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Abstract: Epilepsy is a chronic neurological disease characterized by a large electrical explosion that is
excessive and uncontrolled, as defined by the world health organization. It is an anomaly that affects
people of all ages. An electroencephalogram (EEG) of the brain activity is a widely known method
designed as a reference dedicated to study epileptic seizures and to record the changes in brain
electrical activity. Therefore, the prediction and early detection of epilepsy is necessary to provide
timely preventive interventions that allow patients to be relieved from the harmful consequences
of epileptic seizures. Despite decades of research, the prediction of these seizures with accuracy
remains an unresolved problem. In this article, we have proposed five deep learning models on
intracranial electroencephalogram (iEEG) datasets with the aim of automatically predicting epileptic
seizures. The proposed models are based on the Convolutional Neural Network (CNN) model, the
fusion of the two CNNs (2-CNN), the fusion of the three CNNs (3-CNN), the fusion of the four CNNs
(4-CNN), and transfer learning with ResNet50. The experimental results show that our proposed
methods based on 3-CNN and 4-CNN gave the best values. They both achieve an accuracy value of
95%. Finally, our proposed methods are compared with previous studies, which confirm that seizure
prediction performance was significantly improved.

Keywords: epilepsy; seizure detection; iEEG signal

1. Introduction

Epilepsy is a neurological disease produced by an abnormal function of the activity of
the brain. It is similar to convulsive disorders, which cause repetitive and sudden seizures.
These seizures are due to synchronous or simultaneous activity of brain cells that should
be inactive. This last phenomenon is compared to a thunderstorm.

The EEG electroencephalography provides information on the electrical activity gener-
ated by nerve cells in the cerebral cortex in real time and with excellent temporal resolution
in the order of ten milliseconds [1].

Detection by EEG signals requires direct investigation by a physician and significant
effort and time. Additionally, experts often report differing conclusions on diagnostic
results [2]. Therefore, there is a need to develop an automatic and computer-assisted
method to diagnose epilepsy.

Recently, several researchers have developed various algorithms to detect epileptiform
EEG data. There are existing methods for detecting seizures by using hand-designed
techniques for feature extraction within EEG signals, such as nonlinear signal analyses, the
time domain, the time-frequency domain, and the frequency domain. By using classifiers,
chosen features should be then classified to recognize different EEG signals.

Electronics 2022, 11, 605. https://doi.org/10.3390/electronics11040605 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11040605
https://doi.org/10.3390/electronics11040605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2041-1301
https://orcid.org/0000-0002-5320-1012
https://doi.org/10.3390/electronics11040605
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11040605?type=check_update&version=1


Electronics 2022, 11, 605 2 of 13

With the help of EEG, we can explore the phases of an epileptic patient [3]. Our work
consists of manipulating iEEGs for an epileptic individual to predict the pre-seizures mainly
from the two phases: the interictal phase, which is the period separating the occurrence
of two epileptic seizures and in which the patient does seem fine, and the preictal phase,
which is characterized by the sudden onset of sporadic isolated spikes and large amplitudes,
and the patient may show signs of behavioral problems.

Our prediction is generated with the help of deep learning models that have proven a
high accuracy for classifying between the phases of the iEEG: interictal and preictal. This
allows for a fast-acting and necessary medicine and to prevent any seizure activity before
the annotated onset that may have been missed by the epileptologist.

The main contributions of the present work may be summarized as follows:

1. The usage of five models: 1-CNN, 2-CNN, 3-CNN, 4-CNN, and ResNet50 with
transfer learning. Each one of these models is composed of a unique architecture.
In this paper, we will investigate these models to attain the maximum efficiency of
detecting epileptic seizures with high-precision scores.

2. The 3-CNN and 4-CNN models outperform up-to-date methods in terms of accuracy.
3. Automatic prediction of epileptic seizures in the interictal phase turned out to be

possible with the help of our developed models.

The present article is composed of the following sections: After exploring related
works in Section 2, in Section 3, we describe our proposed framework and the way the
dataset is built. In Section 4, detail the performance of the models. The article is concluded
by Section 5.

2. Related Works

Despite the machine-learning-based and conventional threshold-based predictors,
deep learning-based works have recently demonstrated high-performance seizure pre-
diction that uses long short-term memory networks (LSTM) [4]; convolutional neural
networks (CNN) [5–7]; semi-supervised [8] and mixed models [9,10]; and models with
various time-frequency domains, frequency domains, and multivariate spatiotemporal
time-domain features [11].

In [6], the authors proposed a method based on the distribution of the raw version of
the EEG signal into intervals of 30 s. The Short-Term Fourier Transform (STFT) was calcu-
lated and then used as input for the CNN model. They used 64 seizures from 13 patients
in the CHB-MIT dataset, reaching an FPR of 0.16 and a sensitivity of 81.2%. The three
datasets studied in their research work are not large enough for a better evaluation, since
the maximum recording period for each patient is 3 days. Indeed, this method can be
further enhanced by non-EEG data, such as information about when seizures occur.

In [12], the authors proposed an algorithm using cooperative multi-scale CNNs for
automatic feature learning of iEEG datasets. Their results point out that the proposed
method reached an accuracy score of 84% and an average sensitivity of 87.85%. However,
training such a multi-scale network needs longer hours, increasing, therefore, the model
complexity [13]. We believe this research [12] can be extended by merging EEG and
ECG data by improving classifiers and applying simplified methods for feature extraction.
Recognizing that the EEG can provide indications of a seizure hours before seizure onset,
the trend is to focus on analysis beyond one hour before the phase of seizure onset.

In [14], the authors predicted epileptic seizures using features preprocessed with statis-
tical momentum, Hjorth parameters, and spectral band power as inputs to a multiframe 3D
CNN model were carried out, reaching an FPR of 0.096 and a sensitivity of 85.71%. Their
suggested method was generalized since no patient-specific engineering was conducted at
any stage. However, it needs to be tested extensively with more subjects in various clinical
conditions from different age groups to calculate the overall performance due to the fact
that the CHB-MIT Scalp EEG dataset is mainly comprised of pediatric patients.

In this research work, we propose a method for predicting epileptic seizures using
deep learning models. We propose five models: 1-CNN, 2-CNN, 3-CNN, 4-CNN, and
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ResNet50 with transfer learning. ResNet50 presents one of the most commonly used
residual neural networks, which have the characteristic of performing shortcuts to go
over some layers. The first part of Model-3 is a pre-trained ResNet50 without top layers.
Then, after global average pooling, batch normalization, dropout, batch normalization,
dropout, and dense layers are inserted. The output of the network is a softmax output layer
composed of two neurons.

3. Methodology

Recently, DL models have demonstrated great efficiency and high performance in the
domain of computer vision image processing and segmentation, detection, and classification.

We proposed five DL algorithms to realize this classification: 1-CNN, the combination
of two CNN models, the combination of three CNN models, the combination of four CNN
models, and transfer learning with a ResNet50 model. The proposed methodology for the
prediction of seizures (Figure 1) is provided in this section.
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Figure 1. Overview of proposed method.

3.1. Dataset Description

We used the American Epilepsy Society Seizure Prediction Challenge as our dataset.
It contains intracranial EEG signals (iEEG) from five (5) dogs and two patients with forty-
eight (48) seizures and a total duration of 627 h of monitoring. (https://www.kaggle.com/
c/seizure-prediction/data, accessed on 15 January 2022).

3.2. Pre-Processing

The original dataset is composed of .mat files, each containing 10 min of 15 channel
EEG readings. We sample 1-s snippets from a single electrode before computing the
spectrogram using “scipy.signal”. This lets us leverage powerful and efficient CNNs on
the vision problem after Fourier smoothing the noisy and non-stationary signal over 1 s
time windows.

Next, we preprocessed the remaining data to train with five DL algorithms in order
to differentiate these classes based on our signal processing scheme for 1 s time windows
sampled from a single electrode in the multichannel sample.

3.3. Dataset Splitting

Splitting the dataset is an important step towards having good results. Therefore, we
need to have a way to make sure that neither were the training data too small, which would
lead to a greater variance for estimated parameters, nor the testing sample not large enough
so the problem of great variance for the performance statistic would occur. As a result, we
chose to separate our initial dataset into two (2) independent datasets. A total of 97% of
data are utilized for training, whereas 3% are used for testing.

https://www.kaggle.com/c/seizure-prediction/data
https://www.kaggle.com/c/seizure-prediction/data
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3.4. Proposed Methods

In the mission of classification, we applied the CNN classifier (1-CNN). In addition,
we proposed other classifiers that combine two CNN models (2-CNN), three CNN models
(3-CNN), and four CNN models (4-CNN). Finally, we implemented a transfer-learning
model used with the ResNet50 model.

3.4.1. 1-CNN Architecture

To differentiate between a preictal and an interictal event, we have proposed a simple
1-CNN (Figure 2). This 1-CNN model is composed of the following elements:

• Two convolutional layers, one with 32 filters and the other with 32 filters with a kernel
size (3, 3), and the activation function is the ReLU.

• A layer of max pooling with pool size = (2, 2)
• A dropout layer. In simple terms, this layer refers to the ignoring of neurons in the

training phase of a group of neurons that are chosen at random; our rate is 0.25.
• A flattering layer.
• A dense layer. The layers where all the inputs of one layer are connected to each

activation function of the next layer; our dense layer is comprised of 64 layers, and the
activation function is the ReLU.

• Another dropout layer with a 0.5 rate.
• A dense layer with a sigmoid activation function.
• The number of epochs presents a hyper parameter, which is used to define the number

of iterations run by the training algorithm. An epoch means that each sample in the
training dataset has had the opportunity to update the parameters of the internal
model. In our work, we used a number of epochs equal to 30.
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Figure 2 shows the 1-CNN architecture we used with the ReLU and sigmoid activation
function.

3.4.2. 2-CNN Architecture

We propose a fusion method to combine two CNN models for iEEG classification.
Different CNN architectures may be useful in extracting different types of iEEG, so their
merging can help us create generic features for the prediction of epileptic seizures.

The 2-CNN model is composed of two similar CNN models with same architecture
of the last model; we merge the CNN1 with CNN2 models as shown in Figure 3. The
combination is done by a simple concatenation of the two CNN models, followed by a
dense layer with a softmax activation function.
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3.4.3. 3-CNN Architecture

The 3-CNN model is composed of three similar CNN models. We merged the CNN1,
CNN2, and CNN3 models as shown in Figure 4. The combination is done by a simple
concatenation of the two CNNs models, followed by a second concatenation of the third
model, and finally, the addition of a dense layer and softmax activation function.
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3.4.4. 4-CNN Architecture

The 4-CNN model is composed of three similar CNN models. We merge the CNN 1,
CNN2, CNN3, and CNN4 models as shown in Figure 5. The combination is done by a
simple concatenation of the two CNNs models, followed by a second concatenation of the
third model and a third concatenation with the fourth model. Finally, we add a dense layer
with softmax activation function.
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3.4.5. ResNet50 Model Architecture

The ResNet50 model (Figure 6) is a 50-layer-deep convolutional neural network. The
special part of ResNet is the residual learning block. This means that each layer should feed
into the next layer, and the distance directly into the layers is about two to three swings.
The approach is to add a shortcut or a jump connection that allows information to flow.

In this work, we used the pre-trained ResNet50 model; its output went through (Figure 7):

• GlobalAveragePooling2D which applies average pooling over the spatial dimensions
until each spatial dimension is one and leaves the other dimensions unchanged. In
this case, the values are not kept because they are averaged.

• Batch normalization, a very deep neural network training technique that normalizes
the inputs of a layer for each mini-batch. This has the effect of stabilizing the learning
process and considerably reducing the number of training epochs required to form
deep networks.

• A dropout, a regularization technique to reduce over-fitting in neural networks; our
dense layer is a layer with a 0.5 rate.

• A dense layer with 512 layers and the ReLU for activation function
• Batch normalization
• Dropout with a 0.5 rate
• A dense layer with two layers, and the activation function is the softmax
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4. Performance Criteria
4.1. Used Optimizer

We will try to test an optimizer in order to minimize the error of the predictions (the
loss function) and make the predictions more correct and as optimized as possible. We
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used the ADAM (Adaptive Moment Estimation) optimizer, which is an algorithm based
on a first order gradient of stochastic objective functions, based on adaptive estimates of
lower-order moments; it is among the most widely used optimizers.

4.2. Definition of Terms

In order to determine the effectiveness of a classifier, one must distinguish between
four types of items classified for the desired class: TP (true positive), TN (true negative), FP
(false positive), and FN (false negative).

• TP: These are the correctly predicted positive values, which means that the value of
the actual class is yes and the value of the predicted class is also yes.

• TN: These are the correctly predicted negative values, which means that the value of
the real class is no and the value of the predicted class is also no.

False positives and false negatives occur when the actual class conflicts with the
predicted class.

• FP: When the real class is no and the predicted class is yes.
• FN: When the real class is yes but the predicted class is no.

This matrix helps to explain how the classification model is confused when making
predictions. This lets you know what mistakes and what types of mistakes are being made.

The following performance measures were calculated after calculating the values of
the confusion matrix (Figure 8). The evaluation metrics we used are:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Precision =
TP

FP + TP
(2)

Recall =
TP

FN + TP
(3)

F1 Score = 2 × precision × recall
precision + recall

(4)
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4.3. Experimental Results

In this section, we will present the main results obtained after the application of the
1-CNN, 2-CNN, 3-CNN, and 4-CNN models and transfer learning with ResNet50.
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These models have been tuned for 30 epochs.
Python 3 and the TensorFlow framework were used to create the models. These were

developed using the Jupyter Notebook.
The confusion matrices obtained by the 1-CNN, 2-CNN, 3-CNN, 4-CNN, and transfer

learning with ResNet models are shown in Figure 9.
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From Figure 9, we can extract the total number of well-classified segments and the
total number of misclassified segments obtained by the 1-CNN, 2-CNN, 3-CNN, 4-CNN,
and transfer leaning with ResNet50 models with the ReLU activation function. The total
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prediction of preictal and interictal events and the percentages of the precision and error
rates are presented in Table 1.

Table 1. Precision and error rate of 1-CNN, 2-CNN, 3-CNN, 4-CNN, and transfer learning with
ResNet50 models.

Model Total of Predicted
Interictal Segments

Total of Predicted
Preictal Segments Precision Rate Error Rate

1-CNN 546 54 91% 09%
2-CNN 457 143 76% 24%
3-CNN 570 30 95% 05%
4-CNN 572 28 95.33% 4.66%

Transfer Learning with ResNet50 399 201 66.5% 33.5%

The results of the training, accuracy, and loss models have been presented as plots
in Figures 10 and 11.
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Figures 10 and 11 show the plots of accuracy and loss for our five proposed models
between the training and validation phases. As can be seen, the training loss and accuracy
continued to improve. We note that the precision of training and testing increases for
model accuracy. With test accuracy and test loss, there was a gap with the training one, and
stabilized training seemed to be fine: the training curve is upper and the test curve is lower.
Figures 10a,c,d and 11a,c,d demonstrate a case of a good fit. In Figures 10b and 11b, a large
gap remains between both curves. For Figures 10e and 11e, in this case, it indicates that the
test dataset may be easier for the model to predict than the training dataset.

Table 2 shows a summary of the performance metrics of evaluation obtained by
applying the five models.
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Table 2. Classification report of DL models.

Precision Recall F1-Score Accuracy

1-CNN 91.5% 91.0% 91.0% 91.0%
2-CNN 77.5% 76.0% 76.0% 76.0%
3-CNN 95.0% 94.5% 95.0% 95.0%
4-CNN 95.5% 95.5% 95.0% 95.0%

Transfer Learning with ResNet50 72.5% 53.0% 39.0% 51.0%

5. Discussion

People who have epilepsy suffer from having unexpected seizures, which is why
predicting this event is meant to help and prevent sudden accidents.

In the above, we have used iEEG data for the prediction and diagnosis of epileptic seizures.
The results obtained from Table 2 show that the two methods based on the fusion of

three CNNs (3-CNN) and the fusion of four CNNs (4-CNN) each give an accuracy value
of 95%. The 3-CNN gives an accuracy value of 95.0%, recall of 94.5%, and 95.0% for the
F1-score. The 4-CNN gives an accuracy value of 95.5%, recall of 95.5%, and 95.0% for
the F1-score.

The proposed method, based on transfer learning with ResNet50, gives the lowest
performance values compared to the proposed methods. It reaches an accuracy of 51%,
precision of 72.5%, recall of 53.0%, and 39.0% for the F1-score.

Deep learning opens the new door to intelligent diagnostics in the medical and health-
care fields, especially in iEEG signal processing.

In our analytics, we will be using the accuracy score to compare the models because
our data are a set of patient data; therefore the true positive and true negative are the most
important for giving us a general idea about the interictal phase.

Table 3 summarizes the results of automatic prediction of epileptic seizures and
compares them to the models used. This clearly indicates that the models used outperform
other state-of-the-art models in terms of accuracy value.

Table 3. Comparison value of accuracy for each model.

Model Accuracy

1-CNN 91%
2-CNN 76%
3-CNN 95%
4-CNN 95%

Transfer Learning with ResNet50 51%
[15] 93.28%
[16] 90%

In [15], the authors propose a new DL hybrid model, DenseNetLSTM for predicting
patient-specific epileptic seizures using scalp EEG data. This method achieves an accuracy
of 93.28%

In [16], the author proposes a method for preictal/interictal recognition, which is
an important step for early detection of epileptic seizures, by using EEG signals. In the
proposed method, feature extraction was performed from the spectrogram images of EEG
signals with pre-trained CNN models, and these features were classified with SVM. The
accuracy obtained was around 90%.

6. Conclusions

This research work was developed in the context of the prediction of seizures using
deep learning methods. Generally, electrical brain activity has become a highly demanded
area of scientific research to explore essential pathologies of the human brain.

We proposed five models (1-CNN, 2-CNN, 3-CNN, 4-CNN, and Transfer learning
with ResNet50) for the prediction of epileptic seizures. The results obtained point out that
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the two methods based on the fusion of three CNNs (3-CNN) and the fusion of four CNNs
(4-CNN) each give an accuracy value of 95%. The 3-CNN offers an accuracy value of 95.0%,
recall of 94.5%, and 95.0% for the F1-score. The 4-CNN gives an accuracy value of 95.5%,
recall of 95.5%, and 95.0% for the F1-score.

In the future, predicting seizures can be further improved to increase accuracy, allow-
ing doctors to plan treatment more quickly and in a more informed manner. Therefore,
future research can also be done to reduce the number of parameters. This research work
can also be extended by merging EEG and electrocardiogram (ECG) data, improving
classifiers and applying simplified feature extraction methodologies.
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