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Abstract: The Internet of Things (IoT) encompasses multiple fast-emerging technologies controlling
and connecting millions of new devices every day in several application domains. The increased num-
ber of interconnected IoT devices, their limited computational power, and the evolving sophistication
of cyber security threats, results in increased security challenges for the IoT ecosystem. The diversity
of IoT devices, and the variety of QoS requirements among several domains of IoT application,
impose considerable challenges in designing and implementing a robust IoT security solution. The
aim of this paper is to present an efficient, robust, and easy-to-use system, for IoT cyber security
operators. Following a by-design security approach, the proposed system is a platform comprising
four distinct yet cooperating components; a distributed AI-enhanced detection of potential threats
and anomalies mechanisms, an AI-based generation of effective mitigation strategies according to the
severity of detected threats, a system for the verification of SDN routing decisions along with network-
and resource-related policies, and a comprehensive and intuitive security status visualization and
analysis. The distributed anomaly detection scheme implementing multiple AI-powered agents is
deployed across the IoT network nodes aiming to efficiently monitor the entire network infrastructure.
Network traffic data are fed to the AI agents, which process consecutive traffic samples from the
network in a time series analysis manner, where consecutive time windows framing the traffic of the
surrounding nodes are processed by a graph neural network algorithm. Any detected anomalies are
handled by a mitigation engine employing a distributed neural network algorithm, which exploits
the recorded anomalous events and deploys appropriate responses for optimal threat mitigation. The
implemented platform also includes the hypothesis testing module, and a multi-objective optimiza-
tion tool for the quick verification of routing decisions. The system incorporates visualization and
analytics functionality and a customizable user interface.

Keywords: Internet of Things; cyber security; time series analysis; anomaly detection; distributed
systems; neural networks; machine learning; artificial intelligence; time series storage; visual analytics;
quality of service

1. Introduction

During the last decade, the Internet of Things (IoT) emerged as the next big wave of
innovation, with unlimited possibilities for changing the way people live. Initiated from
the interconnection of RFID devices, it is estimated that the number of connected objects
exceeded the number of people connected to the Internet in the late 2010s. In 2020, the
evolution of IoT led to an installed basis of 20 billion interconnected devices globally [1]. The
dynamics of IoT market growth are also depicted in the forecasts relevant to the needs of IoT
device connectivity. Ericsson predicts that global revenue of the communications service
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provider IoT will increase at a combined annual growth rate of 24.9% until 2023 [2]. In
2020, 1.5 billion IoT devices were connected via cellular 3GPP (3rd Generation Partnership
Project) access technologies. This figure will reach 5 billion by 2025.

The evolution of information technologies created new opportunities for malicious
activity against targets connected to the internet. More and more assets are connected to
the internet, while the proliferation of novel devices such as smartphones offers additional
methods of intrusion. The number of cyber threats has increased in number and become
more sophisticated and novel. Cyber attacks are the fastest-growing crime regarding the
IoT. In December 2020, the estimated cost of cybercrime to the global economy was reported
to be more than EUR 880 billion each year [3].

In this landscape, cyber security for IoT is an even more challenging objective due to
the key intrinsic features of IoT infrastructures and vulnerabilities. These emerge as a result
of the large number of installed devices, combined with their limited computing power
and the fact that they are often deployed in an unattended, automated and poorly managed
way (e.g., in many cases they use of the default passwords). The limited computing power,
a consequence of the need for lower device costs and low energy consumption, allows
the IoT devices to connect to the internet, where they can be easily compromised and
even recruited by the attacker to launch further attacks. At the same time, the limited
computing power combined with the need for reduced energy consumption does not allow
the deployment of conventional countermeasures running on each device. Furthermore,
a critical fact with considerable impact regarding the IoT security challenges is the lack
of relevant international standards. The IoT implementations have emerged with a rapid
pace in recent years due to the effectiveness of device connectivity offered by the internet,
without a corresponding evolution in standardization. As a result, a standardization gap is
evident so far.

The rest of this paper is organized as follows: Section 2 presents the design and
methodology steps and discusses the system architecture by analyzing each separate im-
plemented module. Section 3 shows the experimental results of the anomaly detection and
mitigation algorithms against distinct attack cases. Finally, Section 4 concludes the paper
and presents a discussion of the research findings and the authors’ future work prospects.

1.1. Rationale

The internetworking of IoT devices (i.e., their interconnection to core networks or to
the cloud), for the majority of cases, is a task allocated to edge-routing devices operating in
heterogeneous networks. These devices offer additional potential targets for the attacker.
The deployment of edge devices in heterogeneous networking environments has dramat-
ically increased with the adoption of IoT technology around the globe. Along with the
expansion of IoT infrastructures came an increase in adversarial actions of variable severity,
which aimed to affect the continuity of provided services or gain access to sensitive infor-
mation, both at an individual and organizational level. Additionally, IoT ecosystems with
time-sensitive services, e.g., intelligent transportation systems, smart manufacturing or
medical care, have emerged, where the risk of imminent cyberattacks needs to be detected
in a timely manner allowing for prompt mitigation actions.

The attacks against IoT infrastructures increase as device connectivity evolves. They
become more and more sophisticated as known types of attacks develop into new forms
and combinations. Denial-of-service, malware and port-scanning attacks are closely con-
nected to IoT technology, often targeting specific hardware with known vulnerabilities,
such as edge systems bearing particular processors. The connection of “Things” to the in-
ternet exposes them to distributed attacks, where abnormal traffic originates from multiple
network sources. Frequently, IoT devices are deployed using default passwords, unpatched
exploitable firmware or present security holes in authentication and authorization mech-
anisms. This results in very weak security levels, making IoT devices tempting targets
for attackers. The plethora of hackable IoT devices presents an additional threat because
it allows attackers to formulate huge botnets. Likewise, port-scanning attacks have be-
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come more sophisticated in order to determine open ports running particular applications
and services.

Such vulnerabilities and attacks targeting services of the IoT have significant economic
and security consequences. Therefore, implementing effective and secure IoT platforms
and networks is valuable for both the industry and end-users. Within this context, a generic,
secure IoT framework was designed and implemented aiming to optimize the security in
IoT networks in a cross-layered manner, utilizing advanced methods for the detection and
mitigation of diverse types of threats along with smart tools for decision support.

The aim of this paper is to present an efficient, robust, and easy-to-use system for IoT
cyber security operators. Following a by-design security approach, the proposed system
is a platform comprised by four distinct yet cooperating components. The system compo-
nents offer the following functionality: (a) detection of potential threats and anomalies,
(b) generation of effective mitigation strategies according to the severity of detected threats,
(c) verification of SDN routing decisions along with network- and resource-related policies,
and (d) comprehensive and intuitive security status visualization and analysis (i.e., put
humans in the loop for reasoning, hypothesis testing and interference in decision making).
The above functionality is achieved by using multiple artificial intelligence (AI) and ma-
chine learning (ML) techniques. For the detection of anomalies and identification of threats,
we apply such AI and ML techniques on a model time series consisting of successive
samples of network traffic data.

1.2. Related Work

IoT system security has been a matter of extensive research by both academia and the
industry over the past several years. The dynamic nature of such a complex infrastructure
poses a significant abstraction when it comes to continuous service provision and fault
tolerance: Due to this nature, various diverse approaches were proposed. In the following
section, some indicative research on the subject, focusing on systems that use AI for IoT
cyber security, is presented. In [4], anomaly detection-as-a-Service is proposed on top
of VARYS—a technology-agnostic Monitoring-As-a-Service framework. The conducted
work addresses the detection of anomalies in an efficient way as part of a holistic system
where operators can configure monitoring and detecting services. In [5], a system titled
CAMLPAD is proposed. The platform supports data analysis and anomaly detection in
a real-time approach. It utilizes a number of ML approaches to analyze data, and then
visualizes the results in order to assist the administrator’s decision making. A holistic
approach to edge computing offloading using AI technology is also proposed in [6]. The
framework sits squarely with the technology of the industrial IoT (IIoT), in which the
need for service accuracy and low delay is prominent. Another study [7] proposed a
data-driven IoT security system. The described architecture presents a Big-Data-oriented
approach for intelligent data collection, monitoring and analysis, and security assessment,
in order to provide an end-to-end solution for a platform called “Secure IoT”. In [8], a
threat detection system for a wireless sensor network (WSN) is presented. In an attempt
to increase the network security level, a central system comprising the core, text user
interface, analysis, detection, data storage and data visualization works in conjunction
with the mobile platform subsystem that is responsible for applying passive or active
threat detection. In [9], a paradigm of using a time series analysis with deep learning is
presented. This approach leads to enhanced feature extraction, compared to traditional
analysis approaches. A method for anomaly detection using time series and deep learning
methods in cyber security applications is presented in [10]. This method demonstrated,
in a bank applications environment, the fast detection of suspicious operator activity as
soon as it was happening (during the first hour), while other methods could identify the
threat only after a long period of time (days). In [11], a method to capture the distribution
of multivariate time series of sensors and actuators under normal working conditions of
a cyber-physical system (i.e., an extensive and critical IoT ecosystem) is presented. This
work proposed a novel generative adversarial networks-based anomaly detection (GAN-
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AD) method for such complex networked CPSs. In this article [12], a low-cost method
for real-time, on-road vehicle recognition is introduced. The so called SenseMag method
implements a map of sensors and aggregates magnetic signal information each time a
vehicle arrives or departs from a sensor point. Adopting a hierarchical recognition model,
it first estimates the speed/velocity and distance between sensor nodes, and then predicts
the length of the vehicle. Contributing to the research of magnetic sensing approaches, this
article adopts several semiautomated learning techniques in order to design filters, features
and hyperparameters and achieve the highest recognition accuracy. In [13], DRA-EERS,
a dynamic routing algorithm for software-defined wireless sensor networks (SDWSNs)
is proposed, based on energy-efficient relay selection. To find the best path according to
energy-efficient criteria, first, the state-transition probability of each node is calculated and
a link weight is attributed to the network links relevant to the link cost and reward values,
while considering the location of the nodes. An adjustable coefficient is set to accommodate
the trade-off between energy efficiency and throughput, proving the algorithms’ outperfor-
mance compared to Dijkstra’s shortest path algorithm. In [14], the residual-energy aware
feature of a sensor node in time-varying wireless sensor networks is studied and modelled
as a Markov chain. The aim of the authors was to evaluate the state-transition probability of
a network node, with regard to its energy level, and then propose an energy-efficient rout-
ing algorithm. An effort was made towards showcasing how the proposed algorithm can
effectively extend the network’s lifetime while considering node-residual energy changes.
In this paper [15], a framework based on a deep attention graph convolutional network is
proposed. The aim of the paper was to address the challenge of classifying high-resolution
hyperspectral images of physical and chemical non-Euclidean structures. The authors
integrate an attention mechanism by proposing a new similarity measurement method
and design a deep graph convolutional network to extract deep abstract features of the
hyperspectral images in an attempt to distinguish similar bands from high-dimensional
spectral space, focus on important spectral information, and extract non-Euclidean fea-
tures, ultimately showcasing the outperformance of the proposed framework compared
to baselines in terms of several evaluation criteria. This paper [16] proposes a distributed
clustering algorithm to organize resources in IoT environments based on agents. In this
approach, a structure of agents is constructed, while each represents a single smart device.
Neighbouring agents are assigned to similar vectorized content, thus leading to the virtual
grouping of agents of similar functionality, which in turn renders the discovery operations
faster and more efficient in a highly dynamic IoT environment.

1.2.1. Previous Work in Anomaly Detection Techniques

Several research studies have proposed graph-based anomaly detection techniques,
which involve modelling IoT entities and their communication links as the nodes and edges
of a graph network. In [17], a graph-based anomaly detection study was described, in
which web traffic (i.e., web requests and connections to web servers) was modelled using
graphs to identify potential botnets. In [18], temporal features were gathered to identify
anomalous graph edges inside dynamic graphs implementing an attention-based temporal
graph convolutional network (GCN) model. Another dynamic graph anomaly detection
system was proposed in [19], using deep auto-encoders in combination with clustering
techniques on the network’s nodes to detect anomalies in real time. In [20], another
approach, that used a Graph Neural Network (GNN) to detect anomalies was proposed.
The interconnections of the relevant nodes, as well as numerous topological properties of
the graph, were taken into account in the computed adjacency matrix in this study. The
studies of [21,22] presented edge-level anomaly detection algorithms. The malicious edges
were examined using the density of sub-graphs, as well as structural, temporal, and content
feature extraction and a greedy search mechanism. In [23], a probabilistic approach was
used to suggest an anomalous node detection model. In [24] a comprehensive overview
of recurrent, convolutional, auto-encoder, and spatial-temporal graph neural network
techniques was provided, leading to a taxonomy of GNN processes used in various IoT
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application domains. In [25,26], agents employing a GNN model were proposed to provide
both localized monitoring in IoT networks and feature exchange in a distributed synergistic
detection mechanism. This SoA method was implemented in conjunction with an SoA
mitigation algorithm and verification tool to construct a holistic approach to security
in IoT environments. The study of [27] exploits a multi-agent algorithm to propose an
anomaly detection method, based on activity footprints. The IoT2Vec method is used to
translate usage logs and activities into high-dimensional, real-valued vectors, attempting
to group similar services’ behaviours and allow for comparisons. A multi-agent system
is implemented, enabling communication in a peer-to-peer mode. Each agent reflects the
activity of certain IoT devices and is able to move in a virtual grid space, in a way that
groups of agents moving closely and forming clusters represent normally operating devices,
whereas outcast agents suggest dissimilar unexpected behaviour.

1.2.2. Previous Work in the Mitigation of Anomalies

There are two distinct approaches to the mitigation of threats in cyber systems under
attack, including IoT networks. The first approach focuses on the mitigation of a specific
attack type or method, e.g., a sinkhole attack where the attacker causes large traffic flows to
pass from a node under their control in order to obtain data; this can be mitigated by more
secure protocols. Various comprehensive reviews contain such approaches, such as [28].
The second approach is to utilize a scheme to select the appropriate countermeasures to
the threats or attacks faced by the system based on the values of some predefined security-
related metrics. This approach allows the mitigation of attacks from multiple sources
and/or steps. These solutions can be further divided into four separate subgroups: the
first group includes approaches that measure the values of one or more KPIs but offer
no automation in terms of countermeasure selection. An example is presented in [29],
where the values for some KPIs, calculated based on multiple sets of different mitigation
action choices, are presented numerically and visually to the security operator. The second
group involves approaches that automate the mitigation of attacks using heuristic methods
based on thresholds for the values of KPIs. Such an example is presented in [30]: based
on predefined scenarios and values, the system chooses sets of predefined responses. The
third group includes approaches where the selection of mitigation actions is based on the
optimization of the value of a single KPI or transforming the problem to a single objective
problem, e.g., [31], where the authors select attack responses based on minimizing the cost
of deploying them. Finally, the fourth class includes the approaches where the selection of
mitigation actions is based on the optimization of the values of multiple KPIs which might
be antagonistic to each other but better describe the impact of the action on the system.
This approach was chosen for the proposed mitigation module while other examples are
available in [32,33].

1.2.3. Previous Work in Verification Techniques

Policy-based schemas control security incidents that occur throughout the wide de-
ployment of IoT infrastructure, such as the incident concerning the smart city domain,
which is the case in [34]. In this approach, data, wireless network topology and IoT devices
are examined for untrustworthiness considering their reporting history and the predefined
policy rules. Evidently, IoT systems are susceptible to attacks that originate from an ever-
changing heterogeneous nature, which in fact impedes the conformance to privacy and
security attributes. Of course, policy frameworks do not affect only security regulation but
also the influence other parameters with respect to the overall system’s performance. This
is the case regarding cloud-provided services. A trade-off between minimum response time,
minimum cost, ease of deployment, and adequate resources utilization within numerous
data centres formulate a policy that aims to achieve the high performance described in [35].
Service broker policy is identified as the mechanism responsible for supporting routing
decisions in the general concept of meeting user needs by allocating services in the most
optimized manner, (with respect to the aforementioned measurements). Several brokerage
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policy algorithms were proposed considering different success parameters, as presented
in [36], where three cost-aware, service-brokering algorithms and a load-balancing algo-
rithm, were proposed. The latter define policies with the intention of minimizing the
processing and response time by distributing scheduled activities in the most effective
manner. The policy-based selection of resources in the cloud was also considered in [37],
where a focus is drawn to services lifecycle management. This procedure involves a service
manager, which coordinates the services, including construction, management, reporting,
metering and/or auditing. The most important parameter to take into account is the quality
of services provided. As described, the on-demand provision of services is needed in all
scenarios of IoT development. Big Data produced by the communication of several edge
devices necessitates handling policies, which consider delay and bandwidth levels, setting
as a goal a successful equilibrium between low latency, high accuracy and generality in
order to support interoperable operation among infrastructures. Such design policy is
defined in [38], where the main components involved in fog architecture refer to the authen-
tication and authorization mechanisms, offloading management, location services, system
monitoring, resource management and VM scheduling. Analysing the data derived from
the fog operation is also a challenging task, as addressed in [39]. A policy for data analytics
is proposed, conforming to cost-efficient resource provisioning and low computational
complexity to guarantee QoS.

1.2.4. Previous Work in Visual Analytics Systems

While there are numerous approaches to detect and mitigate cyber attacks against
critical infrastructures, including IoT networks, the majority of studies fail to take into
account their integration into a single control system [40]. Data from multiple cyber
security modules can quickly become complex and large, and a user-friendly method to
effectively utilize such data is through visualization [41], which is enabled though data
mining and statistics [42]. Visualizations should provide a receptive method, enhancing
the security operators’ knowledge to allow them to discover explanations for observed
anomalous situations in the network [43]. Additionally, the application of the visualization
of cyber-security-related incidents can enhance cyber security awareness, even in non-
expert users [44] and increase threat- and security-related knowledge transfer between
users [45]. For readers further interested in this subject, there are numerous reviews on
network security visualization, such as [41–43].

1.2.5. Novel Contributions

Contrary to the current state-of-the-art approaches in this work, we provide a solution
to confront and manage security threats in IoT environments in a holistic manner, by
synergistically accommodating routing verification, anomaly detection, and mitigation
actions in IoT networks, all interconnected and visualized in an enriched, user-friendly
visual analytics module. A key feature of the proposed platform is the combination of
separate SoA techniques, which tackle the challenges of anomaly detection and mitigation
in a novel architecture enhanced with AI mechanisms. In terms of anomaly detection,
the implementation of the graph neural network model works in a distributed manner
employing a multi-agent structure, which reflects the network of IoT nodes and their
interconnections, thus enabling scalability in highly demanding and dynamic IoT ecosys-
tems. In this approach, the agents independently monitor local IoT nodes by extracting
network statistics. In addition to well-known merits of multi-agent systems, information
exchange among the network of agents, enables them to obtain an overview of their directly
attached neighbourhood, hence recognizing an imminent threat on nodes that are one
step away from them. To accommodate the low complexity of the detection strategy, the
number of agents required is customizable to the size of the underlying IoT environment.
In conjunction, a mitigation engine initiates actions implementing a multi-objective deep
reinforcement learning algorithm to find the optimal countermeasures. Aside from being
based on SoA, AI detection and mitigation principles, the proposed solution presents
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a unified verification methodology responsible for estimating the effectiveness of SDN
routing decisions, taking into account energy consumption, QoS, and thus considering the
need for resource-constrained IoT solutions.

2. Design Methodology and System Architecture
2.1. Research Design

Within the work of the SerIoT project, an extensive analysis and recording of user,
system, technical, interface and operational requirements was made. The aim was to select
the appropriate mechanisms in order to extend the current literature and innovatively
contribute to a secure-by-design IoT architecture. To this end, technical, operational and
interface requirements were based both on the project’s description of work and SoA
approaches, considering the design and implementation of each module separately. Ad-
ditionally, KPI values were selected to evaluate the system’s performance and to validate
the fulfilment of requirements and outperformance of the proposed modules in terms of
accuracy, time-efficiency, scalability, resource constraints compliance and high QoS de-
mand, when compared to competitive solutions. User requirements, gathered through
questionnaires addressed to network operators, set the base for the resourceful GUI design
of the visual analytics system. Following this approach, the overall integration strategy
was determined, ensuring the IoT platform functioned seamlessly in a coherent and logical
manner, dealing adequately with the research problem initially stated.

The following section describes the architecture of the proposed IoT cyber security
framework. The basic considerations that lead the design approach are related to the
heterogeneity of the networked devices and their limited computing power. An IoT network
allows different devices to collect and exchange data enabling multiple IoT technologies
and applications to be utilized by different users (for example citizens and companies) in
heterogeneous domains (e.g., intelligent transportation systems, industrial automation,
etc.). In such an extended IoT infrastructure, the key elements suitable for deploying
security countermeasures are edge devices. The need for device connectivity is served by a
flexible network substrate realized by a software-defined network (SDN). Software-defined
networking (SDN) technology facilitates a dynamic network configuration and central
control of the network and offers high network performance and monitoring capabilities in
such a heterogeneous field of devices. However, the established flow rules by the SDN affect
the energy consumption and quality of service (QoS) of the network, while IoT devices
and SDN elements are also susceptible to failures and attacks. In the overall landscape, we
should also consider the existence of cloud infrastructures that offer a variety of services
and run applications that use data generated from IoT devices, as well as managing the
underlying IoT infrastructures. The cloud is accessible through fog nodes, i.e., devices that
forward traffic from the SDN to the cloud and vice versa.

The proposed framework follows a layered architecture encompassing four tiers.
These are: (a) the IoT device layer, which includes several types of devices such as sensors,
IP cameras, actuators, etc., connected to the entire system through IP compatible links;
(b) the SDN layer comprised by the core and edge router devices; (c) the cloud MANO
including the fog nodes; and (d) the artificial intelligence (AI) layer, upon which the
anomaly detection and mitigation components rely. At the end of the workflow, a visual
analysis of all gathered data, reports the security status reports, detection results, mitigation
actions and node-specific information to the network operator through a comprehensive
visual user interface. Figure 1 presents an overview of the entire architecture.
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Figure 1. The architecture of the proposed system along with the SDN layer and the IoT devices layer.

The Artificial Intelligence (AI) layer includes the following main components:

1. The anomaly detection (AD) component, which utilizes a decentralized multi-agent
approach based on a graph neural network (GNN) algorithm to discover anomalous
traffic that might threaten network operation;

2. The mitigation engine, i.e., the component that allows for the mitigation of any
discovered threat by using multi-objective deep reinforcement learning to reach an
optimal decision. This includes the hypothesis testing submodule;

3. The routing verification component, which aims to verify that SDN routing decisions
are optimal regarding energy, QoS and security properties through the multi-objective
optimization employing evolutionary algorithms;

4. The runtime verification component is a supplementary, heuristic tool used for early
warnings about new types of attacks (i.e., types assaulting the system for the first time).
It monitors network and resource statistics and reports deviations when exceeding
predefined limits.

These components are presented in detail in the following sub-sections. In addition,
the front-end component, i.e., the visual analytics, is presented. This provides an integrated
dashboard to the entire system and supports different views. It uses a variety of analytics
and visualization techniques to process network and fog resource data, and anomaly
detection and mitigation results. The visual analytics dashboard allows the end user to
visually inspect the network condition, manually perform mitigation actions or receive
notifications about important events such as attacks, routing and resource violations.

In addition, the proposed architecture embeds several elements with key functionali-
ties described as follows. The data collection infrastructure is a data pool that serves all
AI components. It is the database of the system and stores different types of network data
collected and aggregated by various layers, devices and subsystems. The forwarders are
hardware/software devices, responsible for forwarding packets in the software-defined
network (SDN). Forwarders that connect either IoT devices or the fog nodes to the SDN
communication substrate are referred as edge forwarders. Working closely with the con-
troller, they forward packets according to the SDN rules received by the controller. The
controller is a software component, responsible for packet forwarding in the data plane of
the SDN. This enforces the forwarders to apply mitigation measures. The fog nodes provide
access to flexible computer systems aiming to engage either an IoT service or component
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included in the proposed security framework. They are able to place and control compute
services as virtual machines (VMs) distributed in edge systems.

2.2. Multi-Agent Anomaly Detection

Intrusion detection tasks are commonly performed in a centralized manner, which
generally aims to identify multiple- or single-type [46] threats, i.e., binary classification ap-
proach. We propose a distributed AI architecture for the classification of attacks, consisting
of agents implemented in multiple points across the network, in order to perform anomaly
detection in a synergistic manner. Our goal is to perform the local monitoring of network
nodes and their corresponding IoT edge devices, while exchanging information regarding
observed behaviours and detected anomalies. This parallelization of tasks caused by the
localization of anomaly detection distributes the processing and energy cost, and reduces
the total required time to identify abnormal network behaviour.

The proposed approach combines dynamic graph anomaly detection characteristics
in conjunction with window-based events. The main idea of the approach encompasses a
detection algorithm bound to a time window, so as to indicate an abnormal pattern in the
input graph data. Several previous instances of graph data are compared with this method
to point out whether an anomalous event takes place. Graph data involve relations among
entities, and traffic statistics communicated through the interconnection links. The merits
inherited by graph-based anomaly detection techniques are exploited in order to powerfully
represent the inter-dependencies as links and correlations among IoT-related entities in a
dynamically changing environment. This causes a significant advantage to be exploited—
the inability of the adversarial user to identify the entire targeted network infrastructure. To
this end, the swarm of agents holistically monitors the network labelling the node’s, edge’s
and neighbour’s attributes, allowing for a neighbouring anomaly detection, ultimately
identifying distributed cyberattacks originating at multiple distant points.

Cooperation among agents is depicted by the representation of their relations. Towards
this purpose, GNNs are adopted. For each agent, we define a graph as a tuple G = (V, E)
where V = {vi}I = 1:N is the set of nodes and each vi is a node’s attribute, while E = {ek}k = 1:N
is the set of edges, where each ek is the edge’s attribute. Supporting co-operation among
the interconnected network devices, the proposed anomaly detection method offers several
of the advantages generally created by the multi-agent systems. To address cyber threats
as denial-of-service attacks (TCP SYN, UDP Flood), the AD module engages a network of
agents, upon which it reflects the network of involved devices, their inter-communication
links and significant traffic characteristics. Each agent is installed on a monitoring node of
the network to implement the GNN algorithm. The algorithm takes a series of samples of
traffic statistics as inputs, which are collected in successive time windows, and processes
the time series data to classify each chunk as benign or abnormal eventually reporting a
probability score. Traffic information deriving from neighbouring agents is also fed to the
algorithm, which in turn results in a probability score describing the neighbour’s score of
infection. To this end, each node and edge are associated with a feature vector.

Figure 2 shows the dataflow inside the proposed framework: the raw network data
generated in the IoT devices layer are forwarded via the router devices in the SDN layer to
finally reach the agents. The agents are able to fetch the required data either by filtering
traffic statistics from the data collection infrastructure or by enabling traffic collectors
directly at significant network interfaces, mainly addressing the needs of each IoT In-
frastructure scenario. The captured time series data are processed to extract the relevant
traffic features and train the GNN algorithm to detect a variety of network anomalies,
such as TCP SYN, UDP flood, sinkhole or SSL attacks caused by unauthorized connection
attempts. In this article, we demonstrate the detection results of a TCP SYN attack. When
the trained model is produced and loaded, each agent is run, independently performing
near-real-time detection.
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Figure 2. Dataflow for the cross-layer anomaly detection module.

The interaction of the multi-agent anomaly detection (AD) module with the rest of the
components is depicted in Figure 3. The multi-agent AD module directly communicates
with the data collection infrastructure, the fog nodes (fog MANO: fog management and
orchestration), and the visual analytics components.

Figure 3. (a) Modelling of the IoT network as a graph G(V, E) that enables the application of
computational processes for anomaly detection, analytics, mitigation and visualization; (b) workflow
between the components of the artificial intelligence layer, the fog substrate and the communication
substrate (SDN).

As explained, the detection algorithm uses as input data network-related statistics
which can be retrieved from either the fog MANO, with the implementation of a traffic
capturing mechanism, and via a direct analysis of specific network interfaces or the data
collection infrastructure. The multi-agent anomaly detection analyzes abnormal data,
whilst the visual analytics component, through the data collection infrastructure activity,
illustrates information for the network operator that can aid in efficient decision making.
The mitigation engine receives the results of the analysis and determines the optimal
mitigation actions. The network operator is finally instructed to apply the needed mitigation
actions to the SDN controller, which enforces the forwarders to comply. This process is
illustrated in Figure 3.
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2.2.1. Multi-Agent Anomaly Detection Model Architecture

We constructed a graph, G(V, E), where V represents the set of nodes and E the set
of edges of the network. Each graph neural network model, implemented by each agent,
comprises two multi-layer perceptrons for edge and node classification. In detail, the edge
deep neural network takes the traffic statistics of neighbouring nodes as inputs and updates
the edges’ feature vector, whereas the node deep neural network is fed by the adjacent
updated edge features along with its own features, in order to update the feature vector of
each particular node.

This process creates a new value of the vector, a value that is treated as a new sample
of a time series. A vector defined as rj

i = [psi, pri, bsi, bri, duri, timestampi] contains records
with multiple indexes, where j ∈ {V, E}. The vector contains records, such as “ps” (packets
sent) that defines the number of packets sent from one node/edge to another in a certain
period of time (1 s) and “pr” (packets received), defining the number of packets received
from a node in a predefined period of time. Moreover, the value “bs” (bytes sent) defines
the number of bytes sent from one node/edge to another in a certain period of time, while
“br” (bytes received) shows the number of bytes received from a node. Furthermore, the
value “dur” (connection duration) depicts the connection time in which two nodes/edge
exchange data and a timestamp which consists of a datetime format. Finally, ∆t is defined
as ∆t ∈ [t1, t2], R∆t is defined as R∆t =

{
rj

i∀timestamp ∈ ∆t
}

.
Probability scores are reported to spread the knowledge regarding the status of the

environment (neighbouring nodes) and the status of a node itself. A single node reveals
a probability of the existence of an abnormality related to itself and to its interconnected
nodes. The purpose of this action is to take advantage of the transferred information in such
a way as to obtain a clear view of the environment and be able to protect against attacks
diagnosed in the near neighbourhood. Hence, the problem arises when multiple results
coming from a number of nodes, indicate diverse values of the probability of abnormal
behaviour for the same neighbour. Thus, a rule must be applied to consolidate the values
into one single result and feed the mitigation engine accordingly.

To solve this problem, we considered a model-based aggregation, taking place on a
central agent, which gathers results, and then reports a single probability value for the
set of agents to the data collection infrastructure. We adopted a logit model to combine
the probabilities derived from several sources. Equation (1) shows the adopted aggrega-
tion model:

p̂G(α) =

[
∏N

i=1

(
pi

1−pi

)1/N
]α

1 +
[

∏N
i=1

(
pi

1−pi

)1/N
]α (1)

G is used to denote the geometric mean. The unknown quantity “a” is used to indicate
the confidence of forecasting the probability score, which we assume to be equal for
every node in the network. When “a” reaches the value of 1, we assume that the GNN’s
architecture provides a reliable forecasting.

Following this principle, the complexity of IoT infrastructure is better accommodated,
profiting from the structural representation of features in a localized monitoring solu-
tion. Fitting into multiple IoT network topology scenarios, the agents can be installed on
edge gateways, servers or SDN forwarders, whereas the edges represent connection links
between them. Figure 4 depicts the architecture of the proposed Multi-Agent Anomaly
Detection system.
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Figure 4. In subfigure (A), the graph neural network architecture is shown, comprising two multi-
layer perceptrons, both for edge and node deep neural network implementation. Edge deep neural
network takes the features of neighbouring nodes as inputs and updates the edge feature vector,
whereas the node deep neural network is fed with the adjacent updated edge features, so as to update
the feature vector of each particular node. In subfigure (B), the pointer network architecture is shown,
comprising the encoder m, decoder and attention components that interact to reach a decision.

A set of attributes is calculated for the node’s feature vector, extending the authors’
previous work [26]. In the proposed MAS, the agents adopt an alternative to the frame-
work constructed in [47], in order to push forward the collected feature vector values
to their directly attached neighbours. Essentially, each agent calculates the set of edge
feature values locally for all its active connections pointing to different neighbours, and
subsequently stores this information, processing it along with feature values deriving from
its environment. Hence, x iterations of this propagating procedure collect information
regarding x-distant nodes (neighbours).

When profiling the network infrastructure in which the proposed algorithm applies,
we consider a three-layered IoT network solution consisting of the IoT edge devices, fog
substrate and the cloud nodes. In line with the most significant IoT application require-
ments, time-constraint services run on the side of the fog to avoid latency and processing
power when data are gathered on a single central unit. This allows the agent to run on
a virtual machine or container, appearing as a fog node requiring a minimum resource
allocation. To capture network flows, the agent detects a network interface using an IPFIX
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collector or NetFlow mechanism. Conforming to these scenarios, each agent operates in a
distributed manner, analyzing a decreased amount of data compared to the whole transmit-
ted traffic, and then exchanging generated features with its directly attached entities. This
procedure is repeated as a time series event for a predefined time-window duration. The
experiments throughout this article refer to a 5 s time window, thus the rate of the samples
in the time series is 1 per 5 s.

2.2.2. Network Identifiers Extraction

Connection-wise data are divided into node-wise categories, which in turn result
in nodes’ and edges’ attributions. The values of the characteristic features indicate the
anomalous or benign existence over the network nodes bearing the outlier score. To this
end, the attributes of the proposed feature vector are presented in Table 1.

Table 1. Features used for the anomaly detection and the mitigation engine components.

Anomaly Detector Features

Time-related entities Start time, duration

Header-related entities FIN/SYN/RST/PSH/
ACK/URG/CWE/ECE flag counts, Fwd Header Len

Flow-related identifiers Src IP, Dst IP, Dir, Label

Payload-related entities

Tot Fwd Pkts, Init Fwd Win Byts, Subflow Fwd Byts,
Flow Pkts/s,

Flow Byts/s, TotLen Fwd Pkts, Fwd Pkts/s, Subflow
Bwd Byts, Fwd IAT Tot

Mitigation Engine Features

CVSS Score

Common Vulnerability Scoring System (CVSS) is an
open-industry standard for assessing the severity of a

cyber security vulnerability [48]. A CVSS score of 10 for
a single vulnerability represents the highest severity:

CVSS Score = 10−mean(CVSSalldetectedvulnerabilities)

ROSI Score

Return on security investment score (ROSI) calculates an
index to evaluate the trade-off between the efficiency

and the cost of a mitigation plan [49]:
ROSI Score =

AnnualExpectedLoss−AnnualResponseCost
AnnualResponseCost+FixedAnnualIn f rastructureValue

Coverage Score
The coverage score of a mitigation action is calculated as
the percentage of the number of vulnerabilities it covers

to the number of the total active vulnerabilities.

Deployment Cost Score

This KPI evaluates the deployment costs of mitigation
actions by taking into account the mitigation

deployment time and the importance of the device (as
assessed by the network security operator): Deployment

cost = Deployment Time * Device importance

The feature selection process was based both on previous studies [50] and on testing,
which allows estimating the significance and relevance of each field in the abnormal traffic,
elaborating on each category.

Time-related entities include start time, which refers to the first timestamp of each
connection and the duration of each link, measured in microseconds.

Header-related entities include FIN Flag int, indicating the number of packets with
FIN flag and, likewise, SYN, RST, PSH, ACK, URG, CWE, ECE flags. Fwd Header Len
denotes the length of the forwarded packet’s header.

Flow-related identifiers comprise Src IP, which describes the source IP address of
the flow and Dst IP its destination IP. Fields denoted as Dir outline the direction of the
communication and finally Label annotates the flow as normal or abnormal.
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Payload-related entities include Tot Fwd Pkts, indicating the total number of packets
in the forward direction transmitted over the link; Init Fwd Win Byts refers to the total
number of bytes sent in initial window in the forward direction; Subflow Fwd Byts denotes
the average number of bytes in a sub flow in the forward direction; Flow Pkts/s refers to the
number of flow packets per second; Flow Byts/s measures the number of bytes per second;
TotLen Fwd Pkts indicates the total size of the packet in the forward direction; Fwd Pkts/s
indicates the number of forward packts per second; Subflow Bwd Byts refers to the average
number of bytes in a sub flow in the forward direction; and lastly, Fwd IAT Tot indicates
the inter-arrival time, the total time between two packets sent in the forward direction.

2.3. Threat Management and Mitigation

The scope of the mitigation engine module is to provide mitigation actions against
threats or when an attack to the network is detected based on AI. The main functionality of
this component, is the automated decision of mitigation action. The anomalies detected
by the anomaly detection module are used as an input, while the manual addition of
mitigation actions can be performed from the visual analytics module. The main output of
the component, i.e., mitigation actions, are sent to system and saved as historical data.

Additionally, the mitigation engine enables the hypothesis testing submodule. This
submodule allows the operator to perform hypotheses via ML algorithms on the perfor-
mance of different mitigation actions using a tool accessible through the visual analytics
module. The user can access past or current mitigation action sets and produce KPI esti-
mates for new or modified mitigation actions. Moreover, the statistical significance of the
KPIs estimates is calculated and reported. The module was implemented in Python, while
the Pytorch framework was used for the pointer networks.

2.3.1. Mitigation Engine Module

For each of these attack or threat detected by the system, multiple mitigation actions
might be available but a single action must be chosen. An AI solution was developed using
reinforcement learning via a DNN architecture called pointer networks [51]. We modified
the architecture to select a set of countermeasures to be applied, based on optimizing
multiple security-related KPIs, while taking into account constraints. Separate DNNs were
used to solve the problem separately for each KPI. A decomposition method called the nor-
malized normal constraint method [52] uses the initial solutions to transform the problem
into a single objective, also solved by a pointer network. This solution is transformed back
to result in the Pareto solution set for the entire multi-objective optimization problem.

2.3.2. Hypothesis Testing Submodule

The purpose of this module is to allow the system operator to ascertain if a set of
modified mitigation actions applied to the system are different from the existing mitigation
actions in terms of KPI values. A clustering analysis was performed using the KPI values
from the original and modified mitigation actions as inputs, along with KPI values from
past states of the network. The tool checks if (a) the starting and modified mitigation
set results belong to the same or different clusters and (b) if the clusters produced are
statistically different. The clustering of the KPI values is performed using the HDBScan
algorithm while the Sigclust algorithm tests for statistically significant differences between
the different sets. Additional details on the hypothesis testing sub-module are available
in [53].

2.4. Routing Verification

Recent advances in SDN technology presented frameworks for effective SDN network
management concerning QoS and security [54]. In this section, a unified verification
methodology is presented that estimates the effectiveness of the SDN routing decisions
by taking into account energy consumption, QoS and security. In brief, real-time network
metrics that concern energy, QoS and security information are collected from the SDN
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subsystem: This information is used for the calculation of specific routing objectives,
estimating the importance of a routing decision in terms of these metrics. By employing
multi-objective optimization using evolutionary algorithms, a set of the best solutions (i.e.,
flow rules) is quickly identified, which is then compared with the flow rules created by the
SDN, in order to provide a deviation metric.

The presented routing verification methodology models the SDN subsystem of an IoT
network as an undirected graph, G = (N,E), where N indicates the set of the nodes that
represent the forwarders of the SDN and E is the set of edges that refer to the communication
links between two forwarders. Traffic data are collected from the SDN forwarders and
their links that concern security, QoS and energy consumption information. In more detail,
delays between forwarder connections are used, corresponding to the time needed by
packets traveling from node to node. The energy usage within the forwarder per packet
is collected as a metric for energy consumption. Regarding the security, each forwarder
is characterized by two values representing the confidence and sensitivity of forwarders.
Confidence represents the (inverse) probability that the forwarder is infected by malware,
while the sensitivity measures how sensitive a forwarder is with respect to different aspects
of importance (for example forwarders, which are central in the network, and thus process
large amounts of flows and have a high sensitivity.

The aforementioned QoS, energy consumption, and security metrics are used to
estimate the total energy consumed, the delays experienced in the network, and how
many sensitive and confidence forwarders are included for all the alternative paths of
forwarders for the communication between two IoT devices. The optimal path should
(1) reduce energy consumption in the network, (2) improve the network QoS, (3) avoid
low-confidence forwarders, and (4) protect sensitive forwarders from possible malware
infections. These objectives might be contradicting, e.g., the best route for protecting
sensitive forwarders might be comprised of a large number of forwarders, thus inducing an
extra delay that lowers the QoS. In order to optimize the above objectives simultaneously,
our methodology is based on multi-objective optimization approaches that may identify
a set of optimal solutions. The solutions included in this set are called Pareto optimal.
Without additional subjective preferences regarding the significance of the optimization
objectives, all the solutions within the Pareto front are considered as equally effective. Since
the number of all the available paths can be very large, i.e., O(n!), in the complete graph of
order n, the estimation of Pareto front by calculating all of the available paths is not feasible
for realistic SDN networks, where the number of forwarders may be up to some hundreds
of forwarders.

In order to quickly estimate the Pareto optimal solution set, a multi-objective routing
optimization based on evolutionary algorithms is incorporated in our methodology. Evolu-
tionary algorithms are able to efficiently produce solutions in computations problems using
robust approximation models by iteratively optimizing a set of possible solutions called a
population. The population is evolved by applying a number of genetic operators to pro-
duce a new population. In our approach, a possible solution is represented by a sequence
of nodes in the graph representing the forwarders of the SDN network. Each valid solution
(i.e., there is a communication link for each pair in the sequence) is characterized by four
objectives. The population is evolved using the multi-objective evolutionary algorithms by
decomposition (MOEA/D) [55]. MOEA/D finds optimal solutions for each objective, and
then evolves the initial population based on these solutions by applying operators.

2.5. Runtime Verification

Policy-based schemas control security incidents which occur throughout the wide
deployment of IoT infrastructure, such as the schema concerning the smart city domain,
which is the case in [56]. In addition, policy frameworks also influence other parameters
with respect to the overall system’s performance. A trade-off between minimum response
time, minimum cost, ease of deployment, and adequate resources utilization within the
numerous data centres, formulate the high-performance policies described in [35]. The
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presented runtime verification methodology aims to verify a number of security policies
related to the runtime behaviour of the IoT infrastructure. It monitors network and resource
statistics (e.g., connections per second) and reports deviations when exceeding predefined
limits. In more detail, real-time data are collected from IoT networks such as SDN traffic
data, fog resource statistics, detection times of anomalies and processing times of the
various SerIoT components (e.g., data collection, formal verification, anomaly detection,
etc.). This information is used for the calculation of security policies formulated as key
performance indicators (KPIs), which validate the confidentiality, integrity and availability
of security properties. These KPI values enable network operators to define different
policies based on the demands of the use cases of the network. For example, when setting
a low value for the ‘packet per second’ constraint, more connection links are reported.
The percentage of deviation for each of the policies is estimated and reported to the IoT
network operator.

2.6. Visual Analytics

The visual analytics module allows the end user of the proposed system to monitor
different aspects of the network as well as the results of the components that participate in
the system. More specifically, the user is able to monitor the network topology, network
traffic, results of the multi-agent anomaly detection module, results of the verification
module, mitigation actions that are deployed in the network, as well as statistics from the
honeypots and devices that are contained in the network. In order to visualize the above
aspects, the visual analytics consumes the data from the system’s database.

Another usage of the module is the interaction of the user with the network by
applying manual mitigation actions using a REST API provided by the mitigation engine.
Additionally, by using the same API, the end user is able to access the hypothesis testing
submodule in order to investigate how different mitigation actions would affect the network
in terms of KPI if they were deployed on the network. Moreover, the visual analytics
module can be used for interactions with the agents of the multi-agent anomaly detection
module by starting or stopping agents that are deployed on the network. Figure 5 shows
the dashboard, i.e., the user interface provided by the visual analytics module.

The dashboard of visual analytics contains information regarding the security status
and QoS of the network, fog resource usage information about the mitigation KPIs, as well
as the mitigation actions that have been applied in the network. Moreover, the user is able
to see the active anomaly, mitigation and constraint violation events. Furthermore, the
user is able to monitor the traffic of the network on the topology graph. In the graph, the
anomalies of the multi-agent anomaly detection and the mitigation action are also depicted.

Additionally, the user is able to see more information for each node by clicking on
them, and can also apply a mitigation action on this node. Finally, the user is able to move
the node by using the hypothesis view tool and run a hypothesis test for the selected node.
Another view of the visual analytics is the historical data view, which features historical
data of the network traffic as well as anomaly results, and it can be used to compare
the multi-agent anomaly detection with the ground truth and a centralized approach of
detection. The user is able to select the start and end date and see the network traffic and
the anomaly results in this period. The devices views contains statistics regarding the IoT
Endpoint, the forwarders, the fogs and the honeypots that exists in the network. Moreover,
in the hypothesis view the user is able to run hypothesis test. The user is able to build
a hypothesis through the definition of mitigation actions on the nodes and then test the
hypothesis to investigate whether the KPIs improve compared to the initial values; the
results of the hypothesis are depicted in the KPI Metrics. The user is able to apply all of
the mitigation actions of the hypothesis to the real network. The agents view shows all
the agents that are deployed in the network, and the user is able to start and stop their
detection functionality.
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Figure 5. The user interface provided by the visual analytics module, functioning as the dashboard
of the entire system. It monitors the proposed system and displays real-time information about the
IoT network security status.

3. Experimental Results

In the following section, the experimental results concerning the anomaly detection
and mitigation module of our solution are presented. In both cases, the proposed algorithm
results are compared against other algorithms commonly used for the same tasks.

3.1. Anomaly Detection Results

The evaluation of the anomaly detection schema was conducted against a real IoT
dataset captured online [34]. The dataset includes a number of cyber attacks such as denial-
of-service, UDP flood, and port scanning. Several cases of DoS are captured within separate
files. In the examined dataset, the attack originated from multiple IPs inside the range
111.0.0.0/8 to the victim device 192.168.0.24. The target receives a flood of TCP connections
to a specific port (19604). By applying a wireshark filter, the abnormal traffic is excluded
and annotated for training purposes. In order to address the overfitting issue derived from
learning a single destination IP address, the dataset used for testing involved a different
range of source IP addresses originating from the 222.0.0.0/8 network. The victim’s IP
address and port number was 192.168.0.13:554.

The algorithm was trained in 100 epochs for a configurable time-window of five
seconds of incoming traffic. The scores of the metrics used to evaluate detection efficiency,
area under the curve (AUC), and the accuracy of detection are presented for the DoS attack
dataset. In a separate sub-scenario, random normal and abnormal devices were selected to
simulate a node’s unavailability by going offline. The aim was to indicate the performance
of the proposed method in detecting outlier cases and to evaluate the results compared with
other anomaly detection mechanisms. The latter approaches comply with relevant research
on the field of network intrusion detection. Despite illustrating the DoS attack, the adopted
algorithm managed to successfully detect both port-scanning and UDP flood attacks, also
prompting higher detection results compared to the remaining methods. Table 2 shows the
robustness of the proposed method in detecting the abnormal devices in both sub-scenarios.
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Table 2. DoS attack evaluation results.

Anomaly Detection

All Devices Online Offline Devices

Detection Method ROC Score Accuracy ROC Score Accuracy

GNN 98.90 99.00 98.90 99.00
SVM 87.26 87.26 85.02 85.02

Decision Tree 97.70 97.97 96.23 96.23
Random Forest 96.96 96.96 94.03 94.03

Figure 6 illustrates the detection efficiency against a denial-of-service attack. All
devices are online sending malicious and benign traffic. The diagram depicts lower ROC
scores for the remaining centralized machine learning methods, while the proposed method
accurately detects the attack benefiting from the feature vector enhancement. In Figure 7,
the detection efficiency against the denial-of-service attack is represented. In this sub-
scenario, a number of devices appears to be unavailable while impacted by the attack.
The diagram depicts the decreasing ROC scores for the remaining centralized machine
learning methods.

Figure 6. Detection efficiency against the denial-of-service attack with all devices online.

Figure 7. Detection efficiency against the denial-of-service attack, with a number of devices unavail-
able while impacted by the attack.
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Information exchange among neighbouring agents optimizes detection when offline
devices appear. Classic anomaly detection schemes fail to accurately detect the abnor-
malities, and due to their centralized behaviour, neighbour nodes remain unaware of the
attached nodes’ infection. Initially, all devices are online sending benign traffic, while
afterwards the attack occurs. Evidently, the diagram depicts a higher accuracy level for the
proposed algorithm, while lower ROC scores are associated with the remaining ML meth-
ods. Detection performance benefits from feature vector enhancement. In the meantime,
fewer monitoring nodes, as a simulated side-effect of the attack, significantly decrease the
detection rates of the remaining algorithms.

3.2. Mitigation Engine Results

For the scenario examined for the validation of the mitigation engine, it is assumed
that network is threatened by multiple attacks and some of the network components
are already affected by malicious software. Additionally, it is assumed that the anomaly
detection component detects anomalies in the traffic of the following 41 devices: four
routing controllers using the Open Network Operating System (ONOS), six virtual switches
using the Open vSwitch, 20 IP cameras, 10 temperature control sensors and 1 server
operating with Windows 10. The performance of the mitigation engine is presented in
Table 3 by means of the values of four KPIs. The vulnerabilities for each device along with
their KPI-related values are presented in Table 4.

Table 3. Mitigation engine results.

Mitigation Engine

Algorithm CVSS Score
(MIN)

Deployment
Cost (MIN)

Coverage
Score (MAX)

ROSI
Score (MAX)

Pointer
Networks 1.47 7.07 100 2628

NSGA—II 2.86 12.03 76.09 2092
MOEA/D 2.61 11.65 92.39 3005

Table 4. Mitigation engine input.

Device Vulnerability
ID

Vulnerabilities
Covered by
Available

Mitigations

ROSI Score
(Percent)

Mitigation
Deployment

Cost

SDN Switch
with

Openvswitch

CVE-2017-9265
(CVSS 7.5),

CVE-2018-17205
(CVSS 5)

2 39

Honeypot 25,
Block 10,

Blacklist 15,
Block Port 18

IP Camera

CVE-2018-19081
(CVSS 4.3),

CVE-2018-19082
(CVSS 10),

CVE-2018-19083
(CVSS 7.5)

3 19

Honeypot 12.5,
Block 5,

Blacklist 7.5,
Block Port 9

SDN Router
with ONOS

CVE-2018-
1000615 (CVSS

5),
CVE-2018-12691

(CVSSS 4.3)

2 39

Honeypot 37.5,
Block 15,

Blacklist 22.5,
Block Port 27

Windows PC

CVE-2019-1368
(CVSS 2.1),

CVE-2019-1359
(CVSS 9.3)

2 59

Honeypot 50,
Block 20,

Blacklist 30,
Block Port 36
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The purpose of the component is to find an optimal set of mitigation actions by mini-
mizing the CVSS and the deployment cost score and maximizing the ROSI and coverage
score while maintaining two constrains: a CVSS score lower that 5 (max value is 10) and a
coverage score higher than 50%.

Additionally, the results for two algorithms, MOEA/D and the non-dominated sorting
genetic algorithm II (NSGA-II) are examined. Both of these AI algorithms belong to the
family of evolutionary algorithms: these share the common characteristic of effectively rep-
resenting numerical knowledge, efficiently producing solutions in computationally difficult
problems. Due to these reasons, they are commonly used to tackle multi-objective prob-
lems. The DNN model was trained for 50 epochs on synthetic data, while the evolutionary
models were implemented using a solution population of 100, evolving for 50 epochs.

As seen in Table 3, the pointer network outperforms the other two approaches: It finds
the solutions with the highest coverage, ROSI scores and the lowest deployment cost and
CVSS scores. Finally, the system needs to propose a single decision: in this experiment, we
first scaled the KPI results to [0,1], and then to a single value using weighted decomposition
with equal weights (w = 0.25). The solution with the larger value was chosen for each
algorithm. The pointer network resulted in a solution with deployment cost of 7.07,
vulnerability score of 100%, CVSS score of 2.9 and ROSI score of 2628%. It outperforms
both of the other algorithms in terms of vulnerability, deployment cost score and ROSI
score while having a slightly worse performance in terms of the CVSS score. The NSGA-II
approach resulted in a solution with deployment cost of 11.97, a vulnerability coverage
score of 94.48%, CVSS score of 2.91 and ROSI score of 2514%. The MOEA/D approach
resulted in a solution with deployment cost of 11.53, vulnerability score of 57.61, CVSS
score of 2.75 and ROSI score of 1666%.

4. Discussion

This paper presents a framework that manages the security of IoT networks. The
proposed system aims to support extended IoT ecosystems in a unified, universal and
holistic way. We followed a design approach aiming to lead to a universal solution that
may support the majority of IoT ecosystems. According to this approach, the IoT devices
are connected to edge devices, which provide access to an SDN, that acts as a smart commu-
nications core of the ecosystem. In this ecosystem, artificial intelligence (AI) algorithms are
implemented by agents and deployed at the edge devices, according to a distributed model.

The agents create samples of network traffic data at regular time intervals. The samples
are actually vectors that incorporate information on the specific node and the neighbouring
nodes. The samples form a time series, which is analyzed by the AI components, which
then derive a forecast, i.e., an estimation of the probability that the specific node is under
attack. The AI algorithms provide the means for cyber attack detection. For the detection
of anomalies associated with new types of attacks, which have yet unknown patterns of
traffic, the system is backed by the verification tool. Following a successful identification
of a cyberattack, the mitigation engine module selects and launches the optimal actions
and countermeasures to mitigate the threat. The system also includes visual analytics
functionality as well.

Experimental results showed that the AI methods supporting the various components
of the network produce better results compared to other algorithms and methods commonly
used for the same tasks. The system was deployed and showcased in real conditions,
verifying that it handles challenges such as large-scale IoT networks or systems that requires
low latencies and poor resource utilization. It was demonstrated in several and different
applications during the period 2019–2021. Among them, we may mention its application
for the protection of IoT infrastructures on automated vehicles, which represent a class
of typical high-risk systems when receiving a cyber attack. In this scenario, we used our
solution to allow rerouting tests in vehicular communication [57]. The overall aim in
this case was to ensure secure and reliable communication among various components of
connected intelligent transportation systems (C-ITS). In this context, we demonstrated fleet
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management and smart intersection scenarios, where vehicles equipped with onboard units
(OBU) interact with each other and with roadside units (RSU) to accomplish an optimal
flow of traffic, under cyber attacks such as denial-of-service (DoS) and other types.

The overall design approach for this system was oriented to openness and universality,
i.e., the ability to support extensive IoT infrastructures at various diverse application
domains; with minimal or even zero effort for re-configuration or customization. Another
important feature of the system is its intrinsic ability to learn how to mitigate new types
of attacks, based on the embedded machine learning process. The system achieved the
above requirements.

The above features suggest that the system can outperform in a variety of applications
under various unknown and novel types of attacks. As far as the future evolution of the
system is concerned, we envision a wide range of potential applications. For example,
we are currently envisioning the deployment of an extensive simulation environment (a
next-generation cyber range) in order to replicate real-world IoT networks and services,
thus evaluating further in a variety of IoT infrastructure models each of the developed
components in several cases of distress. Furthermore, we consider developing containerized
versions of the anomaly detection, mitigation and routing/runtime verification algorithms,
which will be exposed for penetration testing in multiple networking infrastructures and
OS systems. A further advancement in the detection algorithm to include topology agnostic
features is also under study, in an attempt to enable different IoT environments to benefit
from the proposed holistic solution.

Author Contributions: Conceptualization, A.P., S.P., A.D. and D.T.; methodology, S.P., A.D. and D.T.;
software, A.P., A.M., K.P. and T.I.T.; validation, E.V.K. and S.P.; writing—original draft preparation,
A.P., E.V.K., A.M., K.P. and T.I.T.; writing—review and editing, E.V.K. and A.D.; visualization, A.P.
and T.I.T.; supervision, D.T.; project administration, E.V.K. and A.D. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the European Union, Grants No. 780139 and No. 833955.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in IEEE Dataport
at https://doi.org/10.21227/q70p-q449.

Acknowledgments: This work was supported by the European Union’s Horizon 2020 Research
and Innovation Programme, through project “SerIoT—Secure and Safe Internet of Things” under
Grant Agreement No. 780139 and project “SDN-microSENSE: SDN—microgrid reSilient Electrical
eNergy SystEm” under Grant Agreement No. 833955, during the period 2019–2021. The opinions
expressed in this paper are those of the authors and do not necessarily reflect the views of the
European Commission.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Gartner Global Research and Advisory Company. Leading the IoT. Available online: https://www.gartner.com (accessed on

6 April 2021).
2. Ericsson. Cellular Networks for Massive IoT, White Paper. Available online: https://www.ericsson.com (accessed on

6 April 2021).
3. McAfee. The Hidden Costs of Cybercrime. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-

hidden-costs-of-cybercrime.pdf (accessed on 29 October 2021).
4. Mobilio, M.; Orr‘u, M.; Riganelli, O.; Tundo, A.; Mariani, L. Anomaly detection as-a-service. In Proceedings of the IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, 27–30 October 2019;
pp. 193–199.

https://doi.org/10.21227/q70p-q449
https://www.gartner.com
https://www.ericsson.com
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf


Electronics 2022, 11, 529 22 of 24

5. Hariharan, A.; Gupta, A.; Pal, T. Camlpad: Cybersecurity autonomous machine learning platform for anomaly detection. In
Proceedings of the Future of Information and Communication Conference, San Francisco, CA, USA, 5–6 March 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 705–720.

6. Sun, W.; Liu, J.; Yue, Y. AI-enhanced offloading in edge computing: When machine learning meets industrial IoT. IEEE Netw.
2019, 33, 68–74. [CrossRef]

7. Roukounaki, A.; Efremidis, S.; Soldatos, J.; Neises, J.; Walloschke, T.; Kefalakis, N. Scalable and configurable end-to-end collection
and analysis of IoT security data: Towards end-to-end security in IoT systems. In Proceedings of the IEEE Global IoT Summit
(GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6.

8. Lasota, K.; Bazydło, P.; Kozakiewicz, A. Mobile platform for threat monitoring in wireless sensor networks. In Proceedings of the
3rd IEEE World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14 December 2016; pp. 106–110.

9. Zhipeng, S.; Yuanming, Z.; Jiawei, L.; Jun, X.; Gang, X. A novel time series forecasting model with deep learning. Neurocomputing
2020, 396, 302–313. [CrossRef]

10. Colò, G. Anomaly detection for Cyber Security: Time Series Forecasting and Deep Learning. Int. J. Sci. Res. Math. Stat. Sci. 2020,
7, 40–52.

11. Li, D.; Chen, D.; Goh, J.; Ng, S. Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series.
In Proceedings of the 7th International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms,
Systems, Programming Models and Applications on the ACM Knowledge Discovery and Data Mining Conference, London, UK,
20 August 2018.

12. Wang, K.; Xiong, H.; Zhang, J.; Chen, H.; Dou, D.; Xu, C.Z. SenseMag: Enabling Low-Cost Traffic Monitoring using Non-invasive
Magnetic Sensing. IEEE Internet Things J. 2021, 8, 16666–16679. [CrossRef]

13. Ding, Z.; Shen, L.; Chen, H.; Yan, F.; Ansari, N. Energy-efficient relay-selection-based dynamic routing algorithm for IoT-oriented
software-defined WSNs. IEEE Internet Things J. 2020, 7, 9050–9065. [CrossRef]

14. Ding, Z.; Shen, L.; Chen, H.; Yan, F.; Ansari, N. Residual-Energy Aware Modeling and Analysis of Time-Varying Wireless Sensor
Networks. IEEE Commun. Lett. 2021, 25, 2082–2086. [CrossRef]

15. Bai, J.; Ding, B.; Xiao, Z.; Jiao, L.; Chen, H.; Regan, A.C. Hyperspectral Image Classification Based on Deep Attention Graph
Convolutional Network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [CrossRef]

16. Forestiero, A.; Papuzzo, G. Agents-based algorithm for a distributed information system in Internet of Things. IEEE Internet
Things J. 2021, 8, 16548–16558. [CrossRef]

17. Tran, M.C.; Heejeong, L.; Nakamura, Y. Abnormal web traffic detection using connection graph. Bull. Netw. Comput. Syst. Softw.
2014, 3, 57–62.

18. Zheng, L.; Li, Z.; Li, J.; Li, Z.; Gao, J. AddGraph: Anomaly detection in dynamic graph using attention-based temporal GCN. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; AAAI Press:
Palo Alto, CA, USA, 2019; pp. 4419–4425.

19. Yu, W.; Cheng, W.; Aggarwal, C.C.; Zhang, K.; Chen, H.; Wang, W. Netwalk: A flexible deep embedding approach for anomaly
detection in dynamic networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, London, UK, 19–23 August 2018; pp. 2672–2681.

20. Chaudhary, A.; Mittal, H.; Arora, A. Anomaly detection using graph neural networks. In Proceedings of the International
Conference on Machine Learning, Big Data, Cloud and Parallel Computing COMITCon), Faridabad, India, 14–16 February 2019;
IEEE: New York, NY, USA, 2019; pp. 346–350.

21. Eswaran, D.; Faloutsos, C.; Guha, S.; Mishra, N. Spotlight: Detecting anomalies in streaming graphs. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018;
pp. 1378–1386.

22. Shin, K.; Hooi, B.; Faloutsos, C. M-zoom: Fast dense-block detection in tensors with quality guarantees. In Proceedings of the
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia, 18–22 September
2016; pp. 264–280.

23. Le Bars, B.; Kalogeratos, A. A probabilistic framework to node-level anomaly detection in communication networks. arXiv 2019,
arXiv:1902.04521.

24. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A comprehensive survey on graph neural networks. arXiv 2019,
arXiv:1901.00596. [CrossRef] [PubMed]

25. Gelenbe, E.; Fröhlich, P.; Nowak, M.; Papadopoulos, S.; Protogerou, A.; Drosou, A.; Tzovaras, D. IoT network attack detection
and mitigation. In Proceedings of the 9th Mediterranean Conference on Embedded computing, MECO 2020, Budva, Montenegro,
8–11 June 2020; IEEE: New York, NY, USA, 2020; pp. 1–6.

26. Protogerou, A.; Papadopoulos, S.; Drosou, A.; Tzovaras, D.; Refanidis, I. A graph neural network method for distributed anomaly
detection in IoT. Evol. Syst. 2020, 12, 19–36. [CrossRef]

27. Forestiero, A. Metaheuristic algorithm for anomaly detection in Internet of Things leveraging on a neural-driven multiagent
system. Knowl. Based Syst. 2021, 228, 107241. [CrossRef]

28. Ahemd, M.M.; Wahid, A. IoT Security: A Layered Approach for Attacks & Defenses. In Proceedings of the 2017 International
Conference on Communication Technologies (ComTech), Rawalpindi, Pakistan, 19–21 April 2017; IEEE: New York, NY, USA,
2017; pp. 104–110.

http://doi.org/10.1109/MNET.001.1800510
http://doi.org/10.1016/j.neucom.2018.12.084
http://doi.org/10.1109/JIOT.2021.3074907
http://doi.org/10.1109/JIOT.2020.3002233
http://doi.org/10.1109/LCOMM.2021.3065062
http://doi.org/10.1109/TGRS.2021.3066485
http://doi.org/10.1109/JIOT.2021.3074830
http://doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://doi.org/10.1007/s12530-020-09347-0
http://doi.org/10.1016/j.knosys.2021.107241


Electronics 2022, 11, 529 23 of 24

29. Gonzalez-Granadillo, G.; Garcia-Alfaro, J.; Alvarez, E.; El-Barbori, M.; Debar, H. Selecting optimal countermeasures for attacks
against critical systems using the attack volume model and the RORI index. Comput. Electr. Eng. 2015, 47, 13–34. [CrossRef]

30. Kotenko, I.; Doynikova, E. Dynamical Calculation of Security Metrics for Countermeasure Selection in Computer Networks.
In Proceedings of the 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP),
Heraklion, Greece, 17–19 February 2016; pp. 558–565.

31. Chehida, S.; Baouya, A.; Bozga, M.; Bensalem, S. Exploration of Impactful Countermeasures on IoT Attacks. In Proceedings of the
9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 8–11 June 2020; pp. 1–4.

32. Lee, Y.; Choi, T.J.; Ahn, C.W. Multi-objective evolutionary approach to select security solutions. CAAI Trans. Intell. Technol. 2017,
2, 64–67. [CrossRef]

33. Enoch, S.Y.; Hong, J.B.; Ge, M.; Khan, K.M.; Kim, D.S. Multi-Objective Security Hardening Optimisation for Dynamic Networks.
In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May
2019; pp. 1–7.

34. Hyunjae, K.; Ahn, D.H.; Lee, G.M.; Yoo, J.D.; Park, K.H.; Kim, H.K. IoT network intrusion dataset. IEEE Dataport 2019. [CrossRef]
35. Manasrah, A.M.; Gupta, B.B. An optimized service broker routing policy based on differential evolution algorithm in fog/cloud

environment. Clust. Comput. 2019, 22, 1639–1653. [CrossRef]
36. Naha, R.K.; Othman, M.M. Cost-aware service brokering and performance sentient load balancing algorithms in the cloud. J.

Netw. Comput. Appl. 2016, 75, 47–57. [CrossRef]
37. Gupte, P.; Bejgum, R.S.R.; Maes, S.H.; Hewlett Packard Enterprise Development LP. Policy Based Selection of Resources for a

Cloud Service. U.S. Patent Application No. 14/914,297, 14 July 2016.
38. Yi, S.; Hao, Z.; Qin, Z.; Li, Q. Fog computing: Platform and applications. In Proceedings of the 3rd IEEE Workshop on Hot Topics

in Web Systems and Technologies (HotWeb), Washington, DC, USA, 12–13 November 2015; pp. 73–78.
39. Arkian, H.R.; Diyanat, A.; Pourkhalili, A. MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT

crowdsensing applications. J. Netw. Comput. Appl. 2017, 82, 152–165. [CrossRef]
40. Angelini, M.; Blasilli, G.; Bonomi, S.; Lenti, S.; Palleschi, A.; Santucci, G.; Paoli, E. BUCEPHALUS: A BUsiness CEntric

cybersecurity Platform for proActive anaLysis Using visual analyticS. In Proceedings of the IEEE Symposium on Visualization for
Cyber Security (VizSec), New Orleans, LA, USA, 27 October 2021.
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