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Abstract: When we compress a large amount of data, we face the problem of the time it takes to com-
press it. Moreover, we cannot predict how effective the compression performance will be. Therefore,
we are not able to choose the best algorithm to compress the data to its minimum size. According to
the Kolmogorov complexity, the compression performances of the algorithms implemented in the
available compression programs in the system differ. Thus, it is impossible to deliberately select the
best compression program before we try the compression operation. From this background, this paper
proposes a method with a principal component analysis (PCA) and a deep neural network (DNN)
to predict the entropy of data to be compressed. The method infers an appropriate compression
program in the system for each data block of the input data and achieves a good compression ratio
without trying to compress the entire amount of data at once. This paper especially focuses on lossless
compression for image data, focusing on the image blocks. Through experimental evaluation, this
paper shows the reasonable compression performance when the proposed method is applied rather
than when a compression program randomly selected is applied to the entire dataset.

Keywords: lossless data compression; Kolmogorov complexity; deep neural network

1. Introduction

Various algorithms of lossless data compression are widely applied to the fields such as
medical storage [1], industrial manufacturing [2], IoT [3], database [4], cloud computing [5],
and communication networks [6]. However, it is hard to find the best algorithm to compress
the data dedicated to the target application because a conventional algorithm of lossless data
compression has not been designed for a particular data pattern. Therefore, it is impossible
to determine the best algorithm to shrink data of an application into the minimum size
without performing several algorithms.

According to the Kolmogorov complexity [7], there does not exist a perfect lossless
data compression able to fit any application. The complexity has proved that we are able
to create an algorithm for lossless data compression that compresses a data pattern to
maximize data entropy. However, the algorithm is not able to decompress the data because
the compressed data does not include enough information to decode it to the original
data patterns. In the other words, while the algorithm of a lossless data compression
works to increase the randomness of the data (i.e., to increase the entropy), the decodable
compression process adds margins to the compressed data so the decompressor can decode
it to the original data. There are various methods to insert the decode margin and the
margin tightly related to the compression ratio (the size of compressed data divided by the
original data) derived from the algorithm.

Here, we assume that we can use multiple algorithms for the lossless data compression
potentially installed in a computer system; however, we are not able to know which
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algorithm achieves the best compression ratio before any compression trials. If we need
to compress a large amount of data, we must try all the algorithms to know which is the
best one. This is an NP-hard problem. Therefore, even if we perform the compression trial
with the newest algorithm proposed by advanced research, it might not achieve the best
compression performance.

How can we apply data compression programs adaptively to achieve the best compres-
sion ratio without trials of all algorithms? We would select the best algorithm if we knew
the complexity of the data. The hint is the decode margin inserted during the compression
process discussed above. That is, if we can predict the data entropy before we apply a
compression program to the data, it will be realized by predicting the best algorithm to
minimize the decode margin. Then, we can decide the best compression program to use.

This paper proposes a novel method that selects the best algorithm of lossless data
compression without trial and error. The method will use a deep neural network (DNN) by
learning data blocks divided from the entire original data. The DNN will be used to infer
the best data compression program from the available ones in the computer system for
each data block. This paper will focus on compressing image data by using the inference
from the method.

The contributions and the research outcomes of this research are as follows.

• Applying a DNN that infers a data compression algorithm from a data pattern of a
data block divided from the original data, we have developed a novel method for
lossless data compression that achieves a better compression ratio than the worst case
of available data compression programs.

• We have applied the proposed method to an image data compression and achieved a
better compression ratio than the case when we select the worst compression program
available in a computer system to the entire image data.

The rest of this paper is as follows. The next section describes the background of
this research. The third section will explain the proposed method that performs adaptive
lossless data compression for image data applying entropy prediction by using DNN. Then,
using image data, we will show the performance evaluations. Finally, we will conclude
this paper.

2. Backgrounds and Definitions
2.1. Lossless Data Compression Algorithms

The modern lossless data compression programs are implemented by combinations of
the universal compression techniques and the entropy encoding. Although each of those
techniques can achieve the compression effect, the combination will result in a better effect
for the compression ratio.

We can find major algorithms of the universal compression methods such as the
dictionary-based, the sorting-based, and other encoding methods. For example, LZ77/78,
LZW, and LZMA are dictionary-based. Sorting-based includes the burrows-wheeler trans-
form known as the block sorting and Move-to-Front. Other encoding methods include
run-length coding.

On the other hand, the entropy coding methods shrink a unit of original data (called a
symbol ) to a minimal code as compressed data. Then, they maximize the entropy of the
compressed data. Well-known methods are arithmetic coding and Huffman. Additionally,
using a tree structure and a look-up table, we can find optimization techniques such as
context-tree weighting [8] and PPM [9].

We can use the programs in our computer system for lossless data compression that
combine universal coding and entropy coding. For example, we would often use zip
(LZ77 + Huffman), gzip (LZMA + Huffman), 7-zip (LZMA + Arithmetic coding), and bzip2
(block sorting + Move-to-Front + Huffman). LZSS [10] is also available, which optimizes
the matching operations in the look-up table to assign a smaller number of bits to the
compressed data than LZ77.
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As we have explained above, in the modern computer system, we can use compression
programs. However, as we can find in the Kolmogorov complexity, it is impossible to
generate complete compressed data that achieves the maximum entropy from the original
data. Even if we can find an algorithm that achieves the maximum entropy, it is known
that we are not able to decode the compressed data to the original. This means that the
compressed data must include some redundancy for the decoding process. Therefore,
the lossless data compression algorithms do not derive the compressed data with the
entropy maximized perfectly. The algorithms can reduce the amount of data by adapting
the strategy locally. According to the local entropy of a data pattern in the original data,
the strategy eventually finds a possibility to shrink the number of bits of a symbol. Thus,
we derive different compression ratios from different compression programs because a
combination of an algorithm and a data pattern eventually derives a compression ratio.
Therefore, the algorithms do not promise to achieve maximum entropy.

2.2. Lossless Data Compression with Neural Network

We can find the lossless data compression algorithms applying a neural network. The
algorithms infer the data distribution of the original data and encode the data patterns
frequently appearing to a smaller number of bits than the original symbols. Additionally,
an entropy coding is applied after the encoding by the neural network.

The algorithms targeted to specific applications have been developed in advanced re-
search. In particular, algorithms for image data have been proposed, such as PixelRNN [11],
PixelCNN [12], and L3C [13]. These compress the pixel colors in the image data by inferring
the distribution of the colors. These algorithms are called the visually lossless because the
color data derived from the distribution is not precisely equal to the original one.

Lossless methods with neural networks have been proposed based on the Lempel-Ziv
algorithms. The early study with neural networks suggests [14] that the neural network
infers the distribution of the input data patterns and assigns the shortest bit patterns using
a look-up table. The study [15] analyzes the English grammar of the input text using RNN
(Recurrent Neural Network) and encodes the words into the smallest bit patterns. Recent
studies in the same manner have proposed PAQ [16], DeepZip [17], and CMIX [18]. In
application specific trials, the literature [19] used the same approach with arithmetic coding
for medical image data. These kinds of approach for visual data compression is introduced
in [20]. There are methods that directly generate compressed data in collaboration with
additional compression methods. One study [21] proposed a deep generative model that
directly generated the compressed data. Using a deep learning approach such as a codec of
image data, another study [22] compressed image data. Using a recurrent neural network
(RNN), a further study [23] proposed a method to generate the compressed data targeted
to the hyperspectral image data.

As seen in the advanced studies above, lossless compression with a neural network
infers the distribution of the symbols (or words) and encodes those to a smaller number of
bits than the original. However, the inference by the neural network does not work directly
to shrink the input data. The compression methods with the neural network apply entropy
coding, such as arithmetic coding and Huffman to assign the smaller number of bits after
the inference. Finally, those entropy coding methods compress the original data. Then, the
compressed data maintains high entropy. However, as we consider that entropy coding
can not achieve the maximum entropy due to the Kolmogorov complexity, the method of a
neural network also retains redundancy for decoding the compressed data. Therefore, with
respect to the data locality, some methods would work to maximize entropy, but the others
would compress the data with high redundancy for the decoding process.

According to the background above, to achieve the best compression ratio, we can
find the best algorithm that compresses the original data to the minimum size by trying all
available programs in the system. However, when we treat original data of a terabyte size,
the trial is not realistic for applications because it is an NP-complete problem, requiring ex-
ecution of all programs to find the best algorithm. This needs 1/2n(n + 1)/n = 1/2(n + 1)
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times of compression trials on average, where n denotes the number of the programs. Ad-
ditionally, we need to consider the complexities of the compression algorithms. Here, we
focus on how to select the best algorithm by inferring the entropy of the original data before
the compression process. Now, let us propose a lossless compression method that achieves
the best compression ratio by selecting the best algorithm according to the inference of
the entropy regarding data blocks from a machine learning approach, where the machine
learning approach learns the combinations of a data pattern and the best algorithm from
many data samples.

Our proposed methods would be available using a neural network approach. However,
it is difficult to decide the size of a data block used for training and inference. When we
apply the entire original data to train the network, we need to consider the large size of
the original data. This is not a realistic approach. Here, when we consider the discussion
regarding the difference of the locality in the data entropy, we can find the best algorithm if
the original data is divided into small data blocks. Therefore, in this paper, we propose a
method that learns the data patterns of blocks where the block size is fixed. Using a neural
network, we will implement a compression method that autonomously selects the best
algorithm in the system.

3. Lossless Image Data Compression with Predicting Entropy by Neural Network
3.1. System Overview

Figure 1 shows the system diagram of the proposed method. Figure 1a–c shows the
learning phase, the compression phase, and the decompression phase, respectively. The
learning phase uses data blocks; the original data are divided into blocks of n symbols.
Each block is compressed once using the available compression programs in the system.
Then, we prepare a set of the combinations of the data block and the best program, as
the dataset uses for training in the learning process. Here, the learning process uses a
DNN to infer the best program from a data block. Before the training of the DNN, we
apply a principal component analysis (PCA) to reduce the number of data input into the
DNN. The PCA reduces the number of dimensions in the data block. We reduce it to the
half of the number of the original data block. Therefore, the learning process of the DNN
receives half the amount of data in a block. Here, we let the entire data to be compressed be
D = Si(0 ≤ i < N), where the i-th symbol is Si. The data block to be used for the training
is dk = Si(n× k < i < n× (k + 1), n× (k + 1) ≤ N). Here, k is an integer value more than
or equal to zero. In addition, we let the compression program be pl(0 < l < P), where P is
defined as the number of available programs in the system. Additionally, the size of each
block dk is defined as spl

dk
, and the compressed data after applying a compression program

pl(dk) is defined as s′pl
dk

(bits). Here, the compression ratio rpl
dk

is derived by s′pl
dk

/(spl
dk
× 8).

The dataset for the training consists of a combination l of (dk, min(rpl
dk
)).

During the compression phase, using a data block d′k with n symbols of the input
original data of N′ symbols to be compressed, an index l′ of the compression program
pl′ is inferred by the DNN f (dk)→ l′ trained in the learning phase. Here, the number of
dimensions of the input data block d′k to the DNN is reduced by half as well as the learning
phase. The data block after compression of d′k consists of a compressed data block d′′k by
the program pl′ , the index l′, and the number of bits n′ of d′′k. Here, n′ is obtained in a
header of bs bytes. l′ is also obtained in a header of ceil(log2P) bits. Using the number of
bits s′k after the compression and the number of data blocks K = ceil(N′/n′), the entire
compressed data s′ are derived as follows;

s′ = (bs× 8 + ceil(log2P))× K +
K−1

∑
k=0

d′′k.
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Figure 1. The block diagram of the proposed system.

Here, each compressed block needs to obtain ceil(log2P) bits and bs bytes as the header.
This causes an overhead for the entire compressed data size.

The decompression phase first reads l′ and bs of the header at the beginning of each
compressed data block. It decompresses the compressed data block d′′k of bs bits using
the decompression program of pl′ . Iterating K times of this decompression operation, the
original data D are decoded.

According to the system described above, the compressor will select a compression
program by the inference of DNN using a data block of the input original data. Then,
the data block is compressed by the selected compression program. Here, compressing
an original data, we should focus on the situation when we are not able to know which
compression program will achieve the best compression ratio. To overcome this situation,
we inevitably need to try all programs. However, our proposed method with DNN just
scans each original data block and infers the best algorithm that fits to the data pattern in
the block. This mechanism will avoid the worst compression ratio (i.e., the ratio where
the compressed data size divided by the original one becomes the largest) from intuitively
selecting a compression program by the user of the computer system.

3.2. Deep Neural Network to Predict Data Entropy

We applied a fully connected network for the DNN used for the inference of the
compression program, as shown in Figure 2. The network was organized with an input
layer of 100 nodes and three intermediate layers of 1024, 512, and 256 nodes, respectively,
from the input to the output. The output layer depends on the number of the available
compression programs P. The number of nodes is ceil(log2(P)). In the learning phase, the
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training of the DNN was performed by the input of a dataset (dk,l). After each dataset was
entered into the DNN for the forward process, the backward process was performed. For
each data set, the training was performed 10,000 times. This training process was repeated
for all images. In the compression phase, the inference was performed by the input of d′k
and outputs l′.

512

Figure 2. The structure of the DNN used for the inference of the compression algorithms.

In this paper, we consider the case of the original data as images. We explain how
to prepare the data block for the DNN in the case of image data. If we employ multiple
lines of an image as the data block, entropy is not included among the lines. Therefore, we
apply p× p visual blocks of the image data to dk as shown in Figure 3. dk is a data block
that is organized with the pixel data Xij at i-th row and j-th column of v× v image block.
The pixel data Xij can consist of the color data. In this paper, we treat RGB color data of
Xij = {Sm, Sm+1, Sm+2}, where m = i× 3× vs. + 3× j in a data block.

Figure 3. The definition of image data blocks input into the DNN.

As explained above, our proposed method infers the appropriate compression pro-
gram by using DNN with the input of data blocks. This helps us know the data entropy of
each block before applying a compression program to the data block. The DNN approach
is still an open discussion regarding the accuracy of the prediction ability for the best
compression algorithm. However, we can avoid the worst compression ratio if the DNN
will select the best algorithm at high accuracy.

4. Experimental Evaluations

To prove the validity of our proposed method, we performed experimental evaluations.
The environment for the evaluations employed Keras and scikit-learn libraries on python
3.8.6 in a Windows 10 environment of an Intel Core i7 machine. On our system, we installed
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zip, bzip2, SZIP, and 7-zip. Therefore, P was 4, and the number of bits used in the header
of the compressed data block for l′ was 2.

We used an image from the 4K images, downloadable from [24]. We called this image
”Sky”. We also used the first frame images of 4K videos in the RAW format of ”Beauty”,
”Bosphorus”, and ”ReadySetGo” [25], which are downloadable from [26].

During the experiments, we evaluated v = 128, 256, 512, 1024, and 2048 for the size
of each data block v× v in the image data. These data blocks were used for the training
and inference of the DNN. The training of the DNN was performed by applying all images
used in the evaluations.

The graphs in Figures 4–7 show the comparisons of the compression ratios (the
compressed data size / the original data size × 100) among the block sizes of v× v as the
line graphs. The data sizes after compression are also shown as the bar graphs. In the figure,
the ratios and the sizes of zip, bzip2, SZIP, and 7-zip are also shown. Those were entirely
applied to the original data without the inference of DNN. The sizes of all images before the
compression were 24Mbytes. In the cases when a program compressed uniquely the entire
dataset, zip was the worst in any images, and 7-zip or SZIP was the best. For the cases of
our proposed method with the DNN, the compression ratios improved as the block size
became larger. However, the cases when v = 2048 showed worse compression ratios than
v = 1024. In all cases of our proposed method, we confirmed that the compression ratio was
moderately better than the worst case when a compression program was uniquely applied
to the entire data. In particular, the cases when v = 1024 showed the best compression
ratios in all images. According to the results above, in our proposed method, the DNN
inferred the best compression program appropriately and compressed the most blocks
into the smallest sizes. Thus, we conclude that our proposed method is valid for effective
lossless compression without trials of all available programs in the system.

Figure 4. Comparisons of compression ratios with/without the DNN inference in the case of Sky.
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0

Figure 5. Comparisons of compression ratios with/without the DNN inference in the case of Beauty.

Figure 6. Comparisons of compression ratios with/without the DNN inference in the case of Bosphorus.

Figure 7. Comparisons of compression ratios with/without the DNN inference in the case of
ReadySetGo.
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Figures 8–11 show the mosaic images of distributions in which the compression
program was selected for each block. In the case of training of DNN (the left side of
each figure), the color of each block in the figures indicates the compression program that
achieved the best compression ratio. As shown in the figures on the right side (i.e., the
case of inferred), each block shows the compression program that the DNN inferred. The
figure compares the cases of the training and the inferred when v = 128 and 256. The red
colored block indicates 7-zip, green indicates bzip2, and blue indicates SZIP. Zip was not
selected for the training data nor the inferred results in any case. If the DNN can infer
the programs that match the training, the compression rate will become the best. In the
image of Sky in Figure 8, almost all blocks selected 7-zip and SZIP. On the other hand, in
Figures 9–11, almost all blocks selected bzip2. This means that the data patterns (i.e., data
entropy) of the images differed. Even though the data patterns had different characteristics,
as we compare the distribution for the training and the inference, we confirm that both
distributions were almost the same. Therefore, we confirm that the DNN predicted the
entropy of each data block and selected the effective compression algorithm. Thus, our
proposed method adaptively predicted the best compression program to minimize the
original data size.

We have proposed a novel method where the compressor predicts the entropy of
data blocks to be compressed by applying the inference of DNN and achieves an effective
compression ratio without trying all the compression programs in the system. Through
the experimental evaluations, we have shown the method is validated for the effective
performance of lossless data compression.

Figure 8. Comparisons among distributions of compression programs used for training and inferred
by DNN (Sky).
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Figure 9. Comparisons among distributions of compression programs used for training and inferred
by DNN (Beauty).

Figure 10. Comparisons among distributions of compression programs used for training and inferred
by DNN (Bosphorus).



Electronics 2022, 11, 504 11 of 13

Figure 11. Comparisons among distributions of compression programs used for training and inferred
by DNN (ReadySetGo).

5. Conclusions

To solve the problem of the trial and error of all compression programs in a system
to achieve the best compression ratio, we proposed a lossless data compression method
that predicted the data entropy of the input data blocks and selected an appropriate com-
pression program in the system by using DNN. Mainly, we focused on compressing image
data. The method avoided the worst compression ratio when we applied an inappropriate
compression program in the system to compress the original data. According to the evalua-
tions using the image data, we showed the validity of the proposed method. Depending
on the block sizes for predicting the data entropy, the proposed method achieved better
compression ratios than the case when a single compression program compressed the
entire input data. In our evaluations, we confirmed the compression ratios were improved
from 8% to 15% compared to the worst case when an algorithm was applied to the entire
image data. Thus, we conclude that our proposed method is effective for compressing large
amounts of data effectively. However, our method has two limitations. The first is that the
inference depends on the images used to train the DNN. To avoid this limitation, we need
to apply various image data for the training process. Another is that our approach in our
paper used fixed data blocks for the training and inference by the DNN. In future work, we
will investigate a method to accept variable sizes for the DNN.

In addition, we will extend the proposed method to the other types of multimedia
data, such as acoustic data and sensor data.

Author Contributions: Conceptualization, S.Y. and K.W.; methodology, S.Y.; software, W.Y.; valida-
tion, S.Y. and K.W.; formal analysis, S.Y. and K.W.; investigation, S.Y. and K.W.; resources, S.Y. and
W.Y.; data curation, S.Y. and W.Y.; writing—original draft preparation, S.Y.; writing—review and
editing, S.Y. and K.W.; visualization, S.Y.; supervision, S.Y. and K.W.; project administration, S.Y.;
funding acquisition, S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by JSPS KAKENHI (Grant Number 20H04152) and JST
PRESTO (Grant Number JPMJPR203A).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Electronics 2022, 11, 504 12 of 13

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reddy, B.V.; Reddy, P.B.; Kumar, P.S.; Reddy, A.S. Lossless Compression of Medical Images for Better Diagnosis. In Proceedings

of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016;
pp. 404–408. [CrossRef]

2. Gómez-Brandón, A.; Paramá, J.R.; Villalobos, K.; Illarramendi, A.; Brisaboa, N.R. Lossless compression of industrial time series
with direct access. Comput. Ind. 2021, 132, 103503. [CrossRef]

3. Gia, T.N.; Qingqing, L.; Queralta, J.P.; Tenhunen, H.; Zou, Z.; Westerlund, T. Lossless Compression Techniques in Edge Computing
for Mission-Critical Applications in the IoT. In Proceedings of the 2019 Twelfth International Conference on Mobile Computing
and Ubiquitous Network (ICMU), Kathmandu, Nepal, 4–6 November 2019; pp. 1–2. [CrossRef]

4. Huang, W.; Wang, W.; Xu, H. A Lossless Data Compression Algorithm for Real-time Database. In Proceedings of the 2006 6th
World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; Volume 2, pp. 6645–6648. [CrossRef]

5. Nivedha, B.; Priyadharshini, M.; Thendral, E.; Deenadayalan, T. Lossless Image Compression in Cloud Computing. In
Proceedings of the 2017 International Conference on Technical Advancements in Computers and Communications (ICTACC),
Melmaurvathur, India, 10–11 April 2017; pp. 112–115. [CrossRef]

6. Routray, S.K.; Javali, A.; Sharmila, K.P.; Semunigus, W.; Pappa, M.; Ghosh, A.D. Lossless Compression Techniques for Low
Bandwidth Networks. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS),
Thoothukudi, India, 3–5 December 2020; pp. 823–828. [CrossRef]

7. Li, M.; Vitányi, P.M. An Introduction to Kolmogorov Complexity and Its Applications; Springer: New York, NY, USA, 2008.
8. Willems, F.; Shtarkov, Y.; Tjalkens, T. The context-tree weighting method: Basic properties. IEEE Trans. Inf. Theory 1995,

41, 653–664. [CrossRef]
9. Cleary, J.; Witten, I. Data Compression Using Adaptive Coding and Partial String Matching. IEEE Trans. Commun. 1984,

32, 396–402. [CrossRef]
10. Storer, J.A.; Szymanski, T.G. Data Compression via Textual Substitution. J. ACM 1982, 29, 928–951. [CrossRef]
11. Oord, A.V.; Kalchbrenner, N.; Kavukcuoglu, K. Pixel Recurrent Neural Networks. In Proceedings of the 33rd International

Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Volume 48, pp. 1747–1756.
12. Oord, A.v.d.; Kalchbrenner, N.; Vinyals, O.; Espeholt, L.; Graves, A.; Kavukcuoglu, K. Conditional Image Generation with

PixelCNN Decoders. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona,
Spain, 5–10 December 2016; Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 4797–4805.

13. Mentzer, F.; Agustsson, E.; Tschannen, M.; Timofte, R.; Gool, L.V. Practical Full Resolution Learned Lossless Image Compression.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20
June 2019.

14. Mahoney, M.V. Fast Text Compression with Neural Networks. In Proceedings of the Thirteenth International Florida Artificial
Intelligence Research Society Conference, Orlando, FL, USA, 17–19 May 2000; AAAI Press: Menlo Park, CA, USA, 2000;
pp. 230–234.

15. Storer, J.A.; Szymanski, T.G. Syntactically Informed Text Compression with Recurrent Neural Networks. arXiv 2016,
arXiv:1608.02893.

16. Mahoney, M. Adaptive Weighing of Context Models for Lossless Data Compression; Technical Report of Florida Institute of Technology:
Melbourne, FL, USA, 2016.

17. Goyal, M.; Tatwawadi, K.; Chandak, S.; Ochoa, I. DeepZip: Lossless Data Compression Using Recurrent Neural Networks. In
Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; p. 575. [CrossRef]

18. CMIX. Available online: https://github.com/byronknoll/cmix (accessed on 8 February 2022).
19. Nagoor, O.H.; Whittle, J.; Deng, J.; Mora, B.; Jones, M.W. Lossless Compression For Volumetric Medical Images Using Deep

Neural Network With Local Sampling. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP),
Abu Dhabi, United Arab Emirates, 25–28 September 2020; pp. 2815–2819. [CrossRef]

20. Lu, G.; Yang, R.; Wang, S.; Liu, S.; Timofte, R. Deep Learning for Visual Data Compression. In Proceedings of the 29th ACM
International Conference on Multimedia, New York, NY, USA, 8–12 March 2021; Association for Computing Machinery: New
York, NY, USA, 2021; pp. 5683–5685.

21. Zhang, C.; Zhang, S.; Carlucci, F.M.; Li, Z. OSOA: One-Shot Online Adaptation of Deep Generative Models for Lossless
Compression. arXiv 2021, arXiv:2111.01662.

22. Schiopu, I.; Munteanu, A. Deep-Learning-Based Lossless Image Coding. IEEE Trans. Circuits Syst. Video Technol. 2020,
30, 1829–1842. [CrossRef]

23. Luo, J.; Wu, J.; Zhao, S.; Wang, L.; Xu, T. Lossless compression for hyperspectral image using deep recurrent neural networks. Int.
J. Mach. Learn. Cybern. 2019, 10, 2619–2629. [CrossRef]

24. Yamagiwa, S.; Ichinomiya, Y. Stream-Based Visually Lossless Data Compression Applying Variable Bit-Length ADPCM Encoding.
Sensors 2021, 21, 4602. [CrossRef] [PubMed]

http://doi.org/10.1109/IACC.2016.81
http://dx.doi.org/10.1016/j.compind.2021.103503
http://dx.doi.org/10.23919/ICMU48249.2019.9006647
http://dx.doi.org/10.1109/WCICA.2006.1714368
http://dx.doi.org/10.1109/ICTACC.2017.37
http://dx.doi.org/10.1109/ICISS49785.2020.9315936
http://dx.doi.org/10.1109/18.382012
http://dx.doi.org/10.1109/TCOM.1984.1096090
http://dx.doi.org/10.1145/322344.322346
http://dx.doi.org/10.1109/DCC.2019.00087
https://github.com/byronknoll/cmix
http://dx.doi.org/10.1109/ICIP40778.2020.9191031
http://dx.doi.org/10.1109/TCSVT.2019.2909821
http://dx.doi.org/10.1007/s13042-019-00937-2
http://dx.doi.org/10.3390/s21134602
http://www.ncbi.nlm.nih.gov/pubmed/34283137


Electronics 2022, 11, 504 13 of 13

25. Mercat, A.; Viitanen, M.; Vanne, J. UVG Dataset: 50/120fps 4K Sequences for Video Codec Analysis and Development. In
Proceedings of the 11th ACM Multimedia Systems Conference, Istanbul, Turkey, 8–11 June 2020; ACM: New York, NY, USA, 2020;
MMSys’20, pp. 297–302. [CrossRef]

26. Ultra Video Group. Available online: http://ultravideo.fi/ (accessed on 8 February 2022).

http://dx.doi.org/10.1145/3339825.3394937
http://ultravideo.fi/

	Introduction
	Backgrounds and Definitions
	Lossless Data Compression Algorithms
	Lossless Data Compression with Neural Network

	Lossless Image Data Compression with Predicting Entropy by Neural Network
	System Overview
	Deep Neural Network to Predict Data Entropy

	Experimental Evaluations
	Conclusions
	References

