversarial training strategy to deal with the lack of discriminative information. Ye et al. [48]
observed that existing VI-ReID learning strategies ignore the discriminative information
of different modalities. Therefore, they presented a modality aware collaborative learn-
ing strategy to deal with the gap between two modalities in both the feature level and
classifier level. Zhang et al. [49] proposed a mutual learning module that provides a bi-
directional transfer between two modalities, aiming at excavating useful information from
them. Ling et al. [50] thought most existing methods constrain the similarity of the instance
or class level, which is inadequate to make full use of the hidden relationships in cross-
modality data. Hence, they proposed multi-constraint similarity learning from instance to
instance, instance to class center, and class center to class center. Gao et al. [51] proposed a
learning strategy for joint optimization of a single modality and unified modality spaces.

3.3. Generative-Based Model

The generative-based model mainly utilizes generative adversarial network (GAN)
or encoder–decoder module to realize the mutual translation between the two modalities.
Then, the methods of ReID are used to constrain the appearance of discrepancy.

3.3.1. Modality Translation

In recent years, GAN-based modality translation has gradually become popular. As
shown in Figure 7a, modality translation includes infrared to visible and visible to infrared.
In contrast, some works disentangled ID-discriminative and ID-excluding factors, and then
generated image pairs to extract highly discriminative features.

For infrared to visible, this kind of method can be regarded as image colorization that
has been extensively used in various fields [52]. To our knowledge, there is little work in the
literature using colorization. Zhong et al. [53] bridged the gap between the two modalities
by fusing the features of original infrared images and generated fake visible images. After
that, Zhong et al. [11] improved the performance by pixel-wise transformation, which can
retain original structure information.

For visible to infrared, Kniaz et al. [54] matched the fake infrared images generated
by GAN with the gallery images to mitigate the modality discrepancy. Wang et al. added
a pixel alignment module based on feature alignment module [47] to further reduce the
gap between the two modalities [12]. However, Liu et al. [55] thought that those methods
employing GAN to generate fake images destroy the structure information of generated
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images and introduce plenty of noise. Hence, they replaced fake images generated by GAN
with grayscale images with three channels.

Infrared2Visible

Visible2Infrared

(a) Single-Translation (b) Dual-Translation

Encoder- Decoder
Visible-Infrared
Paired-Images

Images

Figure 7. Three kinds of widely used methods in the literature. (a) Infrared to visible [11,53] and
visible to infrared [12,54]; (b) more works generate visible-infrared image pairs, employing their
combination [56–60].

For dual translation, as shown in Figure 7b, it encodes the visible and infrared modal-
ities into a consistent space to eliminate the effect of modality style. It then generates
fake cross-modality image pairs with the same ID. In 2019, Wang et al. [56] first generated
visible-infrared image pairs by disentanglement and mapped them into a unified space.
Analogous to [56], the idea of disentanglement is also indicated in [57–60]. Among them,
Choi et al. [57] encoded the prototype and the attribute separately to generate fake images
containing invariant features. Meanwhile, [58,59] acquired visible-infrared image pairs by
feature disentanglement and [60] added unseen IDs to generate discriminative features
based on [58]. In [61], the network extracted appearance invariant features by generating
corresponding fake images.

3.3.2. Extra Modal

Aside from modality translation, some works alleviated the modality discrepancy
by introducing an additional third modality. In 2020, Li et al. [62] first introduced an “X”
modality as the middle modality to eliminate the cross-modality discrepancy. Subsequently,
Huang et al. [63] learned the shared features of images from both modalities to guide the
generation of extra images. Ye et al. [64] bridged the gap between the two modalities by
generating 3-channel grayscale images. Miao et al. [65] introduced two novel relevant
modalities to investigate modality invariant representations. In [66], the authors reduced
the cross-modality discrepancy by fusing the two modalities. Wei et al. [67] combined
information from visible and infrared images to generate syncretic modality, which can
help the network extract modality invariant representations. Zhang et al. [68] projected
the images from both modalities into a consolidated subspace to mitigate the modality
discrepancy.

3.4. Other Methods

Besides the aforementioned methods, some works also alleviated the impact of a large
modality discrepancy by introducing some other technologies. Almost all existing works
bridge the gap between the two modalities by manually designing feature extraction mod-
ules. Such a manually designed routine usually requires plenty of domain knowledge and
practical experience. Therefore, Fu et al. [69] and Chen et al. [70] proposed a cross-modality
neural architecture search method and a neural feature search method, respectively, to au-
tomatically realize the process of feature extraction. Inspired by the information bottleneck
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(IB), Tian et al. [71] designed a new strategy that can preserve sufficient label information
while simultaneously getting rid of task-irrelevant details. Liang et al. [72] thought that the
high cost of labeling person IDs in datasets greatly limits the development of supervised
models. Hence, they proposed an unsupervised homogeneous–heterogeneous approach
for the unsupervised visible-infrared problem. In [73], the authors used distance metrics
instead of a fully connected layer to learn discriminative features. Ye et al. [74] decomposed
three channels of visible images and excavated the relationship between each individual
channel and infrared image.

In addition, as the tasks of ReID and VI-ReID are identical on the whole, some networks
designed for ReID or other similar tasks are also valid on VI-ReID. For instance, Ye et al. [8]
proposed a strong baseline for ReID, as it also shows excellent performance on VI-ReID. Jin
et al. [75] combined the information removed by IN to achieve high performance. Methods
aiming at solving problems of further related domains can also be applied to VI-ReID.
For example, Yang et al. [76] proposed an unsupervised graph alignment method that
aligns both data representations and distribution structures across the source and target
domains, aiming at general cross-domain visual feature representations. The method [77]
mitigates the negative effects of noise similarities in cross-modality retrieval by intra-
modality distributions. These methods perform excellently on the corresponding tasks;
therefore, we can learn from their ideas.

3.5. Summary

From the perspective of method categories, we make the following summaries:

• Different methods have different strengths. Non-generative-based model are dedi-
cated to mitigating the modality gap on the feature-level (e.g., [9]), while generative-
based models pay more attention to the pixel level (e.g., [11]). Compared to non-
generative-based model, there is either an information loss or introducing noise in
unifying the modality. However, a generative-based model can avoid the impact of
color information. A more detailed summary about mainstream works is shown in
Table 1.

• Combining with other techniques is a growing trend. To acquire more discrimina-
tive features, some researchers combined this task with some universal techniques
(e.g., [70]), and there are also methods (e.g., [71]) that treat this issue from a fresh
perspective.

• The existing setting is not in line with practical application scenarios. In some cases,
the modality discrepancy is larger than the differences among IDs. However, the
existing testing settings avoid this challenge by putting only single modal images into
the gallery.

Table 1. A summary of non-generative-based and generative-based models.

Type Strength Weakness Reference

Non-Generative

Global Feature Learning Modality specific and -shared feature Miss some important nuances [16,17,23]
Local Feature Learning Well-aligned part features Sensitive to noise [26,29,30]

Contrastive Loss Increase inter-class variance of classifier Generally used for Siamese network [37,38]
Triplet Loss Form clusters Lack of sufficient constraints to inter-class [1,9,41]

Generative

Single-Translation Avoid color effects Introduce noisy or miss some information [11,12]
Dual-Translation Neglect ID-irrelevant information Introduce noise [56,57]

Extra Modal Pull the distance between two modalities Miss some information [62,64]

Others Independent of manual design Large time cost [69,70]
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4. Experimental Results
4.1. Datasets

We first review two prevalent VI-ReID datatsets (RegDB [78] and SYSU-MM01 [6]).
Some pedestrian image samples from two datasets are shown in Figure 8.

Figure 8. Pedestrian image samples derived from RegDB [78] and SYSU-MM01 [6]. Each col-
umn denotes the same ID, and the top row and bottom row represent visible and infrared images,
respectively.

RegDB [78] contains 412 different IDs, which are classified into 254 females and
158 males, and each ID corresponds to 10 visible images and 10 infrared images. From the
samples shown in the first four columns of Figure 8, we can see clear differences between
the images captured by two different cameras in terms of color and exposure. Generally, the
dataset is randomly split into two halves for training and testing, respectively, according
to the evaluation protocol in [37]. In the testing phase, the images from one modality are
utilized as a query, while the gallery contains the images from the other modality. The final
result is the average of 10 repeated operations.

SYSU-MM01 [6] is a public dataset for VI-ReID proposed in 2017. It contains four
cameras for capturing visible images and two for capturing infrared images. Camera 1
and camera 2 are put in two bright rooms, and camera 4 and camera 5 are placed in bright
outdoor scenes to capture visible images. Infrared cameras 3 and 6 are placed in a room
and outdoor scene, respectively, to capture infrared images without light. There are, in
total, 287,628 visible images and 15,792 infrared images of 491 different IDs in SYSU-MM01.
As shown in Figure 8, the images in SYSU-MM01 are unpaired in terms of pose, viewpoint,
etc.

4.2. Evaluation Metrics

Evaluation metrics play an important role when we want to test the pros and cons of
a system. There are two widely used metrics for VI-ReID, named cumulative matching
characteristics (CMC) [79] and mean average precision (mAP) [3].

CMC. Rank-r represents the probability that a correct match appears in the top-r search
results ranked by confidence. For single shot, this is accurate. However, for multi-shot,
CMC [79] cannot accurately represent a model’s discriminability, as it only examines the
first match of ranked result.

mAP. The other widely used metric, mAP [3], is a more comprehensive metric for
measuring the performance of the VI-ReID algorithm. It reflects how forward all images
with the same ID and the probe in the gallery are in the ranked sequence. Therefore, when
we face the problem that two algorithms have equal performance in searching the first
match, it can address it effectively. However, when a hard sample appears, mAP may still
have difficulties evaluating a better one between two algorithms.
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4.3. Analysis of the State of the Art with Existing Setting

The performance results of state-of-the-art methods on RegDB and SYSU-MM01 are
shown in Tables 2 and 3, respectively. From the Table 2, we observe that [2] achieves
superior performance rank1/mAP 91.05%/83.28% for visible to thermal query setting on
RegDB. The main improvement comes from two aspects: replacing global-level features
with part-level features and utilizing center-based triplet loss instead of instance-based
triplet loss. As the images with the same ID but different modalities from RegDB are
entirely aligned, the part-level features are more effective. In contrast, the images are not
aligned well on SYSU-MM01. Hence, it is not as big a boost on SYSU-MM01. Moreover, the
improvement in the loss function also plays a key role in performance enhancement. There
are also some other works committed to this improvement, e.g., Ye et al. [9] adjusted the
instance-to-instance-based triplet loss to the instance-to-class-center-based loss, and the
performance was significantly improved on SYSU-MM01.

Table 2. Rank-r accuracy (%) and mAP (%) performance of state-of-the-art methods on RegDB. Bold
numbers are the best results.

Approach Venue
Visible to Infrared Infrared to Visible

r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

Zero-Padding [6] ICCV’17 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82

HCML [37] AAAI’18 24.44 47.53 56.78 20.08 21.70 45.02 55.58 22.24
BDTR [9] IJCAI’18 33.47 58.42 67.52 31.83 32.72 57.96 68.86 31.10

MAC [48] ACM MM’19 36.43 62.36 71.63 37.03 36.20 61.68 70.99 36.63
D2RL [56] CVPR’19 43.40 66.10 76.30 44.10 - - - -
HSME [45] AAAI’19 50.85 73.36 81.66 47.00 50.15 72.40 81.07 46.16
AlignGAN [12] ICCV’19 57.90 - - 53.60 56.30 - - 53.40
DFE [26] ACM MM’19 70.13 86.32 91.96 69.14 67.99 85.56 91.41 66.70

eBDTR [41] TIFS’20 34.62 58.96 68.72 33.46 34.21 58.74 68.64 32.49
MSR [16] TIP’20 48.43 70.32 79.95 48.67 - - - -
JSIA-ReID [58] AAAI’20 48.50 - - 49.30 48.10 - - 48.90
EDFL [80] Neurocomputing’20 52.58 72.10 81.47 52.98 51.89 72.09 81.04 52.13
XIV-ReID [62] AAAI’20 62.21 83.13 91.72 60.18 - - - -
FMSP [38] IJCV’20 65.07 83.71 - 64.50 - - - -
DDAG [29] ECCV’20 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80
Hi-CMD [57] CVPR’20 70.93 86.39 - 66.04 - - - -
cm-SSFT [17] CVPR’20 72.30 - - 72.90 71.00 - - 71.70
MACE [18] TIP’20 72.37 88.40 93.59 69.09 72.12 88.07 93.07 68.57
DG-VAE [21] ACM MM’20 72.97 86.89 - 71.78 - - - -
CoAL [19] ACM MM’20 74.12 90.23 94.53 69.87 - - - -
SIM [46] IJCAI’20 74.47 - - 75.29 75.24 - - 78.30

CDP [81] TIP’21 65.00 83.50 89.60 62.70 - - - -
expAT [1] TIP’21 66.48 - - 67.31 67.45 - - 66.51
CPN [44] TIP’21 68.59 84.81 98.33 69.20 - - - -
AGW [8] TPAMI’21 70.05 - - 66.37 - - - -
HAT [64] TIFS’21 71.83 87.16 92.16 67.56 70.02 86.45 91.61 66.30
FMI [71] CVPR’21 73.20 - - 71.60 71.80 - - 70.10
MSO [51] ACM MM’21 73.60 88.60 - 66.90 74.60 88.70 - 67.50
LbA [82] ICCV’21 74.17 - - 67.64 72.43 - - 65.46
SFANet [55] TNNLS’21 76.31 91.02 94.27 68.00 70.15 85.24 89.27 63.77
CICL [23] AAAI’21 78.80 - - 69.40 77.90 - - 69.40
MCLNet [24] ICCV’21 80.31 92.70 96.03 73.07 75.93 90.93 94.59 69.49
NFS [70] CVPR’21 80.54 91.96 95.07 72.10 77.95 90.45 93.62 69.79
GECNet [11] TCSVT’21 82.33 92.72 95.49 78.45 78.93 91.99 95.44 75.58
MPANet [10] CVPR’21 83.70 - - 80.90 82.80 - - 80.70
SMCL [67] ICCV’21 83.93 - - 79.83 83.05 - - 78.57
CM-NAS [69] CVPR’21 84.54 95.18 97.85 80.32 82.57 94.51 97.37 78.31
CAJ [74] ICCV’21 85.03 95.49 97.54 79.14 84.75 95.33 97.51 77.82
MPMN [30] TMM’21 86.56 96.68 98.28 82.91 84.62 95.51 97.33 79.49
HCTL [2] TMM’21 91.05 97.16 98.57 83.28 89.30 96.41 98.16 81.46
AMC-Net [20] Neurocomputing’21 91.21 98.16 99.22 81.61 89.03 97.62 99.27 79.85
MMN [68] ACM MM’21 91.60 97.70 98.90 84.10 87.50 96.00 98.10 80.50
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Table 3. Rank-r accuracy (%) and mAP (%) performances of state-of-the-art methods on SYSU-MM01.
Bold numbers are the best results.

Approach

All Search Indoor Search

Single-Shot Multi-Shot Single-Shot Multi-Shot

r = 1 r =
10

r =
20 mAP r = 1 r =

10
r =
20 mAP r = 1 r =

10
r =
20 mAP r = 1 r =

10
r =
20 mAP

Zero-Padding [6] 14.8 54.1 71.3 16.0 19.1 61.4 78.4 10.9 20.6 68.4 85.8 26.9 24.4 75.9 91.3 18.6

HCML [37] 14.3 53.2 69.2 16.2 - - - - 24.5 73.3 86.7 30.1 - - - -
BDTR [9] 17.0 55.4 72.0 19.7 - - - - - - - - - - - -
cmGAN [47] 26.9 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.6 77.2 89.2 42.2 37.0 80.9 92.1 32.8

TCMDL [42] 16.9 58.8 76.6 19.3 - - - - 21.6 71.4 87.9 32.3 - - - -
HSME [45] 20.7 62.7 78.0 23.1 - - - - - - - - - - - -
D2RL [56] 28.9 70.6 82.4 29.2 - - - - - - - - - - - -
SDL [22] 28.1 70.2 83.7 29.0 - - - - 32.6 80.5 90.7 39.6 - - - -
MAC [48] 33.2 79.0 90.1 36.2 - - - - 33.4 82.5 93.7 45.0 - - - -
AlignGAN [12] 42.4 85.0 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3
DFE [26] 48.7 88.9 95.3 48.6 54.6 91.6 96.8 42.1 52.3 89.9 95.9 59.7 59.6 94.5 98.1 50.6

eBDTR [41] 27.8 67.3 81.3 28.4 - - - - 32.5 77.4 89.6 42.5 - - - -
Hi-CMD [57] 34.9 77.6 - 35.9 - - - - - - - - - - - -
MSR [16] 37.3 83.4 93.3 38.1 43.9 86.9 95.7 30.5 39.6 89.3 97.7 50.9 46.6 93.6 98.8 40.1
JSIA-ReID [58] 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7
XIV-ReID [62] 49.9 89.8 96.0 50.7 - - - - - - - - - - - -
MACE [18] 51.6 87.3 94.4 50.1 - - - - 57.4 93.0 97.5 64.8 - - - -
CML [66] 51.8 92.7 97.7 51.2 56.3 94.1 98.1 43.4 55.0 94.4 99.4 63.7 60.4 96.9 99.5 53.5
DDAG [29] 54.8 90.4 95.8 53.0 - - - - 61.0 94.1 98.4 68.0 - - - -
SIM [46] 56.9 - - 60.9 - - - - - - - - - - - -
HC [83] 57.0 91.5 96.8 55.0 - - - - 59.7 92.1 96.2 64.9 - - - -
DG-VAE [21] 59.5 93.8 - 58.5 - - - - - - - - - - - -
cm-SSFT [17] 61.6 89.2 93.9 63.2 63.4 91.2 95.7 62.0 70.5 94.9 97.7 72.6 73.0 96.3 99.1 72.4

CDP [81] 38.0 82.3 91.7 38.4 - - - - - - - - - - - -
expAT [1] 38.6 76.6 86.4 38.6 - - - - - - - - - - - -
AGW [8] 47.5 - - 47.7 - - - - 54.2 - - 63.0 - - - -
GECNet [11] 53.4 89.9 95.7 51.8 - - - - 60.6 94.3 98.1 62.9 - - - -
HAT [64] 55.3 92.1 97.4 53.9 - - - - 62.1 95.8 99.2 69.4 - - - -
LbA [82] 55.4 - - 54.1 - - - - 58.5 - - 66.3 - - - -
NFS [70] 56.9 91.3 96.5 55.5 63.5 94.4 97.8 48.6 62.8 96.5 99.1 69.8 70.0 97.7 99.5 61.5
CICL [23] 57.2 94.3 98.4 59.3 60.7 95.2 98.6 52.6 66.6 98.8 99.7 74.7 73.8 99.4 99.9 68.3
CPN [44] 57.3 92.6 97.1 56.9 63.1 93.9 97.4 50.7 59.3 94.5 98.4 66.7 66.3 97.4 99.8 58.5
MSO [51] 58.7 92.1 - 56.4 65.9 94.4 - 49.6 63.1 96.6 - 70.3 72.1 97.8 - 61.7
FMI [71] 60.0 94.2 98.1 58.8 - - - - 66.1 96.6 99.4 73.0 - - - -
HCTL [2] 61.7 93.1 97.2 57.5 - - - - 63.4 91.7 95.3 68.2 - - - -
CM-NAS [69] 62.0 92.9 97.3 60.0 68.7 94.9 98.4 53.5 67.0 97.0 99.3 73.0 76.5 98.7 99.9 65.1
MCLNet [24] 65.4 93.3 97.1 62.0 - - - - 72.6 96.7 99.2 76.6 - - - -
SFANet [55] 65.7 93.0 97.0 60.8 - - - - 71.6 96.6 99.5 80.0 - - - -
SMCL [67] 67.4 92.9 96.8 61.8 72.2 90.7 94.3 54.9 68.8 96.6 98.8 75.6 79.6 95.3 98.0 66.6
CAJ [74] 69.9 95.7 98.5 66.9 - - - - 76.3 97.9 99.5 80.4 - - - -
MMN [68] 70.6 96.2 99.0 66.9 - - - - 76.2 97.2 99.3 79.6 - - - -
MPANet [10] 70.6 96.2 98.8 68.2 75.6 97.9 99.4 62.9 76.7 98.2 99.6 81.0 84.2 99.7 99.9 75.1

As shown in Table 3, MPANet [10] performs best on SYSU-MM01 [10]. As the infrared
modality contains limited information, the difference among the infrared IDs is extremely
inconspicuous. Most existing methods deal with the cross-modality discrepancy by propos-
ing novel loss functions or introducing other modalities. In addition to addressing the
modality discrepancy, MPANet exploits the nuances among different infrared images to
extract more discriminative features.

4.4. Results of the State-of-the-Arts with New Setting

To evaluate the new proposed testing setting, we propose new testing datasets based
on RegDB and SYSU-MM01, named RegDB_Mix and SYSU-MM01_Mix, respectively. The
reconstructed datasets have the same number of identities and images with original datasets.
Rather than putting images of the two modalities into the query and gallery respectively, we
mix visible and infrared images, and remove the images in the gallery which have the same
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modality and identity as the images in the query. We train and test these approaches on a
single NVIDIA Tesla P100 GPU. The other settings are consistent with those in the original
paper. The multi-shot results on the two datasets are presented in Table 4. Compared to
Tables 2 and 3, we observe that the Rank-1 and mAP both have a great degree of decline.
Specially, on RegDB_Mix, the CM-NAS [69] achieves the Rank-1 accuracy of 42.50% and
mAP of 41.73%, approximately only half the value of Rank-1 and mAP on RegDB with the
visible to infrared mode. On SYSU-MM01_Mix, the CM-NAS achieves the Rank-1 accuracy
of 36.48% and mAP of 29.51%, significantly dropping the Rank-1 accuracy by 25.51% and
mAP by 30.51% on SYSU-MM01 with all-search and single-shot modes.

Table 4. Rank-1 accuracy (%) and mAP (%) performance of state-of-the-art methods on RegDB_Mix
and SYSU-MM01_Mix. Bold numbers are the best results. All approaches listed in this table are
reproduced by us.

Approach Venue
RegDB_Mix SYSU-MM01_Mix

r = 1 r = 10 r = 20 mAP r = 1 r = 10 r = 20 mAP

DDAG [29] ECCV’20 36.28 52.05 59.41 33.85 32.16 55.05 66.27 25.44
LbA [82] ICCV’21 38.57 55.07 62.38 35.98 34.80 65.38 77.27 27.46
GECNet [11] TCSVT’21 41.76 57.94 64.66 37.49 22.29 60.71 75.58 14.19
AGW [8] TPAMI’21 42.02 57.03 63.95 38.11 30.87 64.81 77.12 23.70
CM-NAS [69] CVPR’21 42.50 51.37 56.04 41.73 36.48 54.08 62.70 29.51
HCTL [2] TMM’21 58.41 70.85 76.21 52.59 33.62 52.24 61.47 26.97

To better present the challenges posed by the new setting, we randomly select 10 IDs
from the testing set to visualize the distributions of learned features by t-SNE [84]. Here, we
choose AGW [8] to extract features of the selected images. As shown in Figure 9, most the
features extracted by AGW can be clustered well. However, compared to Figure 9a, many
infrared images with different IDs (e.g., blue, red, and yellow) are gathered in Figure 9b.
This means that pedestrian images with a certain ID are more likely to be influenced by the
images with other different IDs. In fact, this is also more in line with reality, as infrared
images contain less information. Hence, they are more difficult to discern by VI-ReID
systems.

(a) Testing data with existing setting (b) Testing data with new setting

Figure 9. Visualization of the feature extracted with AGW [8] distributions. A total of 10 IDs are
randomly selected from the testing set of SYSU-MM01. Here, samples with the same color indicate
they are of the same person. The markers “circle” and “square” represent the images from infrared
and visible modalities, respectively.

5. Conclusions and Future Directions

With the increase in functional application requirements, VI-ReID has attracted some
researchers’ attention. This paper presents a comprehensive survey of VI-ReID. We first
compare it with ReID in detail to show the different challenges of VI-ReID. With powerful
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deep learning techniques, VI-ReID has achieved remarkable progress, and we divide the
existing methods into two categories: non-generative-based and generative-based methods.
For the non-generative-based model, we analyze the method in terms of feature learning,
metric learning, and training strategy. In contrast, the generative-based model applies
modality translation to bridge the modality gap. Finally, we describe standard datasets in
detail, evaluation metrics, and performance of the state-of-the-art methods on two datasets.

From Tables 2 and 3, we observe that the performance of VI-ReID on two public
datasets has improved a lot in recent years. Meanwhile, the complexity of networks
architecture has also increased. Among the existing network architectures, feature learning
and metric learning are the essential modules. The primary function of feature learning is
to extract modality specific and -shared features. Recently, some works aiming to extract
effective features have become more popular, including global-local features fusion. Here,
the distance between two features with the same ID would be pulled, while the distance
between two features with different IDs would be pushed by distance metric learning.

From the experimental results, we observe the following directions in VI-ReID:

• One-stream network architecture. In terms of testing baseline, we believe that the
new testing baseline with a more practical setting is more valuable to research than the
existing setting. Considering that existing two-stream network architectures cannot
validly solve the challenges of the new setting, a one-stream network that can extract
more robust and effective features of two heterogeneous modalities may be a trend.

• Weakly supervised or self-supervised. Considering the difficulties of obtaining a
sufficient amount of high-confidence data, we should concentrate on those data with
no labels or low label confidence. The approaches, such as those of [85,86] of leveraging
this kind of data to address related issues is highly advanced in ReID. We believe
that numerous works about weakly supervised or self-supervised data will appear in
VI-ReID in the future.

• Transfer learning. As the number of neural networks grows, the structures become
more and more complicated, we expect that the neural network can draw on some
current resources when facing comparable tasks. Further research on transfer learning,
which has been widely used in ReID [87–89], may be a great direction in VI-ReID.

Limitations. First of all, this review draws on the authors’ summary of the literature
analysis. Although we aim to be objective in the analysis process, we still cannot avoid
a robust subjective tone. Thus, all descriptions are built on personal opinions. Moreover,
this survey classifies the networks according to the criteria in [8]. In contrast, we focus
on VI-ReID, which accounts for a small percentage of [8]. Finally, this review only covers
the research results published in mainstream conferences or journals in this field. The
main reason is perhaps that these articles sufficiently represent the research methods and
research trends in the area.
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