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Abstract: The massive modern technical revolution in electronics, cognitive computing, and sensing
has provided critical infrastructure for the development of today’s Internet of Things (IoT) for a
wide range of applications. However, because endpoint devices’ computing, storage, and commu-
nication capabilities are limited, IoT infrastructures are exposed to a wide range of cyber-attacks.
As such, Darknet or blackholes (sinkholes) attacks are significant, and recent attack vectors that
are launched against several IoT communication services. Since Darknet address space evolved
as a reserved internet address space that is not contemplated to be used by legitimate hosts glob-
ally, any communication traffic is speculated to be unsolicited and distinctively deemed a probe,
backscatter, or misconfiguration. Thus, in this paper, we develop, investigate, and evaluate the
performance of machine-learning-based Darknet traffic detection systems (DTDS) in IoT networks.
Mainly, we make use of six supervised machine-learning techniques, including bagging decision
tree ensembles (BAG-DT), AdaBoost decision tree ensembles (ADA-DT), RUSBoosted decision tree
ensembles (RUS-DT), optimizable decision tree (O-DT), optimizable k-nearest neighbor (O-KNN),
and optimizable discriminant (O-DSC). We evaluate the implemented DTDS models on a recent and
comprehensive dataset, known as the CIC-Darknet-2020 dataset, composed of contemporary actual
IoT communication traffic involving four different classes that combine VPN and Tor traffic in a single
dataset covering a wide range of captured cyber-attacks and hidden services provided by the Darknet.
Our empirical performance analysis demonstrates that bagging ensemble techniques (BAG-DT) offer
better accuracy and lower error rates than other implemented supervised learning techniques, scoring
a 99.50% of classification accuracy with a low inferencing overhead of 9.09 µ second. Finally, we also
contrast our BAG-DT-DTDS with other existing DTDS models and demonstrate that our best results
are improved by (1.9~27%) over the former state-of-the-art models.

Keywords: cybersecurity; machine learning; Internet of Things (IoT); IDS system; networks; darknet;
blackhole; ensemble learning

1. Introduction

IoT and other communication technologies have dramatically improved our ability
to comprehend our environment. Life quality may be improved through the use of IoT
technologies, which have the potential to gather and analyze data about the surrounding
environment [1]. This circumstance facilitates the development of smart cities by making it
easier for things and humans to communicate with each other. There were an estimated
50 billion Internet of Things (IoT) devices by the end of 2020 [2,3].

The IoT is a sophisticated and interconnected system. As a result, it is difficult to meet
the security requirements of an IoT system with a large attack surface. The widespread use
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of IoT has had the unintended consequence of making IoT deployment an interconnected
process. There are a number of considerations to keep in mind while deploying an IoT
system: security, energy efficiency, analytics approaches, and interoperability with other
software applications [3]. The IoT devices, on the other hand, often operate in the absence
of a human operator. These devices can therefore be physically accessed by an intruder.
Intruders can gain access to private information via eavesdropping on wireless networks
used by IoT devices, which are often connected by a communication channel.

As the IoT area continues to evolve, defining a reference architecture that can ac-
commodate both present functionality and future enhancements will be a significant task.
As a result, such an architecture must be: scalable, in order to handle a rising number
of devices and services without compromising their performance; interoperable, so that
devices from different manufacturers may collaborate to accomplish shared objectives;
distributive, in order to enable the development of a distributed environment in which
data are processed by different entities in a distributed manner after being acquired from
various sources; and capable of operating with minimum resources [4].

There is currently no single reference architecture, and building one is proving difficult
despite several standardization initiatives. The fundamental issue is the inevitable frag-
mentation of possible applications, each of which is dependent on a plethora of frequently
disparate factors and design standards. This issue must be combined with each supplier’s
desire to promote its platform for comparable applications [4,5]. Figure 1 depicts some of
the most often seen Internet of Things architectures [5].
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Cyber-attacks against IoT devices are increasing in line with their growth, and IoT
devices can be tricked into becoming bots that mindlessly obey orders in order to commit
crimes as part of a botnet. A botnet is a network of infected devices used by an attacker
to carry out tasks such as DDoS attacks, Bitcoin mining [6], and spam email distribution.
Almost any internet-connected device may become infected and join a botnet. Because
IoT devices have poor security and are thus simple candidates for infection, they are
frequently enlisted to become bots. Botnets, like other malware, may be found on Darknet
marketplaces. Botnets may be hired, and botnet source codes can be purchased or even
leaked, as with the Mirai botnet. Prices range from tens to hundreds of dollars based on the
type of service, the number of bots/devices accessible for usage in the botnet, and the power
and time of the DDOS attack [7–9]. Some botnets compete against one another due to the
competitive nature of the Darknet. If an IoT device has previously been attacked, another
botnet can try to replace the infection with its own program and, in certain situations,
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“fix” the security issue utilized by the prior botnet to prevent re-infection and maintain its
position on the susceptible device.

The Dark Web, Deep Web or Darknet describes a network of websites that are open to
the public but conceal the servers’ IP addresses. Deep Web is expected to be many orders of
magnitude larger than surface web [10]. This number has only risen since then, due to the
Internet’s rapid expansion. Navigating the Darknet layer necessitates the use of specialized
tools and applications. It cannot be accessed without them. The Darknet, on the other hand,
is where consumers are likely to find their stolen files and compromised data for sale, as well
as any other unauthorized product for sale. This layer is built on peer-to-peer computer
networking and routing communications via so much uncertainty that monitoring is almost
impossible. That is why there are so many unauthorized activities taking place within
it. One of the configurations on which the Darknet is built is a Tor network [11], which
employs an onion routing protocol. Tor software allows users to connect to the Darknet and
communicate/browse over huge peer-to-peer connections. To offer security, large obscurity
and constantly changing channels, circuits, and connections are employed. Figure 2 depicts
the basic concept of Darknet utilization of TorNet. According to the figure, in the onion
routing protocol, the data to be sent are encapsulated in encryption layers, similar to the
layers of an onion [11]. The encrypted data are then sent via a succession of network
nodes known as onion routers, each of which “peels” away (or decrypts) a single layer of
encryption, revealing the data’s next destination. The data are delivered to their destination
when the last layer is decrypted. Because each intermediate only knows the position of the
nodes immediately before and after it, the sender remains anonymous [11].
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Because of the Darknet’s huge scale and reach, more effective measures for mitigating
its potential threats are required. Modern methods must be utilized to trace down the black
market and its transactions in order to grasp the criminals. The unindexed, fragmented,
and multi-layered structure of the Darknet makes it more difficult to locate the criminals
therein. Forensic law enforcement agencies want strong digital evidence to overcome the
problems of finding and prosecuting criminals in the Dark Web environment. There are
several relevant studies on IoT in the literature that address various areas of machine
learning in cybersecurity. Many of the latest cybersecurity solutions were created by
combining machine learning with cybersecurity. The majority of new IoT intrusions are
minor modifications from previously known vulnerabilities [12]. These little variations
in IoT attacks have been shown to be difficult to identify/classify using typical machine-
learning approaches. Deep neural networks have been used in promising state-of-the-art
cybersecurity research [13–17]. Table 1 highlights the standard and traditional machine-
learning research [18].
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Table 1. Examples of several machine-learning approaches.

Learning Type Model Building Examples

Supervised Algorithms or models learn from labeled data
(Task-Driven Approach) Classification, regression

Unsupervised Algorithms or models learn from unlabeled data
(Data-Driven Approach)

Clustering, associations,
dimensionality reduction

Semi-supervised Models built using combined data
(Labeled + Unlabeled) Classification, clustering

Reinforcement Models based on reward or penalty
(Environment-Driven Approach) Classification, control

The improved IoT security (based on IoT-specific threats) methodology used in a
few studies [19–23] gave a comprehensive background on all IoT areas and provided a
comprehensive background on all IoT areas. Those studies did not, however, explore the
areas of Darknet-based IDS for IoT in the same way that we did. The study in Table 2
demonstrates the important nature of anomaly-based intrusion detection systems for the
security of things [24]. To help illustrate their solution context and process, this table shows
gaps in prior survey studies inside the conventional architectural layers of IoT systems and
links them with IDSs, such as anomaly-based IDS.

Table 2. Detection methodology characteristics for IoT IDS.

Detection Methods Disadvantages

Statistics-based: examines network traffic and
processes the data using complex

statistical techniques.

• Requires a high level of statistical expertise
• Is simple but less precise
• Is real time

Pattern-based: identifies the characters, forms,
and patterns in the data.

• Easy to implement
• A hash function could be used for identification.

Rule-based: use an attack “signature” to identify
unusual network activity.

• Because rules need pattern matching, the
computational cost of rule-based systems may be
rather expensive.

• It is extremely difficult to predict which activities
will occur and when.

• It needs a huge number of rules in order to
counteract all conceivable attacks.

• A low number of false positives
• A high detection rate

State-based: examines a sequence of events in
order to ascertain the possibility of an attack.

• Probabilistic, self-training
• Low probability of false positives

Heuristic-based: identifies any abnormal activity
that is not consistent with the norm.

• It needs knowledge and experience.
• Experimental and evolutionary learning

While improved intelligent intrusion detection systems for IoT networks have been
significantly investigated and proposed in the literature, only a few studies have explored
the areas of Darknet intrusion (blackholes or sinkholes) detection systems for IoT net-
works. Therefore, in this paper, we propose an efficient machine-learning-based system
for identifying and classifying Darknet traffic for IoT networks. Specifically, the present
article introduces an ensemble learning-based model for detecting and characterizing
VPN and Tor applications as the true representatives of Darknet traffic by combining two
public datasets from the Canadian Institute for Cybersecurity (CIC), namely ISCXTor2016
and ISCXVPN2016, to create a complete Darknet dataset covering Tor and VPN traffic,
namely CIC-Darknet2020 [25]. Six different machine-learning techniques were imple-
mented and evaluated using CIC-Darknet2020, including bagging decision tree ensembles
(BAG-DT), AdaBoost decision tree ensembles (ADA-DT), RUSBoosted decision tree ensem-
bles (RUS-DT), optimizable decision tree (O-DT), optimizable k-nearest neighbor (O-KNN),
and optimizable discriminant (O-DSC). Our empirical results show that the BAG-DT pre-
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diction model outperforms the other mentioned models and all existing state-of-the-art
machine-learning-based models for Darknet activities/instructions detection and classifica-
tion. Specifically, our best performance results are registered in a DTDS-based BAG-DT,
scoring a maximum detection/classification accuracy of 99.50% with a low inferencing
overhead of 9.09 µ Second.

1.1. Summary of Our Contributions

Our main contributions can be summarized as follows:

1. We developed a multi-purpose and high-performance anomaly-based IoT DIDS
utilizing several supervised machine-learning approaches.

2. We differentiate and measure the performance of six supervised learning methods
(BAG-DT), (ADA-DT), (RUS-DT), (O-DT), (O-KNN), and (O-DSC) for IoT DIDSs using
the CIC-Darknet2020 datasets.

3. We present a comprehensive experimental evaluation of six different ML techniques
using ten typical systems of measurement factors.

4. We contrast our findings with state-of-the-art approaches and show that our BAG-DT-
based DIDS is better than existing studies by 1.9–20% in the same area of study.

1.2. Paper Organization

The rest of this paper is organized as follows: Section 2 surveys several up-to-date-
related studies for machine-learning-based Darknet traffic detection systems (DTDS) in IoT
networks. Section 3 describes the system, design, development, and evaluation phases,
as well as development environments and configurations. Section 4 presents and discusses
our experimental results of the proposed ML-DTDS-IoT. Finally, Section 5 concludes and sum-
marizes the paper’s findings and provides recommendations for future research directions.

2. Related Work

The internet security sector now places a strong emphasis on cyberspace surveillance
in order to generate cyber intelligence. The authors of [26] presented an interesting survey
on the Darknet in which they gave a taxonomy in connection to Darknet technologies,
presented evaluations and examination of Darknet information, compared Darknet to
other trap-based monitoring systems, and highlighted open research issues related to
the Darknet.

2.1. First Works for Traffic Classification

Studies analyzing Darknet traffic for diverse objectives abound in the literature. Early
efforts from the early 2000s used decision trees [27], support vector machines [28], Bayesian
analysis techniques [29], profile hidden Markov models [30], and other clustering algo-
rithms [31]. More precisely, the authors of [27] discussed a method for classifying server
traffic using decision trees established during the training step. The trees were extracted
from the traffic, which was described using a number of features developed by the au-
thors to represent stream behavior. In [28], an efficient in-the-dark traffic classification of
typical application protocols for TCP sessions was proven using support vector machines
(SVMs). In this context, aggregate features were used to characterize each flow. The authors
of [29] demonstrated the accuracy and trust of the traffic classification that resulted from
the application of Bayesian Analysis Techniques. They demonstrated that, in its most
generic definition, a Naive Bayes classifier can achieve 65% accuracy for data from the
same interval of time and that, when paired with a number of simple modifications, it can
attain over 95% accuracy. They also demonstrated that their methodology is temporally
stable by comparing test and training sets distanced by more than a year. The authors
of [30] described a strategy based on profile hidden Markov models that involved creating
statistical models for the sequence of packets created by every protocol of interest and then
using these models to determine the protocol being used. The authors of [31] examine
twelve different clustering methods. The review discusses the contributions of these twelve
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techniques to clustering methodologies, as well as current issues and recommendations for
future traffic flow clustering research.

2.2. VPN Traffic Classification

Virtual private networks (VPNs) [32] are a type of technology that allows communi-
cating securely over an unsafe network. VPN solutions are divided into multiple varieties,
each with its own approach to security, benefits, drawbacks, and reliance on various proto-
cols and standards. IPsec, PPTP, and TLS are the three main varieties. According to [33],
the purpose of VPN traffic classification is to overcome the constraints and problems posed
by their structure and the hostile environment in which they operate. This will enable the
development of a better routing solution, one that avoids the flaws in standard routing
protocols that control VPN operations. The authors of the work presented in [33] pro-
posed a MATLAB implementation that uses artificial neural networks and time-related
features on Apache Spark [34] to classify VPN network data flow. The results obtained
in this work were as follows: the VPN identification accuracy was about 96.7%, and the
non-VPN accuracy was about 92.5%. In [35], the dataset ISCXVPN2016 [36], as well as six
machine learning models, were used to find the best supervised model for distinguishing
VPN from non-VPN traffic. All other supervised models were shown to be inferior to
gradient boosting tree (GBT) and random forest (RF). The authors of [36] used the same
database to train multi-class classifiers that accurately classified VPN traffic into seven
different categories using k-nearest neighbor (kNN) and the c4.5 decision tree technique.
The classification accuracy obtained was around 80%. In order to develop a model capable
of discriminating between VPN and non-VPN traffic in real time, the authors of [37] used
machine-learning-based techniques on a multi-layer perceptron neural network model.
To create a representative dataset of VPN and non-VPN values, real network data were
collected using a variety of technologies. The packet capture for this dataset was per-
formed with Wireshark [38]. The observed results suggest that the neural network’s overall
detection accuracy in the post-training test was around 94%.

2.3. Tor Traffic Classification

Tor [39] is the most widely used privacy-enhancing tool at the moment. By encrypt-
ing and tunneling communications over a distributed network of servers known as Tor
nodes, it can hide users’ identities and internet activities. According to [40], Tor traffic
classification seeks to improve performance by identifying multiple service classes for its
traffic. Indeed, even though interactive web browsing accounts for the vast majority of
Tor traffic, bulk downloading consumes an inordinate amount of Tor’s limited capacity.
DiffTor [40] is a real-time mechanism for classifying Tor’s encrypted circuits by applica-
tion and assignment of separate service classes to each. The results of the experiments
showed that they were able to classify circuits with more than 95% accuracy and that the
proposed classification, mixed with QoS, resulted in a 75% gain in responsiveness and an
86% reduction in download duration for interactive users. The authors of [41] presented a
multi-level Tor traffic classification and identification framework based on network flow
features [42] for both mobile and PC platforms. For the mobile platform, they found that
time-related features have a greater impact than non-time-related features, whereas, for he
PC platform, the converse is true. To distinguish Tor anonymous traffic from mixed traffic,
a hierarchical classification strategy based on an enhanced decision tree algorithm was sug-
gested in [43], and then the TriTraining algorithm [44] was used to partition the identified
anonymous traffic. The experiments demonstrate that Tor anonymous traffic is recognized
at a rate of more than 99%, with classification accuracy reaching 94%. The authors of [45]
conducted a thorough analysis of Tor traffic classification, quantification, and comparison
of various strategies for deanonymization, path selection, and increasing the performance
of encrypted communication in the Darknet.
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2.4. Use of Neural Networks in Recent Works

Advances in artificial intelligence have enabled digital systems to detect and identify
Darknet activity on their own. A generalized strategy for detecting and categorizing Dark-
net traffic using Deep Learning was proposed in [46]. To recognize network traffic more
correctly, the researchers used adapted convolution long short-term memory and extreme
gradient boosting as feature selection techniques. The results show that the suggested
approaches detect and categorize Darknet traffic with an accuracy of 89% for categorization
and 96% for detection. To identify Darknet traffic, ref. [47] used popular machine-learning
classification techniques. A receiver operating characteristics (ROC) analysis was com-
bined with a feature significance analysis for the best classifier. The studies used the new
dataset CICDarknet2020, and the classifiers were trained to classify binary and multi-class
data. The random forest method was used to produce an average prediction accuracy of
over 98%. Using ensemble machine-learning algorithms on the CIC-Darknet2020 dataset,
ref. [48] was able to differentiate Darknet traffic from benign traffic with 98% accuracy.
Furthermore, with 97% accuracy, the researchers recognized the sort of program running
beneath the Darknet traffic. They also used a game-theoretic method to demonstrate the
impact of selected features and interpret the output of machine-learning models in order to
better understand Darknet traffic behavior. The study presented in [49] proposes a weight-
agnostic neural network framework for Darknet traffic and network management, with the
goal of automating the suspicious intent recognition process in real time. According to
the authors, the presented approach allows for a more customized pattern recognition
system to cope with changing situations without previous training. The study proposed
in [50] presents a CNN-based classification system that can recognize both protocols and
applications. The proposed method employs a two-stage, two-label classification system.
The protocol used for encrypted traffic is classified in the first step. The second stage
employs the corresponding classifier to categorize applications based on the traffic protocol.
On the CICDarknet2020 dataset, experimental findings reveal that the suggested approach
yields an accuracy of about 97.6%.

2.5. Summary of Surveyed Research Works

To improve readability and to provide more insights into the surveyed paper in this
research, we end this section by summarizing some of the most recent and relevant studies
reported in the literature, as shown in Table 3.

Table 3. A summary of the investigated and surveyed research works.

Ref Year Technique Contribution

[27] 2003 Decision Trees Behavioral authentication of server flows and
classification of server traffic

[28] 2008 Support Vector Machines Efficient in-the-dark traffic classification of typical application protocols
for TCP sessions

[29] 2005 Bayesian Analysis Techniques Increasing the accuracy of the Bayes Classifier through a set of
simple modifications

[30] 2006 Profile Hidden Markov Models
Creating statistical models for the sequence of packets created by every
protocol of interest and using these models to determine the protocol

being used

[31] 2006 Clustering Algorithms Review of 12 clustering methodologies, current issues,
and recommendations for traffic flow clustering research

[33] 2020 Artificial Neural Networks and
Time-Related Features

Classifying VPN network data flow using ANNs and
Time-Related Features

[35] 2017 Six Machine Learning Techniques
Distinguishing VPN from non-VPN traffic and proving that Gradient

Boosting Tree and Random Forest are the best machine-learning
techniques to use

[36] 2016 K-Nearest Neighbor and C4.5 Decision Tree Creating multi-class classifiers that accurately classify VPN traffic into
seven different categories
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Table 3. Cont.

Ref Year Technique Contribution

[37] 2018 Multi-Layer Perceptron Neural Network
and Wireshark

Building a representative dataset of VPN and non-VPN values and
classifying VPN network data

[40] 2012 Classification Techniques Mixed With QoS Real-time classification of Tor’s encrypted circuits by application and
assignment of separate service classes to each

[41] 2020 Network Flow Features Multi-level Tor traffic classification and identification framework for both
mobile and PC platforms

[43] 2017 Decision Tree and TriTraining Algorithm A hierarchical classification strategy for distinguishing Tor anonymous
traffic from mixed traffic

[45] 2018 Various Techniques A thorough analysis of Tor traffic classification, quantification,
and comparison of various strategies

[46] 2021 Convolution-LSTM and Extreme
Gradient Boosting

A generalized strategy for detecting and categorizing Darknet traffic
using Deep Learning

[47] 2021 ML and Receiver Operating Characteristics A feature significance analysis for the best classifier of binary and
multi-class data

[48] 2021 ML and Game-Theoretic Method Differentiating Darknet traffic from benign traffic using ensemble
machine-learning algorithms

[49] 2021 Weight-Agnostic Neural Network Framework for Darknet traffic management for automating the
suspicious intent recognition in real time

[50] 2021 Convolutional Neural Network Two-stage, two-label classification system that can recognize both
protocols and applications

3. System Modeling and Environment

This research aims to develop a Darknet IDS system that can detect Darknet activities of
common IoT cyber-attacks using supervised machine-learning methods. Thus, the system
of interest (SOI) in this research is concerned with developing an empirical system at the IoT
application layer to detect these Darknet cyber-attacks. Specifically, once the representative
data are accumulated, the SOI is composed of three units illustrated in Figure 3: feature
engineering unit to handle preprocessing and encoding for the collected Darknet traffic
dataset, learning models unit to train and test the various implemented machine-learning
algorithms using the target dataset and pick up the best-optimized model, and traffic
classification unit to evaluate system performance via several metrics, such as accuracy,
precision, false alarms, and others. These units are used to produce categorization for every
traffic record of the Darknet dataset through the four-class classifier.

3.1. The Darknet Traffic Dataset

Darknet, also known as blackhole or sinkhole attacks, are significant, and recent attack
vectors were launched against several IoT communication services [51]. Since Darknet
address space evolved as a reserved internet address space that is not contemplated to be
used by legitimate hosts globally, any communication traffic is speculated to be unsolicited
and distinctively deemed a probe, backscatter, or misconfiguration. The main objective of
this research is to detect Darknet traffic to combat suspected activities before they assault
the cyber world. To address the problem stated in this research, one should first consider
collecting a representative traffic dataset that the proposed model can utilize to express
the Darknet traffic over the IoT network communications. A CIC-DarkNet-2020 dataset,
which was compiled by Arash et al. (2020) [25] and made public by the Canadian center of
cybersecurity (CIC), has been utilized in this research. The CIC-DarkNet-2020 dataset is a
novel and inclusive dataset that intelligently combines the traffic records of two publicly
available datasets, (ISCXVPN2016 and ISCXTor2017 [52]), to produce a comprehensive
dataset for Darknet traffic activities covering a wide range of Darknet activities, including
VPN and Tor traffic.
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Figure 3. System development model diagram for proposed Darknet-IDS of IoT (DTDS-IoT) network
traffic via ML techniques.

CIC-DarkNet-2020 dataset recorded a total of ~141,530 network traffic records com-
prising benign traffic (~11,7219) and Darknet traffic (~24,311). Darknet traffic activities are
meant to target the desecration of several significant IoT and networking services, including
audio/video streaming services (such as YouTube), browsing services (such as Firefox),
chatting and VOIP services (such as Skype), email services (such as SMTP), peer-to-peer
(P2P) services (such as BitTorrent), and file transfer services (such as FTP). A summary of
CIC-DarkNet-2020 dataset distribution using four classes (VPN, TOR, Non-VPN, or Non-
TOR), is provided in Figure 4 below [25].
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3.2. Feature Engineering Unit

Feature engineering is the selection, manipulation, and transformation of raw data
into attributes that may be fed into the machine-learning algorithms for further processing,
training, validation, and prediction using a pipeline of preprocessing stages started at
the data accumulation process. Our feature engineering unit performs the following
consecutive preprocessing operations before the data reach the learning models:

• Data Presentation: CIC-DarkNet-2020 dataset is initially available in CSV format.
Therefore, to be processed by the MATLAB platform, at the outset, it should be
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imported from the CSV file and presented as a table of data records in the MATLAB
tables with named columns and numbered rows.

• Exploratory data analysis (EDA): EDA of the dataset performs vital data curation
tasks to gain a deeper insight into the dataset. Such a process completes a preliminary
enhancement process of the dataset by checking missing data values and providing
proper substitution for the missed records, replacing null values with appropriate
replacements, such as zeroes, visualizing the dataset classes’ histogram to gain more
insights into the classes and features.

• Feature Selection: Datasets are comprised of several features with diverse datatypes.
Nevertheless, not all features can be considered for machine-learning models, since
they can either be unlearnable (such as string features) or might have a negative impact
on the classifier performance. The coefficient score approach is employed to extract the
most influential features of the CIC-DarkNet-2020 dataset to obtain the best features
that can be used later in training and validating the learning models.

• Data Normalization: normalization is usually performed over the scattered data points
with a significant range between the points. Therefore, normalization is performed
in order to re-scale data points to be in the same range and significance (usually 0–1).
This will disallow the larger values from dominating other data points in the dataset.
Therefore, we apply min–max normalization at the stage of preprocessing to have
all numerical data within a range between 0 and 1. The min–max normalization of a
datapoint Di within a set of points (D), is given by the following formula (DNorm

i ):

DNorm
i =

[Di −min(D)]

[max(D)−min(D)]
(1)

• Label Encoding: Label encoding techniques are utilized to convert categorical data
into numerical data that may be processed by machine-learning methods.

• This research employed integer encoding techniques to represent the categorical data
as a numerical record. For instance, the output class labels were encoded as {non-Tor:
00, non-VPN: 01, Tor: 02, and VPN: 03}.

• Data Shuffling: The shuffling process is a preprocessing operation conducted over
the dataset samples (rows) by randomly rearranging data from a dataset to produce a
new arrangement for the dataset that can be safely used for ML testing and training,
without having the classifier being biased to any of the underlying classes. This will
guarantee anonymity while ensuring data statistics are kept exactly the same. Figure 5
illustrates the data shuffling process.

• Folding and Splitting: To ensure a high level of the validation process of the proposed
predictive models, we have conducted a k-fold cross-validation operation incorporat-
ing five different folds (distributions) with data split into 70% for training and 30% for
validation (testing). For every fold, a new validation experiment involves further
data distribution to ensure that all data items have participated in the training and
validation process. Our folding and splitting process is shown in Figure 6 and depicts
the dataset distribution throughout the folds for each experiment.

3.3. Learning Models Unit

The learning process is a practice of applying algorithmic models to data in an iterative
manner to enable the machine (such as a computer) to discover hidden patterns that it can
use to make predictions. A large number of supervised machine-learning algorithms are
usually employed to build models to address three common tasks: regression, prediction,
and classification [53–55]. As our DTDS problem is modeled as a classification problem, we
have used and implemented six different supervised machine-learning methods, including
bagging decision tree ensembles (BAG-DT), AdaBoost decision tree ensembles (ADA-DT),
RUSBoosted decision tree ensembles (RUS-DT), optimizable decision tree (o-dt), optimiz-
able k-nearest neighbor (O-KNN), and optimizable discriminant (O-DSC). A summary of
specifications and configurations for the implemented machine-learning models is pro-
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vided in Table 4. After that, the developed model undergoes an evaluate-and-compare
(E and C) process to pick up the best (optimum) ML technique to model the problem of
DTDS. To do so, the classification accuracy metric is evaluated for each model and used as
a vital metric to compare the developed models and select the best optimized model to be
employed to address the Darknet traffic detection and classification task. The performance
accuracy is used as a unified performance metric by which we might be able to provide
some insights about developed methods and help select the best ML-based solution for
this specific problem.

Table 4. Learning model specifications and configurations.

ML Model Specifications

BAG-DT Preset: Bagged Trees, Ensemble method: Bag, Learner type: Decision tree, Maximum number of splits: 89161,
Number of learners: 30, Data Distribution Policy: 70% training and 30% testing, 5-Fold Cross-Validation.

ADA-DT
Preset: Boosted Trees, Ensemble method: AdaBoost, Learner type: Decision tree, Maximum number of splits: 20,

Number of learners: 30, Learning rate: 0.1, Data Distribution Policy: 70% training and 30% testing, 5-Fold
Cross-Validation.

RUS-DT
Preset: RUSBoosted Trees, Ensemble method: RUSBoost, Learner type: Decision tree, Maximum number of splits:

20, Number of learners: 30, Learning rate: 0.1, Data Distribution Policy: 70% training and 30% testing, 5-Fold
Cross-Validation.

O-DT
Preset: Fine Tree, Maximum number of splits: 100, Split criterion: Gini’s diversity index, Surrogate decision splits:

On, using a maximum of 10 surrogates, Data Distribution Policy: 70% training and 30% testing, 5-Fold
Cross-Validation.

O-KNN
Preset: Optimizable KNN, Number of neighbors: 2, Distance metric: Euclidean, Distance weight: Squared inverse,
Standardize data: false, Optimizer: Bayesian optimization, Acquisition function: Expected improvement per second

plus, Iterations: 30.

O-DSC
Preset: Optimizable Discriminant, Discriminant type: Linear, Quadratic, Diagonal Linear, Diagonal Quadratic,
Optimizer: Bayesian optimization Acquisition function: Expected improvement per second plus, Iterations: 30,

5-Fold Cross-Validation.
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3.4. Traffic Classification Unit

Once the optimum model is selected (based on performance accuracy), a further
evaluation system of measurement is assessed for the best ML-DTDS-IoT. This includes
investigating the confusion matrix that reports the number of true positive predicted
samples, the number of true negative predicted samples, the number of false-positive
predicted samples, and the number of false-negative predicted samples. Based on these
parameters, several other performance evaluation measures can be computed, including
classification accuracy rate (ACC%), positive predictive value (PPV%), true positive rate
(TPR%), harmonic mean score (HMS%), classification error percent (ERP%), false discovery
rate (FDR%), false negative rate (FNR%), and the number of misclassified samples (NMS#).
Figure 7 summarizes the confusion matrix analysis with other performance evaluation
measures mentioned. In addition, we report on the classification speed (CSF in samples
per second) and area under the curve (AUC%).
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After that, the selected model is extensively evaluated by a system of measurement
mentioned earlier to gain more insights about the system model and the solution approach.
The system is deployed to work as an actual application after ensuring the utilization of the
optimum ML-based DTDS model that scores the optimum performance quality measures,
particularly the classification accuracy, which is the vital evaluation metric. The system is
utilized to provide a classification for the Darknet traffic into four output classes, including
Non-Tor, Non-VPN, Tor, and VPN

4. Results and Discussion

Based on the information mentioned above and the system architecture diagram,
the proposed system has been developed, implemented, and evaluated using a high-
performance computing platform (employing the 11th generation Intel Core i7 for fast
processing operations and NVIDIA GeForce 4-GByte GPU for parallel computing opera-
tions) and built using MATLAB 2021b along with its accompanying learning and parallel
computing tools. This section reports on the achieved investigational results of the DTDS
model development using several machine-learning approaches, including several per-
formance indicators. Table 5 contrasts the empirical results of classification accuracy and
error rates obtained from modeling the DTDS-IoT using those, as mentioned earlier, six su-
pervised machine-learning systems (BAG-DT, ADA-DT, RUS-DT, O-DT, O-DSC, O-KNN).
This stage of experimentation and evaluation (i.e., results of Table 5) is a vital stage to
characterize the performance of six machine-learning algorithms on this particular problem
(i.e., machine-learning-based Darknet traffic detection systems (DTDS) in IoT networks)
and select the optimum model for this specific problem.
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Table 5. Experimental results were obtained from other machine-learning techniques.

BAG-DT ADA-DT RUS-DT O-DT O-DSC O-KNN

Accuracy % 99.5 95.4 93.9 97.3 83.6 97.1
Error % 0.5 4.6 6.1 2.7 16.7 3.9

In addition, Figure 8 contrasts the computational complexity of the employed machine-
learning techniques in terms of prediction speed (measured in the number of samples per
second) and the inference overhead (measured in microseconds). According to the figure,
the most rapidly predictive models are the optimizable decision trees (O-DT) and the bag-
ging decision trees (BAG-DT), scoring a prediction speed of 2.2× 105 and 1.1 × 105 samples
per second and the lowest inferencing overhead of 4.55 µ s and 9.09 µ s, respectively. Con-
versely, the slowest predictive models are the optimizable k-nearest neighbor (O-kNN)
and the optimizable discriminant (O-DSC), scoring a prediction speed of 0.7 × 105 and
0.1 × 105 samples per second and the lowest inferencing overhead of 14.28 µ s and 100 µ s,
respectively.
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According to the classification accuracy proportions stated in Table 5 and the computa-
tional complexity in Figure 8, the DTDS-based bagging decision tree ensembles (BAG-DT)
classifier outperforms other ML classifiers employed to develop the DTDS. Consequently,
we emphasize our forthcoming analysis and discussion of the additional results obtained
for the DTDS model via BAG-DT. We are also inclined to mention that BAG-DT could
perform the two-class classification (normal vs. Darknet) with 100% accuracy. Since DTDS-
BAG-DT is selected as the optimum model, we have traced its iterative learning process
trajectory using the minimum classification error.

Figure 9 shows the performance analysis curve for the BAG-DT-based DTDS system.
The minimum classification error as a cost function has been inspected for the BAG-DT
classifier to follow the classifier state throughout 30 iterations of the learning process. This
was conducted by tracing the minimum classification error (observed vs. estimated), target-
ing the best point for model hyperparameters. Subsequently, according to the figure, it can
be seen that the best validation performance for the DTDS-BAG-DT system is achieved
after iteration number 13 with minimum classification error values less than 0.005. The clas-
sification process remained saturated and stable for the rest of the iterations, recording no
abnormality in the error analysis curves. Hence, the developed DTDS-BAG-DT system
achieved a near-perfect performance, scoring an error rate approaching 0 (i.e., zero error
performance stands for perfect models, while near-perfect models record error rates ≤0.01).

To gain more insight into the system development of the BAG-DT-based DTDS system
and the solution approach, we have also investigated the overall four-class confusion
matrix analysis for the DTDS-BAG-DT system, correlating the true classes vs. predicted
classes, in Figure 10a. Based on the numbers reported by the matrix, it can be inferred
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that the majority of CIC-Darknet-2020 traffic data were truly classified, i.e., the green cells
of the confusion matrix (the number of truly classified samples = TP + TN = 140,862 out
of 141,530→99.53%). In comparison, only a few (minority) of CIC-Darknet-2020 traffic
data were falsely classified (the number of truly classified samples = FP + FN = 668 out of
141,530→0.47%). Additionally, Figure 10b depicts the four-class PPV-FDR matrix analysis
of the DTDS-BAG-DT system for each class. The observation of this matrix demonstrates
that all classes are precisely predicted with more than 99% precision (PPV) for each class,
scoring an overall precision (PPV) for the DTDS-BAG-DT system of 99.45%. Moreover,
Figure 10c depicts the four-class TPR-TNR matrix analysis of the DTDS-BAG-DT system for
each class. The observation of this matrix demonstrates that three classes out of four (i.e.,
Non-Tor, Non-VPN, and VPN classes) have very high sensitivity (TPR) rates, recording
more than 98.9% sensitivity (TPR) rates. Only one class out of four (i.e., Tor class) has a
lower sensitivity rate of 89.9, rendering the overall sensitivity (TPR) for the DTDS-BAG-DT
system of 96.93%. Thus, the DTDS-BAG-DT system’s overall performance can be described
as accurate, precise, and sensitive in providing both Darknet detection and classification
for the IoT network traffic network.
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Furthermore, Table 6 provides a summary of experimental performance evaluation
factors obtained for the DTDS-BAG-DT model, displaying the values for classification
accuracy (ACC), the positive predictive value (PPV), the true positive rate (TPS), the
false discovery rate (FDR), the false-negative rate (FNR), the area under the curve (AUC),
the classification speed (CS), and the number of misclassified samples (NMS). In addition to
the high-performance rates obtained for ACC, PPV, TPR, and AUC, and the low error alarm
rates obtained for ERP, FDR, FNR, and NMS, the system exhibits high-speed inferencing for
DTDS-BAG-DT, with a CSP value of 110,000 samples per second, scoring a low prediction
overhead of 9.09 µ second.

Table 6. Results obtained for optimizable ensemble using bagging decision tree (BAG-DT) model.

ACC PPV TPR HMS ERP FDR FNR AUC NMS CSP

99.50% 99.45% 96.93% 98.18% 0.5% 0.55% 3.07% 100% 668 110,000



Electronics 2022, 11, 556 15 of 19Electronics 2022, 11, x FOR PEER REVIEW 16 of 20 
 

 

  
(a) (b) 

 
(c) 

Figure 10. (a) The four-class confusion matrix analysis for the BAG-DT model: true classes vs. pre-
dicted classes, (b) The four-class TPR-FNR matrix analysis, for the BAG-DT model: true classes vs. 
predicted classes, and (c) The four-class PPV-FDR matrix analysis for the BAG-DT model: true clas-
ses vs. predicted classes. 

Furthermore, Table 6 provides a summary of experimental performance evaluation 
factors obtained for the DTDS-BAG-DT model, displaying the values for classification ac-
curacy (ACC), the positive predictive value (PPV), the true positive rate (TPS), the false 
discovery rate (FDR), the false-negative rate (FNR), the area under the curve (AUC), the 
classification speed (CS), and the number of misclassified samples (NMS). In addition to 
the high-performance rates obtained for ACC, PPV, TPR, and AUC, and the low error 
alarm rates obtained for ERP, FDR, FNR, and NMS, the system exhibits high-speed infer-
encing for DTDS-BAG-DT, with a CSP value of 110,000 samples per second, scoring a low 
prediction overhead of 9.09 µ second. 

  

Figure 10. (a) The four-class confusion matrix analysis for the BAG-DT model: true classes vs.
predicted classes, (b) The four-class TPR-FNR matrix analysis, for the BAG-DT model: true classes
vs. predicted classes, and (c) The four-class PPV-FDR matrix analysis for the BAG-DT model: true
classes vs. predicted classes.

Last of all, we benchmark our proposed system with other existing systems. Specifi-
cally, in Table 7, we compare our best performance indication results, which correspond
to the DTDS-BAG-DT system, with other up-to-date, state-of-the-art systems employing
diverse learning approaches (deep and machine learning methods) to detect Darknet traffic
activities. The comparison in this table considers the underlying learning method used in
each Darknet detection system, the accuracy of detecting/classifying the Darknet activities,
and the proportion of improvement factor (%) over the existing system. In this comparison,
eleven ML-based DTDS systems are considered in this evaluation, employing different
supervised learning systems comprising: recurring neural network (RNN) [1], longitudi-
nal analysis of network traffic (LANT) [2], hierarchical classification method (HCM) [3],
AdaBoost decision trees (AB-DT) [4], convolutional neural network (CNN) [5,9], artificial
neural network and Apache spark (ANN-AS) [6], hybrid model employing convolutional
neural network (CNN) and k-means (KM) [7], sparse structure learning with lasso selection
(SSL) [8], random forest classifier (RFC) [10], logistic regression classifier (LRC) [11], and our
optimum model involving the bagging decision tree ensembles (BAG-DT) classifier. Based
on the information in Table 7, we conclude that our DTDS-BAG-DT model is superior,
since it reported the best performance scores among all models in the comparison table.
Specifically, our best results are improved by (1.7~27%) over the former state-of-the-art
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models. Hence, the developed model can undoubtedly be deployed as an intelligent de-
tection service into the IoT’s application layer and routing layer to detect Tor and VPN
activities in the IoT network.

Table 7. Comparison with other state-of-the-art models.

Research Year Evaluation Model Accuracy I.F. %

[49] 2021 Recurring Neural Network (RNN) 94.51% 5.28%↑
[56] 2017 Longitudinal Analysis of Network Traffic (LANT) 94.00% 5.85%↑
[57] 2020 Hierarchical Classification Method (HCM) 96.60% 3.00%↑
[48] 2021 AdaBoost Decision Trees (AB-DT) 97.30% 2.26%↑
[25] 2020 Convolutional Neural Network (CNN) 86.00% 15.70%↑
[33] 2020 Artificial Neural Network and Apache Spark (ANN-AS) 94.66% 5.11%↑
[58] 2021 Convolutional Neural Network (CNN) and K-Means (KM) 97.40% 2.16%↑
[59] 2020 Sparse Structure Learning with LASSO selection (SSL) 97.10% 2.47%↑
[50] 2021 Convolutional Neural Network (CNN) 97.65% 1.89%↑
[60] 2019 Random Forest Classifier (RFC) 78.30% 27.08%↑
[61] 2017 Logistic Regression Classifier (LRC) 96.60% 3.00%↑

Proposed 2022 Bagging Decision Tree Ensembles 99.50% -

5. Conclusions

An efficient autonomous Darknet traffic detection system (DTDS) has been proposed,
modeled, implemented, assessed, and reported in this paper. The proposed system charac-
terizes the performance of six supervised machine-learning techniques, including bagging
decision tree ensembles (BAG-DT), AdaBoost decision tree ensembles (ADA-DT), RUS-
Boosted decision tree ensembles (RUS-DT), optimizable decision tree (O-DT), optimizable
k-nearest neighbor (O-KNN), and optimizable discriminant (O-DSC). The developed DTDS-
ML models were evaluated on a modern and inclusive dataset (i.e., CIC-Darknet-2020)
involving a large number of captured cyber-attacks and hidden services provided by the
Darknet grouped into four classes (VPN, TOR, Non-VPN, Non-TOR). Our work demon-
strates that the DTDS-based BAG-DT model is superior among the other evaluated models,
scoring 99.5% in classification accuracy with a low inferencing overhead of 9.09 µ second.
Furthermore, compared with other state-of-the-art models, our best results have improved
the performance of existing DTDS models by a factor of (1.7~27%). Consequently, the
proposed model can be efficiently deployed to detect Tor and VPN activities in communi-
cation networks.
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