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Abstract: Electronic healthcare technology is widespread around the world and creates massive
potential to improve clinical outcomes and transform care delivery. However, there are increasing
concerns with respect to the cyber vulnerabilities of medical tools, malicious medical errors, and
security attacks on healthcare data and devices. Increased connectivity to existing computer networks
has exposed the medical devices/systems and their communicating data to new cybersecurity vul-
nerabilities. Adversaries leverage the state-of-the-art technologies, in particular artificial intelligence
and computer vision-based techniques, in order to launch stronger and more detrimental attacks on
the medical targets. The medical domain is an attractive area for cybercrimes for two fundamental
reasons: (a) it is rich resource of valuable and sensitive data; and (b) its protection and defensive
mechanisms are weak and ineffective. The attacks aim to steal health information from the patients,
manipulate the medical information and queries, maliciously change the medical diagnosis, decisions,
and prescriptions, etc. A successful attack in the medical domain causes serious damage to the
patient’s health and even death. Therefore, cybersecurity is critical to patient safety and every aspect
of the medical domain, while it has not been studied sufficiently. To tackle this problem, new human-
and computer-based countermeasures are researched and proposed for medical attacks using the
most effective software and hardware technologies, such as artificial intelligence and computer vision.
This review provides insights to the novel and existing solutions in the literature that mitigate cyber
risks, errors, damage, and threats in the medical domain. We have performed a scoping review
analyzing the four major elements in this area (in order from a medical perspective): (1) medical
errors; (2) security weaknesses of medical devices at software- and hardware-level; (3) artificial
intelligence and/or computer vision in medical applications; and (4) cyber attacks and defenses in
the medical domain. Meanwhile, artificial intelligence and computer vision are key topics in this
review and their usage in all these four elements are discussed. The review outcome delivers the
solutions through building and evaluating the connections among these elements in order to serve as
a beneficial guideline for medical electronic hardware security.

Keywords: medical domain; medical errors; medical security; medical hardware; IoMT devices;
artificial intelligence; computer vision

1. Introduction

Recent advancements and progress in computer science along with the demands
for great computing performance makes artificial intelligence (AI) a promising candidate
for engaging in different applications and benefitting modern society [1–6]. AI includes
various methods from statistics to computational complexity. AI is used in a diverse set
of applications, namely weather forecasts, face recognition, fraud detection, deciphering
genomics, and medical domain [7–12]. AI combined with biostatistics helps in improving
many medical processes and computations. In fact, medical AI is able to understand the
patterns and features of data in this domain and perform related predictive and corrective
tasks [13–19].
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Medical AI includes leveraging AI algorithms in radiology, pathology, dermatology,
etc. with the purpose of enhancing the diagnostic speed, accuracy, and knowledge, as
well as increasing the diagnostic confidence to close to 100%. Different areas associated
to and within AI, such as computer vision (CV), machine learning, autonomous systems,
natural language processing, intelligent agents, deep neural networks, and automated rea-
soning are utilized to learn the medical background and analyze the medical records more
effectively [20–23]. Overall, AI and CV contributions are key players in the medical field:

1. Medical operations including monitoring, prediction, diagnosis, treatment, and prog-
nosis become intelligence with higher performance.

2. Reduction in the medical errors along with improvements in medical operations
in terms of execution time, quality of diagnosis, quantity of diagnosis, etc. Many
problems in conventional human clinical practices are eliminated.

3. Easier and faster medical access is extremely important and valuable. The lengthy pro-
cesses of getting doctor visits, diagnosis, prescription, treatment results are improved,
leading to the provision of a service to more patients.

4. Improving the reliability, quality, and quantity of processing and transmitting infor-
mation in the medical domain.

5. Enhancing major computations within these systems including segmentation, classifi-
cation, detection, registration, and medical information processing.

6. The major growth in machine learning, more specifically deep learning, provide
high-performance algorithms and systems that understand and model medical data
through multiple layers of transformations. These algorithms help in extracting
and learning features from data automatically at different abstract levels. Better
classifications by the deep learning systems enables better diagnosis and medical
decisions. There are many deep neural network architectures, especially convolutional
neural networks (i.e., automatic and adaptive learning of spatial hierarchies of features
from medical data/image through backpropagation using multiple building blocks,
such as convolution layers, pooling layers, and fully connected layers). They are
critical elements in the classification and recognition systems and each of them suits
a specific type of data and application well. When the predictive model accuracy,
the confidence of learning performance, is increased, the medical operations become
more successful.

7. Underpinned by the ability to learn from salient features from large volumes of health-
care data, an AI system assists clinicians through interpreting diagnostic, prognostic,
and therapeutic data from very large patient populations. This provides real-time
guidance on risk, clinical care options, and outcome, but in addition provide up-to-
date medical information from journals, textbooks, and clinical practices to inform
proper patient care.

8. The systems have unique characteristics: (a) plasticity, causing changes in system
performance through learning and need of creating new concepts about the timing of
learning and assignment of responsibilities for risk management; (b) unpredictability
of system behavior, in response to unknown inputs due to the black box characteristics
precluding deductive output prediction; and (c) need to assure the characteristics of
datasets to be used for learning and evaluation.

Due to this merit of AI/CV-based medical applications, all aspects of this research
direction should be studied comprehensively. These aspects are categorized as require-
ments, opportunities, and challenges. The requirements help in preparing a better working
environment for these systems, the opportunities show us the areas of novel contributions
and ideas for new systems, and the challenges are very critical due to the nature of this
domain and how a limitation can become a life threat, so resolving them is mandatory.

Utilizing AI/CV in the medical domain has its requirements, such as strong com-
putational resources (e.g., graphical processing unit), multimedia processing, and large
data storages [24–28]. The large data repositories need advanced managing and querying
systems for finding, retrieving, and transmitting data. Without such systems, it is extremely
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difficult to access, manage, and extract the relevant data from the databases. These medical
data come from various sensing setups in the medical field, such as the diagnostic and
investigative imaging facilities in hospitals. Additionally, the systems should be able to
properly correct and adjust their learned knowledge based on the differences available on
the input data.

There are many opportunities to explore for these systems [29–31]. One example
is understanding their underlying operations with respect to each medical task. The
medical AI system should be self-explanatory so that we can gain enough knowledge
from the input data, computations, and the output data. In the medical domain, there
are complex challenges particularly in the integration, fusion, and mapping of various
distributed and heterogeneous data in arbitrarily high dimensional spaces [29–31]. The
explainable AI helps in addressing these challenges through understanding why a set of
diverse data contribute to a certain result and medical decision [32]. As a result, the trust
and reliability of current and future medical AI systems are analyzed and boosted using
the self-explanatory property.

The limitations of these systems are critical due to their connection to human life. Any
failure in the system or any error in computations lead to catastrophic short- or long-term
consequences, and even death. The result of a failure or an error is a wrong diagnosis,
assessment, decision, prescription, surgical operation, etc. One of the limitations in this
area is the shortage of data. The medical datasets are hard to develop considering the
challenging acquisition and preprocessing processes (e.g., labeling). There are different
ways of overcoming this issue, such as transfer learning and synthetic data generation.

This subject requires a detailed study in order to make sure that the systems have
sufficient knowledge, provided from the training phase. Another limitation is the security
threats targeting these systems. Recently, security aspects of AI and CV-based systems
have received remarkable attention from the community and a number of works have been
proposed. However, the connection between the medical dangers and the security threats
on these systems has not been analyzed sufficiently [33–39] and a comprehensive review
is required.

Alongside the high-level overview of AI/CV-based systems, physical/hardware real-
ization of these systems also requires a comprehensive review and analysis [5]. The medical
devices in the form of implantable and wearable must have the resources and capabilities
to execute and complete the AI/CV-based medical computations according to the desig-
nated specifications. Smart insulin pumps are an example of these devices. They require
novel technologies in their hardware. The security of hardware is an important topic for
these devices [40–44]. There is an urgent need for researchers in academia, industry, and
government to address these issues.

Many hardware-related security issues of medical devices stem from the globalization
of the semiconductor supply chain. It creates opportunities for adversarial parties in
IC supply chain to perform attacks causing purposeful damages in the medical devices
and consequently malicious medical errors. Recently, major attention has been given to
leveraging physical inspection, AI, and CV for hardware trust and assurance [45–48]. In
fact, both AI and CV can play a crucial role in design and development of both stronger
threats and defenses.

Novel attack and defense models are developed in this multi-disciplinary research and
effective methods are examined to make the models fully operational targeting computing
systems. Both non-AI/CV and AI/CV computations run by the systems are subject to
attacks. Therefore, we define three directions in the intersection of AI/CV and hardware
security for medical devices: (a) AI/CV-based attacks; (b) AI/CV-based defenses; and
(c) security of AI/CV elements. The novel AI/CV-based defenses in the medical devices
should be protected in order to make sure that all the non-security and security elements in
the device can resist in the face of different attacks.

In this review paper, we focus on: the emerging security weaknesses and threats in
medical applications based on the known medical errors; the application of artificial intelli-
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gence and computer vision in the medical field; and the security aspects of medical devices
at software and hardware levels. The paper contributions are stated as: (a) identification of
the errors in the medical domain, refer to Section 2; (b) analysis of the security weaknesses
in the software, imaging, and electronics used in medical applications, refer to Section 3;
(c) utilization of AI/CV-based electronic components in medical applications (e.g., smart
remote surgery and medical image analytics), refer to Section 4; (d) review of the attack and
defense models for software and hardware in the medical domain based on the identified
errors, refer to Section 5; and (e) evaluations of the challenges and opportunities for IoMTs,
refer to Section 6. The paper is concluded in Section 7.

The four major contributing elements of this review (in order from the medical per-
spective) is graphically shown in Figure 1. As shown in the figure, “medical errors” is the
foundation for the other elements in the review. According to these errors, we detect the
weaknesses of medical entities in different layers of computations that can be exploited
by adversaries for performing malicious purposes (refer to Section 3). In the element pre-
sented in Section 4, applicability and usefulness of AI and CV technologies in optimizing
quantity, quality, and accuracy of medical processes are studied. Lastly, we survey and
analyze the cyber attacks capable of creating malicious medical errors along with their
countermeasures. It is important to mention that both artificial intelligence and computer
vision are key subjects in this review and their employment in all these four elements are
discussed. Overall, this review is considered as an instruction manual for medical security
from the hardware perspective.
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Figure 1. The four major contributing elements of this review on threats and vulnerabilities in
medical domain.

2. Medical Errors

In this section, the errors in the medical domain are discussed. These medical errors
are among the top three causes of death in the United States according to the recent
research [49]. Unsafe healthcare treatments are at the core of incidents in hospital settings,
such as patients’ injuries, falls, infections, and longer hospital stays. Having more strength
in the medical field is really important due to their roles in every society in terms of helping
people to have satisfactory health, treating ill patients, saving lives, and preventing deaths.

A failure/error in these tasks results in serious adverse consequences and even
death [50–56]. Therefore, it is critical to monitor and conduct medical processes for preven-
tion, reduction, and elimination of all possible errors in the field. Alongside the detrimental
effects of medical errors on humans, they cause added costs to both patients and health-
care personnel. Figure 2 shows an example of costs associated with medical errors [57].
The data from the figure are from two studies accomplished by the Betsy Lehman Center:
(a) measuring the annual incidence, types, and system costs of medical errors throughout the
commonwealth. (b) measuring the physical, emotional, behavioral, and financial impacts of
preventable medical harm on Massachusetts residents.
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With respect to case (a), certain parameters were considered in the study, such as
preventable medical harm events that occurred in one year, the most common and costly
types of errors, and the budget spent on excess health insurance claims resulting from
these errors. The national cost of medical error was estimated using the Massachusetts
All-Payer Claims Database (APCD), which includes both commercial health insurance
and Medicaid claims, and Medicare claims data (i.e., both databases from 2013 because of
a subsequent change in the diagnostic coding system) encompassing most reimbursable
procedures or treatments.

For the case of (b), the public experience in Massachusetts on medical error is ana-
lyzed. A large randomized cross-section of residents was involved in the analysis. This
experience-based analysis includes multiple cases for investigation: (1) the incidence and
types of medical errors; (2) the healthcare settings; (3) the physical, emotional, and financial
consequences of error to patients and families over time; (4) the provider response after
an error; and (5) the impact of open communication about errors on patient and family
wellbeing. The residents were identified and interviewed in two statewide telephone-based
health insurance surveys (initial in 2017 and follow up in 2018) conducted by Center for
Health Information and Analysis. From the study, we understand that patients and families
are excellent observers of medical error.

One in seven Medicare patients in hospitals experience a medical error. Medical errors
are silent in terms of exposing themselves immediately and are largely unseen tragedies.
Beyond the obvious emotional complications, unexpected adverse effects related to medical
error increase personal and institutional financial responsibilities, which increases estimated
billions of dollars to health care costs annually. A medical error is defined as failure of a
planned medical action to be completed as intended or the use of a wrong medical plan to
achieve an aim. Research shows that a high percentage of medical errors are not reported.
This leads to a dangerous environment for patients. Additionally, having an experience
with medical error causes dissatisfaction, loss of trust, financial failures, and long-lasting
health and emotional issues for the patient victims.

More specifically, the medical errors are stated as: (a) a safety problem: a lack of
freedom from accidental injury; (b) an adverse drug event: an adverse drug event is injury
resulting from the use of a drug. An adverse drug event may be caused by an adverse drug
reaction, a medication error, or an overdose. An adverse drug event frequently necessitates
discontinuation of the drug use; (c) an adverse drug reaction: an adverse drug reaction
is an unavoidable, remarkably detrimental, or unpleasant reaction that occurs during the
normal and correct use of a medical product. A number of drug reactions may be minor
and temporary, while others have the potential to be permanent and serious; (d) medication
errors: medication errors are defined as errors that happen due to the mistakes made
in the processes of the drug’s prescription, transcription, dispensing, administration, or
monitoring; (e) near miss: an error that is detected and corrected before the occurrence
of harm; (f) sentinel event: an unexpected occurrence involving the risk or complete
occurrence of serious physical or psychological injury and even death; (g) diagnostic errors:
diagnosis errors are errors that occur when a diagnosis is missed, wrongly performed, or
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delayed. As an example, a categorization of medical errors related to medications with the
respective impacts and definitions are shown in Table 1 [58].

Table 1. The definition of levels of harm. National Coordinating Council for Medication Error
Reporting and Prevention Index for categorizing of medication errors, with added definitions for the
current study [58]. Abbreviations used: NCC MERP, National Coordinating Council for Medication
Error Reporting and Prevention. Reprinted with permission from Ref. [58]. 2004 Wiley Online
Library.

Medical Status Category NCC MERP Definition Additional Definitions for the Current Study

No error A Circumstances or events that have the capacity
to cause error

No harm

B An error occurred but did not reach the patient
(“an error of omission” does reach the patient)

C An error occurred that reached the patient but
did not cause harm

D
Error reached the patient, and required

monitoring to confirm that no harm resulted
and/or required intervention to preclude harm

Harm

E
Error occurred that may have contributed to or
resulted in temporary harm to the patient and

required intervention

F
Error occurred that may have contributed to or
resulted in temporary harm to the patient and
required initial or prolonged hospitalization

F1. An error reached the patient that required
additional surgery or an unnecessary

general anesthetic
F2. Unnecessary incision during a

necessary operation

G Error occurred that may have contributed to or
resulted in permanent patient harm

G1. Delayed cancer diagnosis that is likely to affect
prognosis (when final outcome is not yet known)

H Error occurred that required intervention
necessary to sustain life

Death I Error occurred that may have contributed to or
resulted in the patient’s death

The table is a modified version of the National Coordinating Council for Medication
Error Reporting and Prevention harm index, developed to assess harm caused by medi-
cation errors. In this alphabetic system, harm is assigned a letter category from “A” (no
harm, but circumstances predisposing to error) to “I” (death). Modifications were made to
accommodate some non-medication errors that do not fit well into this system.

(h) Systems or process errors: systems or process errors involve predictable human
mistakes in the context of poorly designed system. (i) active errors: active errors usually
involve the most active staff members and occur at the connection point between a human
and certain parts of a larger system; (j) latent errors: hidden errors involve failures of
organization or design (e.g., systems and processes) that allow active errors to cause harm.
A sample of medical errors and their associated processes are displayed in Table 2 [58]. This
table shows a classification system based on the “care flow” guided by the reported events.

This classification: (1) maximizes the interrater agreement; and (2) gives the most help-
ful information to practicing otolaryngologists. The table includes a conceptualization of an
idealized patient encounter beginning with history and physical examination, continuing
through either medical or surgical therapy and postoperative care. The errors are classified
by where they occurred in the care flow. The classification table can foster agreements
and provide useful information in the practicing otolaryngologist. Using this informa-
tion, errors can be categorized according to whether they occurred during evaluation and
diagnosis, surgical management, or medical (non-surgical) management.
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Table 2. The idealized care flow and potential errors [58]. Reprinted with permission from Ref. [58].
2004 Wiley Online Library.

Care Flow Process Potential Errors

Work-up and diagnosis

Obtain history and perform examination Errors in history or examination

Construct a differential diagnosis Errors in differential diagnosis

Order testing to reduce differential Testing errors

Reach definitive diagnosis Errors in final diagnosis

Surgical management

Choose a surgical therapy Choose wrong procedure

Surgical planning (facility, personnel, preop tests) Errors in surgical planning

Correct site surgery Wrong site surgery

Anesthetic administered Anesthesia errors

Drugs administered from field Wrong drug/dilution from surgical field

Intraoperative patient management Errors in management (e.g., failure to call
consult intraoperatively)

Perform surgery correctly Technical surgical errors

Remove all instruments and sponges Retained foreign body

Surgical equipment available and functional Equipment-related errors

Postoperative care Errors in postoperative care

Medical management
Choose correct therapy Choose incorrect therapy

Administer medical therapy Medication errors

Miscellaneous

Nursing and ancillary care Nursing/ancillary errors

Administrative Administrative errors

Communication Communication errors

Miscellaneous All others

In addition, the top 10 frequent medical errors are observable in Figure 3 [57]. The
findings about the most frequent types of errors follow a pattern similar to the earlier
national study on which it was based, with seven of the most frequent errors making it into
the top 10 lists in both studies.

Medical errors occur anywhere in the health care system: hospitals, clinics, surgery
centers, doctors’ offices, nursing homes, pharmacies, and patients’ homes. Medical errors
are issues that are prevented with better planning, adequate knowledge, and/or a higher
level of attention and communication. Planning failures and knowledge insufficiencies
encompass virtually every aspect of the delivery of care, and they create many errors of
different types.

Therefore, it is required that nurses and other health care professionals work together
to establish the most effective plan of care for each patient, to ensure that all members of
the health care team have the necessary knowledge and skills to implement the plan of
care, and to evaluate the effectiveness and safety of the implemented plan. We can see the
statistics from different healthcare settings that medical errors can happen, and the range
of ages of patient victims, in Figure 4 [57].
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The bar chart from this figure shows that errors happen in all health care settings,
including nursing homes, dental offices, emergency rooms, hospitals, urgent care, prison
infirmaries, primary care practices, and retail pharmacies. Also, people who reported
medical errors live in every part of the state. The bottom plot of figure displays the age
of the patient to whom the medical error happened ranged from less than one to over 90.
Although median age at the time of the error was 53 years old, 15% of the errors described
occurred to patients less than 18 years old and 18% of the errors occurred to respondents 75
or older. In another comparison, the changes on the number of medical errors over time
and for different ages are shown in Figure 5 [59].
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ations used: AEMT, Adverse Effects of Medical Treatment; and AE, Adverse Effects.

Lack of knowledge and considerations involves poor planning and execution, inap-
propriate or absent policies and procedures, failure to get and maintain equipment, failure
to hire and retain staff, failure to maintain safe staffing levels, failure to monitor care, and
failure to recognize errors, and correct the conditions that caused the errors. Accurate
communication is fundamental for: (a) diagnosing, treating, dispensing, and administering
medications; (b) maintaining patient safety; (c) following policies and procedures; and
(d) ensuring treatment instructions are carefully followed. Communication errors can be
verbal or written and occur in every part of the process of delivery of care. It is necessary to
find the sources of errors (i.e., security weaknesses) before doing any actions (i.e., defense
mechanisms). Doing survey is one of the established methods for finding the possible
nodes in the healthcare domain in which different parties and scenarios are considered.
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Open communication between healthcare professionals about care concerns, also
known as “speaking up” is essential to patient safety. It is important to compare interns’
and residents’ experiences, attitudes, and factors associated with speaking up about tradi-
tional versus professionalism ‘related safety threats. The comparisons are usually provided
in anonymous and cross-sectional surveys. The measurements for them include (but not
limited to) attitudes about, barriers and facilitators for, likelihood of, and self-reported ex-
perience with speaking up. Many interns and residents commonly observe unprofessional
behavior, but it is less likely that they speak up about it compared with their observations of
traditional safety threats, so continuous studies in this domain are needed to keep patients
safe and prevent the existing and emerging errors. Related to the discussed matters, we
can observe the material of a national survey about “speaking up” in [60] (especially see all
of the tables in the reference).

The items in survey include: (a) respondents’ self-reported exposure to and speaking
up about traditional patient safety breaches and unprofessional behavior; (b) barriers, facil-
itators and attitudes towards speaking up about patient safety breaches and unprofessional
behavior; (c) new and validated measures of patient safety culture; (d) respondent character-
istics and (e) two patient safety vignettes: traditional safety threat versus professionalism-
related safety threat (refer to “[60], table number one”). The survey was developed by
certain physicians and researchers with expertise in patient safety, professionalism, ethics
and psychometrics.

“Unprofessional behavior” in the survey was defined as conduct of a health profes-
sional that demonstrates disrespect or lack of compassion, commitment to ethical principles,
integrity or accountability towards patients or coworkers. “Patient safety breach” was de-
fined as an act or omission that unnecessarily increases the risk of accidental or preventable
injuries produced by medical care.

The vignettes were based on actual cases and designed using review of the litera-
ture, personal experience, and consultation with medical and surgical residents, nursing
leadership and experts in patient safety. They help to determine whether respondents’
perceived likelihood of speaking up differed between a traditional patient safety threat and
a professionalism related safety threat while accounting for any differences in the perceived
potential for harm.

Throughout the survey, descriptive statistics were used to report responses. For
comparing the demographics of respondents to the total population, χ2 goodness-of-fit
test was used. The McNemar’s test was used to analyses within-respondent differences in
(a) self-reported speaking up behavior; (b) barriers and facilitators to speaking up; (c) and
attitudes regarding speaking up between traditional and professionalism-related patient
safety threats.

Multivariate logistic regression was used to explore factors independently associated
with speaking up in the traditional and professionalism-related safety vignettes. Factors
potentially associated with speaking up were identified from the literature and assessed
via scales and individual survey items. All hypothesized factors were included in each
regression model. Covariates included level of hierarchy, perceived potential for harm to
patients, perceived patient safety-related climates, gender, level of postgraduate training,
specialty, moral courage, self-reported patient safety training, and study site.

Consistent with analysis of factorial survey data, the unit of analysis was the vignette,
rather than individual respondents (sample size equals to number of respondents mul-
tiplied by number of speaking up judgements made in response to a vignette). It was
estimated that a sample size of 2131 speaking up judgements for each vignette would
provide 80% power to detect an effect size (OR 1.5) assuming moderate correlation (R = 0.5)
between covariates. This number translates to 533 respondents with four speaking up
judgements per vignette (i.e., likelihood of speaking up to a nurse, intern, resident and
attending). To account for multiple comparisons, two-tailed statistical significance was set
at an alpha level of 0.01. Analyses were performed using SAS V.9.4.
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Of the 1800 interns and residents surveyed, 837 (47%) completed the questionnaire.
The “table number two from [60]” illustrates the characteristics of the respondents and the
total population surveyed. During their most recent inpatient month, 49% (410/837) of
respondents reported observing a patient safety breach and 75% (628/837) of respondents
reported observing unprofessional behavior (p < 0.001). However, respondents reported
speaking up about the unprofessional behavior they observed less commonly than speaking
up about a patient safety breach (46%, 287/628 vs 71%, 291/410; p < 0.001).

The majority of respondents (82%, 683/837) agreed that speaking up about unprofes-
sional behavior was important for patient safety. Greater than double the proportion of
respondents agreed that it is difficult to speak up in their clinical area about unprofessional
behavior compared with patient safety concerns (38%, 322/837 vs 16%, 133/837; p < 0.001, in
“reference [60], table number three”) and substantially fewer forecasted meaningful change
after speaking up in each setting (40%, 332/837 versus 60%, 504/837; p < 0.001, respectively).

While 65% (541/837) reported encouragement from colleagues to speak up about
patient safety concerns, only 36% (305/837) reported the same for unprofessional behavior;
p < 0.001. Respondents were least likely to report observing others speaking up about both
patient safety concerns and unprofessional behavior as a bystander (i.e., when observing
threats that did not directly involve themselves or their patients) (43%, 362/837 and 27%,
224/837, respectively).

The “table number five from [60]” shows respondents’ likelihood of speaking up in
traditional versus professionalism-related patient safety vignettes across levels of hierarchy
(i.e., speaking up to a nurse, intern, resident or attending). Significantly fewer respondents
reported that they would likely speak up in the professionalism-related patient safety
vignette than the traditional patient safety vignette across all hierarchy positions, and these
differences persisted even among respondents who perceived a high potential for harm to
the patient in both vignettes (see “reference [60], the fifth table” in which p < 0.001 for all
comparisons). The fewest number of respondents reported that they would likely speak up
to an attending physician for both the traditional patient safety and professionalism-related
vignettes (64%, 537/836 and 9%, 78/836, respectively). Meanwhile, we can see the impact
of open communication on lowering the patient harm in Figure 6 [57].

Electronics 2021, 10, x FOR PEER REVIEW 12 of 44 
 

 

sional behavior compared with patient safety concerns (38%, 322/837 vs 16%, 133/837; 

p<0.001, in “reference [60], table number three”) and substantially fewer forecasted 

meaningful change after speaking up in each setting (40%, 332/837 versus 60%, 504/837; 

p<0.001, respectively). 

While 65% (541/837) reported encouragement from colleagues to speak up about 

patient safety concerns, only 36% (305/837) reported the same for unprofessional behav-

ior; p<0.001. Respondents were least likely to report observing others speaking up about 

both patient safety concerns and unprofessional behavior as a bystander (i.e., when ob-

serving threats that did not directly involve themselves or their patients) (43%, 362/837 

and 27%, 224/837, respectively). 

The “table number five from [60]” shows respondents’ likelihood of speaking up in 

traditional versus professionalism-related patient safety vignettes across levels of hier-

archy (i.e., speaking up to a nurse, intern, resident or attending). Significantly fewer re-

spondents reported that they would likely speak up in the professionalism-related pa-

tient safety vignette than the traditional patient safety vignette across all hierarchy posi-

tions, and these differences persisted even among respondents who perceived a high 

potential for harm to the patient in both vignettes (see “reference [60], the fifth table” in 

which p<0.001 for all comparisons). The fewest number of respondents reported that they 

would likely speak up to an attending physician for both the traditional patient safety 

and professionalism-related vignettes (64%, 537/836 and 9%, 78/836, respectively). 

Meanwhile, we can see the impact of open communication on lowering the patient harm 

in Figure 6 [57]. 

 

Figure 6. The connection between the open communication by providers and the lower levels of 

harm [57]. 

These errors involve medicines and drugs, surgery, procedures, diagnosis, equip-

ment and devices, or lab reports. Each of these cases have their own issues such as having 

expired, being counterfeit, unsafe, unapproved, untrusted, ineffective, etc. They can 

happen during even the most routine tasks. Most errors result from problems created by 

today’s complex health care system. The errors also happen when doctors and patients 

have problems in their communications. Table 3 shows important signs of counterfeit 

prescription drugs that physicians should be aware of [61]. The physicians should be 

assured that the medical products are Food and Drug Administration (FDA)-approved. 

 

 

 

 

 

Figure 6. The connection between the open communication by providers and the lower levels of
harm [57].

These errors involve medicines and drugs, surgery, procedures, diagnosis, equipment
and devices, or lab reports. Each of these cases have their own issues such as having expired,
being counterfeit, unsafe, unapproved, untrusted, ineffective, etc. They can happen during
even the most routine tasks. Most errors result from problems created by today’s complex
health care system. The errors also happen when doctors and patients have problems in



Electronics 2022, 11, 610 12 of 43

their communications. Table 3 shows important signs of counterfeit prescription drugs
that physicians should be aware of [61]. The physicians should be assured that the medical
products are Food and Drug Administration (FDA)-approved.

Table 3. The signs of counterfeiting [61]. Abbreviations used: Rx, Prescription.

1. Product packaging and label are not in English.

2. Words are misspelled on the bottle.

3. “Rx Only” designation is absent.

4. Expiration date is missing or has passed.

5. Lot number is omitted.

6. Generic name or active ingredient is not printed with brand name.

7. Product appearance, packaging, prescribing information, labeling or indications for use
are unfamiliar.

8. Physician and/or patient package label and product information are absent.

The medical errors are reduced and prevented through protecting and improving the
operations performed by “humans”, “software”, and “hardware”. Certain technologies
including artificial intelligence and computer vision are able to make the operations more
accurate and successful, causing a reduction in the errors. Using AI and CV, humans
provide stronger information for the operations to make better decisions. Also, software
along with hardware function more intelligently with higher performance.

Overall, health professionals and patients should employ all their knowledge and
skills through their natural abilities and emerging technologies to make sure that protection
against the errors is provided in all stages of the medical processes. When errors are
detected and reported, it is important that the information is spread in a manner that would
alert most individuals about preventing future errors. Methods for providing information
about errors is outlined in Table 4 [62].

Table 4. The dissemination of medication errors [62]. Reprinted with permission from Ref. [62]. 2009
Wiley Online Library.

Medium Contribution (%)

Email 10.3
In-services and Lectures 57.1

Memorandums and Letters 64.7
Newsletters 54.5

Orientation for New Employees 48.1
Other or not disseminated 41

There are a number of tips that “humans” should consider for making the medical
domain safer with less errors. They need to become an active member of the healthcare
agencies for joining in every action and decision with respect to healthcare. Studies show
that patients who are more involved with their care tend to get better results. Such involve-
ment includes: (a) making health professionals aware of the consumption of medicines and
supplements; (b) providing a comprehensive medical record to all the needed individuals
and parties; (c) informing any update on the health status; (d) caring about cleanliness from
all health professionals and parties in any medical process; (e) choosing the best places for
treatments and surgeries; (f) asking about any news on the health status; (g) requesting
complete medical instructions; (h) acquire a proper understanding of any medical process
needed; (i) establishment of medical standards by a full medical expert testimony; and
(j) demanding criminal responsibility and persecution for individuals related to certain
medical errors; etc.



Electronics 2022, 11, 610 13 of 43

Ten common recommendations for reducing/eliminating medical errors are provided
in Table 5 [58]. Meanwhile, the errors should be disclosed without considering the conse-
quences from blaming, negative emotions, expectations, and so forth in order to perform
better management of these cases, refer to Figure 7 [63].

Table 5. The top 10 safety recommendations [58]. Abbreviations used: ESS, Endoscopic Sinus
Surgery; and OSA, Obstructive Sleep Apnea. Reprinted with permission from Ref. [58]. 2004 Wiley
Online Library.

1. ESS is a potentially high-risk surgery. The use of image-guidance has not been proven to reduce injury but may be considered.

2. Cranial and other major nerves are potential high-risk structures. Nerve monitoring has not been proven to reduce injury but
may be considered.

3. Check cautery meticulously for intact insulation. Consider using a disposable cautery.

4. Ensure that allergy sera are clearly labeled and checked before administration. Have a second staff member or the patient
confirm that the correct vial is used.

5. Develop and maintain a tracking system to ensure that the correct test is ordered, completed, and the results reviewed.

6. Have all consults, tests, and personnel in place prior to surgery. If there are relative contraindications to elective surgery, consider
carefully before going forward.

7. When sophisticated equipment fails, it may be difficult to fix immediately. Have appropriate support for equipment and if
possible test equipment prior to induction.

8. The perioperative and postoperative period is a high-risk interval. Risk factors for postoperative death may include narcotic use,
developmental delay, and OSA.

9. Be aware of the potential for wrong site/wrong patient surgery, particularly in busy settings. Initial the surgical site and have a
“time out” at the beginning of each procedure.

10. Eliminate concentrated epinephrine from the surgical field.
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Figure 7. Managing errors and the factors and indexes comprising it [63].

Specific methods from AI and CV are applicable on human-related data, including
hospital-based incident reports, exhaustive chart reviews, documented focused interviews,
and surveys in order to comprehensively evaluate and summarize the possible errors at
this level. The errors in this human-level are classified according to the location of the event
(e.g., in the operating room), the professional involved (e.g., a physician or a pharmacist),
the agent involved (e.g., intravenous drugs or oral drugs), the cognitive error (e.g., an error
in vigilance or an error of judgment), and also by contributing system factors (e.g., poor
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hand-offs, excessive workload, or poor equipment). These classification systems deliver
important information but may be somewhat broad for the practical study of errors in a
particular area of the field.

To analyze and plan to remediate the medical problems and errors in more detail
and from the “software” and “hardware” perspective, it is first necessary to collect (and
produce) diverse sufficient data related to the problems/errors. Next, the data needs
to be analyzed, understood, learned, processed, and summarized based on the medical
objectives. Various imaging techniques are employed for obtaining data: X-ray radiography,
computed tomography (CT) scans, magnetic resonance imaging, ultrasound, bone scan,
endoscopy, elastography, tactile imaging, thermography, medical photography, nuclear
medicine functional imaging. For one-dimensional/signal types of data, the techniques are
sensing systems that measure and deliver information, such as electroencephalography,
magnetoencephalography, and electrocardiography. A typology of commonly used medical
imaging modalities is illustrated in Figure 8 [64].

Electronics 2021, 10, x FOR PEER REVIEW 15 of 44 
 

 

computed tomography (CT) scans, magnetic resonance imaging, ultrasound, bone scan, 

endoscopy, elastography, tactile imaging, thermography, medical photography, nuclear 

medicine functional imaging. For one-dimensional/signal types of data, the techniques 

are sensing systems that measure and deliver information, such as electroencephalog-

raphy, magnetoencephalography, and electrocardiography. A typology of commonly 

used medical imaging modalities is illustrated in Figure 8 [64]. 

 

Figure 8. A typology of commonly used medical imaging modalities [64]. 

These data are presented with respect to time, location, etc. Strong classification 

systems enhanced with the state-of-the-art computing elements from AI/CV are required 

to perceive the medical data and specify their status with respect to errors. These systems 

should be capable of identifying the scopes of practice where errors happen. The “hu-

man-, software-, or hardware-level” detection and recognition systems in this context 

should be computationally strong (i.e., in terms of the computing resources, such as 

convolutional neural network) and knowledgeable (i.e., in terms of being trained on 

enough diverse data) to be able to find different kinds of medical errors and determine 

their impacts on the healthcare system. 

In summary, medical errors are a part of the medical field with great importance and 

disastrous consequences. Screening and managing medical processes using the 

state-of-the-art technologies are critical for prevention, reduction, and elimination of all 

possible errors. Different kinds of entities in the medical domain, including “humans”, 

“software”, and “hardware” can have the role of reducing and preventing these errors as 

well as enhancing the respective operations. 

3. Security Weaknesses of Medical Devices at Software and Hardware Levels 

Over the last few years, healthcare administrations have been computerizing their 

provision of care that led to an increased number of networked medical devices and re-

motely data acquisition [37,65–70]. Due to such computerization, medical devices have 

made excellent progress since five decades ago. These networked medical devices have 

enhanced the quality and accessibility of health treatments (leading to less medical er-

rors) through ubiquitous computing. Moreover, these devices have transformed medical 

treatments and improved the lives of the masses through different innovations. The in-

novations include new areas of therapeutic and diagnostic treatments that help in 

achieving reliable healthcare facilities. Nowadays, medical devices are porta-

ble/wearable, networked, and capable of being employed for different medical opera-

Figure 8. A typology of commonly used medical imaging modalities [64].

These data are presented with respect to time, location, etc. Strong classification
systems enhanced with the state-of-the-art computing elements from AI/CV are required
to perceive the medical data and specify their status with respect to errors. These systems
should be capable of identifying the scopes of practice where errors happen. The “human-,
software-, or hardware-level” detection and recognition systems in this context should be
computationally strong (i.e., in terms of the computing resources, such as convolutional
neural network) and knowledgeable (i.e., in terms of being trained on enough diverse data)
to be able to find different kinds of medical errors and determine their impacts on the
healthcare system.

In summary, medical errors are a part of the medical field with great importance and
disastrous consequences. Screening and managing medical processes using the state-of-the-
art technologies are critical for prevention, reduction, and elimination of all possible errors.
Different kinds of entities in the medical domain, including “humans”, “software”, and
“hardware” can have the role of reducing and preventing these errors as well as enhancing
the respective operations.

3. Security Weaknesses of Medical Devices at Software and Hardware Levels

Over the last few years, healthcare administrations have been computerizing their
provision of care that led to an increased number of networked medical devices and re-
motely data acquisition [37,65–70]. Due to such computerization, medical devices have
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made excellent progress since five decades ago. These networked medical devices have
enhanced the quality and accessibility of health treatments (leading to less medical errors)
through ubiquitous computing. Moreover, these devices have transformed medical treat-
ments and improved the lives of the masses through different innovations. The innovations
include new areas of therapeutic and diagnostic treatments that help in achieving reliable
healthcare facilities. Nowadays, medical devices are portable/wearable, networked, and
capable of being employed for different medical operations. The quantity, quality, and
diversity of medical devices create a great and promising environment for the future of
medical field. Different classes of medical devices are shown in Table 6 [71].

Table 6. The medical device classes [71]. Abbreviations used: BGM, Blood Glucose Meters; and
CGM, Continuous Glucose Monitoring. Reprinted with permission from Ref. [71]. 2017 Institute of
Electrical and Electronics Engineers.

Medical Device Class Attributes Example Devices

Class 1 Common, low risk, and low complexity Lancet and Dental Floss.

Class 2 More complex, greater risk to patient, and
partially implanted Syringe, Insulin Pump, and BGM.

Class 3 Fully implanted, greater risk, and regulate
body function.

Artificial Pancreas, CGM, Replacement
Heart Valves.

The connectivity of these devices to the Internet network has created the Internet
of Medical Things (IoMT), which is the most demanding technology in the healthcare
sector [72]. The medical type of Internet of Things (IoT) has made an excellent opportunity
for the medical devices (with embedded computing engines) to interact with each other,
the users (e.g., patients and physicians), and any other medical-related entity in the world-
wide network. Through IoMT, many benefits are given to the devices and the users
including, wireless communication, remote monitoring, high-speed transmission of clinical
information from patients to clinicians (and vice versa), real-time diagnosis and therapy
management, which are all aimed at improving patient care.

The overview of an exemplary healthcare system is delivered in Figure 9 [73], an
example architecture for IoMT is given in Figure 10 [74], and samples of medical devices
are shown in Figure 11 [75]. In “reference [37], the table number two” provides the
information about a number of medical devices in the field. The devices covered are
wearables (e.g., tracking with Bluetooth Low Energy or Wi-Fi communication medium),
implantable devices (e.g., devices with Radio Frequency, Bluetooth Low Energy, Wi-Fi
communication medium), and on-site equipment (e.g., using Wireless Local-Area Network
communication medium).
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Figure 9. Overview of an example healthcare system [73]. Abbreviations used: ECG, Electrocardio-
gram; GSM, Global System for Mobile Communications; WLAN, Wireless Local Area Network; and
A/D, Analog-to-Digital Converter. Reprinted with permission from Ref. [73]. 2021 Association for
Computing Machinery.
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Figure 11. Implantable medical devices: (a) An artificial pacemaker implanted in a patient’s chest
with electrodes contacting heart muscles. (b) A Medtronic InterStimneuro-stimulation device for
sacral nerve stimulation therapies. (c) A semi-implanted insulin pump monitors current glucose
levels and delivers proper amount of insulins continuously. (d) A cochlear implant helps patients
suffering hearing loss [75]. Reprinted with permission from Ref. [75]. 2016 Institute of Electrical and
Electronics Engineers.

The devices in IoMT are managed in order to provide the appropriate services for
various patients with as few medical errors as possible. In this network, health records/data
are acquired from, generated by, and delivered to the respective authorized entities in the
healthcare system via portals, medical servers, and health databases. The data are the most
valued resource for any organization and for any application, especially in the medical field.
With the help of IoMT devices, the medical information is exchanged between all possible
entities in the network while considering energy efficiency and satisfactory performance.
Different technologies are leveraged in these communications, such as WiFi, Bluetooth,
Zigbee, Z-wave, radio-frequency identification, near-field communication, and ultra-wide
bandwidth [76]. These medical devices include (but not limited to) glucometers, smart
pen, blood pressure and heart rate monitors, implantable cardiac devices (pacemakers and
insulin pumps), and wireless vital monitors.

The IoMT platform is not only beneficial to the patients but also to the facilitates of
different departments in healthcare environment. As a result of this benefit, the budget
for healthcare management and handling are reduced and it is used for other medical
processes. However, alongside the advantages of IoMT, there are vulnerabilities, risks, and
security issues behind every IoMT device that need to be considered [34,39,77–79].

The IoMT is disruptively shifting the paradigm of cybersecurity, privacy, and data
protection toward new territories [80]. With ever increasing connection of new devices,
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information gathering is becoming ubiquitous and deeply pervasive. Simultaneously,
networks are becoming exposed to new threats with an unprecedented surface of risks.
The implementation of IoMT systems comes with security and privacy challenges because
of: (a) their highly dynamic nature; (b) the heterogeneous nature of hardware; (c) global
connectivity; (d) changeable properties; (e) wide accessibility; and (f) the existing traditional
and less effective security protocols are not suitable for the current and next generation of
the devices used in these networks and systems [80,81].

These factors often result in IoMT ecosystems being physically unprotected and
susceptible to manipulation by external parties. Therefore, there are a number of threats that
can negatively affect IoMT devices. The possible threats can be mentioned as: manipulating
communication channels, denial of service, physical threats, eavesdropping, and identity
fabrication. During the IoMT system implementation, the primary security issue in three
parameters of confidentiality, integrity, and availability as well as the layer-wise issues
should be identified and resolved. Meanwhile, the security complications with respect to
three primary technologies, namely machine learning, artificial intelligence, and blockchain
should be addressed in the implementation processes.

One of the critical processes in the security of IoMT devices is anomaly detection [82].
It is about identifying data patterns that deviate remarkably from the expected behav-
ior. Identifying an anomaly can determine the parameters of predictive maintenance,
fault prevention, automation within this context. There are certain challenges for this
process that need to be resolved, including data fusion, data volumes, data speed, and
network/energy efficiency.

Anomaly detection in IoMT security is considered as a hard problem since it is required
to find computation-accuracy-energy in a constrained environment. Various techniques
from statistical analysis, time-series analysis, signal processing, supervised learning, rein-
forcement learning, deep learning, and so forth are employed to detect possible anomalies
more effectively. Different data-based architectural environments (i.e., cloud, fog, and edge)
should be studies due to their impacts on the detection process.

The software, hardware, and the transmitting/processing information by the IoMT
devices are all at risk by different kinds of threats and have security weaknesses that
can damage the function of devices and/or the transmitting/processing data, causing
intentional (malicious) medical errors. Any vulnerable system operation or outdated
software causes different sorts of security breaches in the network. Certain devices and
systems in the network, such as pacemakers, X-ray machines and CT scanners are highly
vulnerable for these matters. In other words, the healthcare system is in a thoroughly
critical and concerning condition, refer to Table 7 [83].

Table 7. Status of healthcare system based on vulnerabilities [83].

Healthcare-Cybersecurity Condition Description

Known Vulnerabilities Epidemic Single legacy and medical technology can have over 1400 vulnerabilities

Vulnerabilities Impact Patient Care One security compromise shutdowns patient care process

Premature/Over-Connectivity Meaningful use of healthcare drives hyperconnectivity without secure design
and implementation

Legacy Equipment Equipment is running on old, unsupported, and vulnerable operating systems

Severe Lack of Security Talent The majority of health delivery organizations lack full-time and qualified
security personnel

As a practical example, the medical devices in the United States follow a process that
integrates FDA guidance, regulatory decision making, post-market surveillance, and over-
sight with a typical product development life cycle. This life cycle is used as a framework
for contextualizing the possible challenges and opportunities, especially with a particular
focus on the development, deployment, operations, and maintenance phases. Manufac-
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turers typically own the bulk of the device development phase, whereas the healthcare
delivery organizations (HDOs) lead the procurement phase. Manufacturers and HDOs
often share a responsibility for the remaining phases. The normal product life cycle, along
with the challenges and the opportunities for the cybersecurity life cycle of medical devices
are shown in Figures 12–14 [84].

The IoMT devices are constantly collecting and storing huge amounts of personal
and sensitive information, which makes them very appealing targets for cyber criminals
and it is the one of the easiest entry points for adversaries to attack due to presence of
less defense mechanisms for them. The adversaries can steal medical records during their
transmissions. Other attacks to launch on them are fooling user authentication, account
harvesting, and poodle attacks. The databases in the network that contain the medical
information of patients and the employment information of physicians are also in danger.
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In another threat strategy, the network is threatened by the Distributed Denial of
Service (DDoS) attack from exploitation of a backdoor that causes jeopardizing both the
devices and the data in the network. This attack is among the fastest growing and simple
to conduct threats especially for IoMT, and it is really challenging to get tackled. In the
IoMT networks, most of the devices are connected to the Internet and consequently they
are exposed to various attacks from this channel.

Detection and overcoming problems in network traffic caused by the distributed denial
of service attack have been researched more from angle of conventional terminal devices
(e.g., personal computers, laptops, mobile devices, tablets, and servers). The mentioned
situation is different from the IoMT environment in which there are numerous devices
with lower levels of security and protection, leading to extreme growth in the generated
DDoS traffic. So, it is required to study the IoMT security with focus on the DDoS attacks
in more detail and introduce different sorts of respective attacks and countermeasures to
the community. In this regard, a number of studies have already been completed. The
authors in [85] proposed a conceptual network anomaly detection model based on the
device classes that are dependent on individual device traffic characteristics.

The authors in [86] presented a DDoS traffic detection model that uses a boosting
method of logistic model trees for different classes of IoT devices. Specifically, a different
version of the model will be generated and applied for each device class, since the character-
istics of the network traffic from each device class may have subtle variation(s). The IoMT
devices can be categorized into four different classes in this context: Class 1—very high
level of traffic predictability; Class 2—high level of traffic predictability; Class 3—medium
level of traffic predictability; and Class 4—low level of traffic predictability. They show that
device classes are helpful in more effective detection of DDoS traffic.

It has already been realized that botnets (such as Mirai) have used insecure devices
from these networks to conduct DDoS attacks, especially for critical Internet infrastruc-
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ture. This shows the importance of developing new defensive methods that can detect
the malicious traffic in the networks. The authors in [87] demonstrated that leveraging
different machine learning techniques (i.e., neural networks) for using IoT-specific network
behaviors (e.g., limited number of endpoints and regular time intervals between packets) to
inform feature selection can result in high accuracy DDoS detection in the network traffic.
Practically, they showed that enhancing home gateway routers or other network middle
boxes with low-cost machine learning algorithms to analyze their respective traffic data
(i.e., flow-based and protocol-agnostic) is useful in automatic detection of sources of DDoS
attacks from the IoT devices. Figure 15 displays an attack surface for medical devices in
the Internet of Things [88]. The main elements related cyber vulnerabilities in the medical
domain can be observed in Figure 16 [89].
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As it was mentioned earlier, the medical devices can be threatened by confidentiality,
integrity, or availability. The confidentiality-based threats usually occur when an attacker
obtains unauthorized access to certain sensitive information. With respect to the integrity-
based threats, an adversary tampers sensitive information without having authorized
access. In availability-based threats, the services to valid users are denied. In overall,
the demonstrated cyber-attacks on the medical devices are mentioned as: (1) firmware
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modification attack; (2) eavesdropping attack; (3) sniffing attack; (4) information disclosure
attack; (5) man-in-the-middle attack; (6) unauthorized access and spoofing attack; (7) replay
attack; (8) tampering and modification attack; (9) denial of service, resource depletion, and
jamming attack; (9) side-channel analysis attack; and (10) hardware Trojan (i.e., malicious
hardware modification), buffer overflow, brute force, grey-hole, sybil, masquerading, and
other emerging attacks. A summary of these attacks are in “reference [37], tables three to
fourteen along with eighteen to twenty-one”.

In a IoMT platform, prevention of cybersecurity threats should have the same im-
portance as medical treatments. Regardless of the quality, effectiveness, and strengths
of medical processes, if an attack is executed successfully on the platform, a malicious
(intentional) medical error is produced, and then most (or even all) processes become
useless. As a result, manufacturers and health care providers should consider identification,
detection, and prevention mechanisms for different kinds of attacks at multiple computing
layers of the entities in the network. Despite the presence of any defense mechanism, all
users should practice the necessary cyber defenses to mitigate security weaknesses. There-
fore, a comprehensive collaboration across all stakeholders (including patients and other
end users, health care facilities, independent health care providers, and manufacturers of
medical devices) is extremely required to ensure the IoMT is secured.

In summary, we have a greater number of networked medical devices, especially to
the Internet, and remotely data acquisition due to the great demand for computerization
of medical processes. Excellent benefits are provided to the patient care through this
transformation, such as high speed and quality transmission and assessment of medical
information. Besides this positive aspect, there comes various security weaknesses related
to the devices and their data that should be corrected.

4. Artificial Intelligence/Computer Vision (AI/CV) Technologies in Medical Applications

The research areas of computer science, specifically artificial intelligence, have made
continuous progress and enhancements in computation speed and performance. AI broadly
and clearly benefits modern society for various applications, such as forecasting weather,
recognizing faces, detecting fraud, and deciphering genomics [90]. However, AI’s future
role in medical practice remains less clear, especially how AI can reduce/eliminate non-
intentional and intentional (malicious) medical errors. Any classic medical device (e.g.,
prosthetics, stents, and implants) becomes smart using a computing/processing element,
creates an IoMT by connection to the Internet, and contains knowledge through having
an AI module. AI enables and enhances four main features in medical devices, Prediction,
Prevention, Personalization, and Participation [4,91–93], that significantly strengthen the
medical operations and possibly reduce/eliminate medical errors.

Machines (computers) learn to detect and compute undiscoverable patterns from
massive datasets (i.e., big data) using layered mathematical and statistical models (i.e.,
algorithms). Recently, the algorithms from AI have been applied in various applications,
through a variety of shallow and deep artificial neural network configurations, to solve
complex problems. The deep neural networks from the area of deep learning, especially
convolutional neural networks (CNNs), have received significant interest from research
and funding agencies in academia and industry [94]. Deep Learning is a state-of-the-art
technique to make an inference on extensive or complex data. The major progresses in the
field of AI are graphically displayed in Figure 17 [95]. The difference between usage of
neural networks and the other AI approaches is graphically shown in Figure 18 [96]. We
can see a simple architecture for a neural network in Figure 19 [97].

These AI elements have certain requirements: the availability of powerful and cost-
effective computing (processing) hardware and software, advancements in personal and
mobile devices, the prevalence of large datasets (with a number of them in the cloud),
registration of wearable and IoT devices, the expansion of open source coding resources,
inclusion of novel human-machine interfaces, and the combination of different methods.
Possessing large and diverse dataset(s) is extremely critical for training a deep neural
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network. Without comprehensive training, the neural network is not able to analyze and
recognize different kinds of data.

Since data acquisition may not provide all the data that are needed, defined data
augmentation techniques are used to generate synthetic data, such as applying generative
adversarial network (GAN) [98,99]. GANs have been of interest to the computer vision
community for the past few years. Their most remarkable impacts are on plausible image
generation, image-to-image translation, and facial attribute manipulation. It is important to
have a stabilized training for GANs that they can generate high-quality and diverse images.
The block diagram for a GAN is displayed in Figure 20 [100].
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CNNs help to strengthen and create a connection between the processes of feature
extraction and classification. They aim to transform the high-dimension input image into
low-dimension, yet highly abstracted semantic output. The enhancements in their number
of layers, architectures, and complex computations have brought near-human accuracy in
many classification and recognition applications.

Meanwhile, the deep neural networks have been made (self)-explanatory in emerging
applications in order to overcome their non-transparency, non-traceable predictions (by
humans), and possible biases in their functionalities (caused by less diverse and artificial
training data). The (self)-explainable property points out the connection between input
and output and represent (in a simplified way) the inner structure of neural network as a
black box.

Running these networks on capable computing hardware resources deliver high-
performance recognition and classification. These advanced neural networks have the
strength of delivering perfect results with sufficient training and tuning. The deep neural
networks have made prominent achievements in computer vision, specifically for image
classification, object detection, and image segmentation.

In more detail, the AI-based computer vision methods provide: (i) object recognition
in order to determine whether image data contains a specific object; (ii) object detection in
order to localize instances of semantic objects of a given class; and (iii) scene understanding
to parse an image into meaningful segments for analysis. These CV algorithms can perform
automated extraction of information from images, including three-dimensional models,
camera positions, object locations, group contents, and so forth. An example of different
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tasks completed by CV is shown in Figure 21 [101]. Correcting the mistakes of AI/CV
algorithms during training enhances the confidence of the respective predictive models.
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Figure 21. An example of different visual perception problems: (a) image classification, (b) object
detection, (c) semantic segmentation, and (d) instance segmentation [101].

AI/CV have been successfully applied for detection of atrial fibrillation, epilepsy
seizures, and hypoglycemia, as well as diagnosis of diseases based on histopathological
examination or medical imaging (i.e., image analysis in radiology, pathology, and der-
matology) with having improved speed, accuracy, and assessment. This demonstrates
the efficiency of AI/CV in reducing/eliminating medical errors. Therefore, there is an
established foundation for applying AI/CV on all areas in the medical field. A sample
trend for applying AI on medical tasks is displayed in Figure 22 [102]. Major phases for
introducing AI in a medical workflow are shown in Figure 23 [64].

The AI/CV-based medical systems have the abilities to identify different sorts of
medical data, with even more accuracy and intelligence than humans, for various medical
processes (in different specializations) and reduce/eliminate their possible errors. Enough
knowledge and large diverse data are important factors for their desirable operations. Hav-
ing AI/CV medical software, with their reasoning, understanding, learning/experiencing,
and decision-making abilities, helps doctors to complete medical procedures successfully,
even without requiring direct assistance from specialists. The structure and the comput-
ing elements (e.g., data acquisition and classification system) of an AI/CV system for
combatting coronavirus disease 2019 (COVID-19) are shown in Figures 24–26 [103–105].



Electronics 2022, 11, 610 25 of 43Electronics 2021, 10, x FOR PEER REVIEW 26 of 44 
 

 

 

Figure 22. Expected trends in machine learning research: boxes show representative examples of 

decision support tasks that are currently offered by rule-based systems (grey), and hypothetical 

applications of ML systems in the future (yellow and orange), demonstrating increasing automa-

tion. The characteristics of the ML systems that support these tasks are anticipated to evolve, with 

systems becoming more proactive and reward driven, continuously learning to meet more complex 

applications, but potentially requiring more monitoring to ensure they are working as expected. 

Abbreviations used: ML, Machine Learning; AI, Artificial Intelligence; and DSS, Decision Support 

Systems [102]. 

 

Figure 23. The illustration of major phases for development of machine learning based healthcare 

systems. Abbreviations used: ML, Machine Learning; CNN, Convolutional Neural Network; 

LSTM, Long Short Term Memory networks; and GAN, Generative Adversarial Network [64]. 

The AI/CV-based medical systems have the abilities to identify different sorts of 

medical data, with even more accuracy and intelligence than humans, for various medi-

cal processes (in different specializations) and reduce/eliminate their possible errors. 

Enough knowledge and large diverse data are important factors for their desirable oper-

ations. Having AI/CV medical software, with their reasoning, understanding, learn-

ing/experiencing, and decision-making abilities, helps doctors to complete medical pro-

cedures successfully, even without requiring direct assistance from specialists. The 

Figure 22. Expected trends in machine learning research: boxes show representative examples of
decision support tasks that are currently offered by rule-based systems (grey), and hypothetical
applications of ML systems in the future (yellow and orange), demonstrating increasing automa-
tion. The characteristics of the ML systems that support these tasks are anticipated to evolve, with
systems becoming more proactive and reward driven, continuously learning to meet more complex
applications, but potentially requiring more monitoring to ensure they are working as expected.
Abbreviations used: ML, Machine Learning; AI, Artificial Intelligence; and DSS, Decision Support
Systems [102].
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systems. Abbreviations used: ML, Machine Learning; CNN, Convolutional Neural Network; LSTM,
Long Short Term Memory networks; and GAN, Generative Adversarial Network [64].
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Figure 24. Classification of computer vision approaches for COVID-19. Our survey classifies COVID-
19 related computer vision methods into three broad categories [103]. Abbreviations used: COVID-19,
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Figure 25. An AI-based framework using mobile phones for COVID-19 diagnosis and surveil-
lance [104].

A combination of AI/CV medical systems and physicians can noticeably reinforce
the quality, quantity, and performance of medical tasks and reduce/eliminate their errors.
This opportunity tackles many of the issues related to the shortage or lack of doctors and
specialists with acceptable expertise and experience in different medical areas. It also
reduces the waiting time and the execution time of medical tasks. Other benefits from this
combination are the decrease in the medical costs and the medical inaccuracies, reduced
complications, a faster registration process of patients, a preserved history of patients
for referral, and easier and more efficient communications between the medical entities
(e.g., hospital and dispensary). An overview of how AI can contribute into the medical
field is illustrated in Figure 27 [105]. Different potential roles of AI-based technologies in
healthcare are shown in Figure 28 [5].
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Figure 26. Illustrative architecture of the COVNet model for COVID-19 detection using CT images.
Max pooling operation is used to combine features extracted by ResNet-50 CNNs whose inputs are
CT slices. The combined features are fed into a fully connected layer to compute probabilities for
three classes, i.e., non-pneumonia, community acquired pneumonia, and COVID-19. The predicted
class is the one that has highest probability among the three classes [105]. Abbreviations used:
ResNet-50, Residual Network with 50 deep layers; CNN, Convolutional Neural Network; COVID-19,
Coronavirus disease 2019; and CAP, Community Acquired Pneumonia.
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Figure 27. An overview of common AI methods where machine learning constitutes a key ingredient.
The development of deep learning, a subset of machine learning, has contributed significantly
to improving the power and capability of recent AI applications. A number of deep learning-
based convolutional neural network (CNN) architectures, e.g., LeNet, AlexNet, GoogLeNet, Visual
Geometry Group (VGG) Net and ResNet, have been proposed and applied successfully in different
domain, especially in the computer vision. Other techniques such as autoencoders and recurrent
neural networks are crucial components of many prominent natural language processing tools. The
deep learning methods in particular, and AI in general, may thus be employed to create useful
applications to deal with various aspects of the COVID-19 pandemic [105]. Abbreviations used: AI,
Artificial Intelligence.
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Figure 28. Application of artificial intelligence in healthcare.

In addition to AI/CV, the electronic medical systems employ wireless technologies,
information technologies, human–machine interface technology, and medical care-specific
technologies for greater functioning. While diagnostic confidence never reaches the max-
imum, combining AI/CV machines with physicians reliably and significantly enhances
system performance and reduces/eliminates errors. The AI/CV medical systems are
implemented and/or executed in different hardware environments, including graphical
processing unit, application specific integrated circuit, field programmable gate array, and
the new generations of hardware accelerators [101,106–110].

In summary, AI/CV optimizes quantity, quality, and accuracy of medical diagnoses
and testing, enhances correctness of medical decisions and prescriptions, strengthens care
trajectory of chronic disease patients, suggests precision therapies for complex illnesses,
reduces medical errors, improves subject enrollment into clinical trials, etc. Despite the
advantages provided by AI/CV for medical systems, it is possible to observe challenges in
certain parts, including medical ethics issues (i.e., threatening patients’ preferences, safety,
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and privacy), responsibility for medical errors, and risks of system failures that demand
novel and effective solutions.

5. Cyber Attacks and Defenses in Medical Domain

Medical devices are one of the widely adopted elements in the healthcare industry
aiming to improve the quality of service for both patients and healthcare personnel [111,112]
and reduce/eliminate medical errors. These devices can monitor and manage different
health conditions of patients automatically without any manual intervention from the
medical professionals. In fact, instead of keeping patients in hospitals, these devices are
capable of constantly monitoring the patient’s health in real-time, while offering them
better physical flexibility and mobility.

A number of these devices are medical robots (i.e., surgical robots, nursing robots, etc.).
Also, they can be used for assistance in recording patient’s medical conditions and orga-
nizing patient’s records in real-time. These diverse devices can connect with each other as
well as the organization’s network. With increasing communication capabilities, they are
able to speed up the transfer of medical information.

Connecting these devices to a network constructs a novel medical cyber–physical
system (MCPS) [111,113]. An MCPS integrates many entities for performing medical-
based computational, networking, and physical processes. The MCPS can satisfy the
needs associated with the increasing number of patients, including accuracy, reliability,
efficiency, and effectiveness of the health-care domain. The medical CPS should have unique
characteristics in terms of the running applications, the networking capabilities, and the
complex physical dynamics of human body suitable for the designated medical processes.

In simple words, the major goal of MCPS is to enhance the efficiency, quantity, quality,
and accuracy of patient care by ensuring personalized treatment in a safe way. It is
important to note that the traditional medical equipment and the novel medical devices
have compatibility in terms of accuracy, speed, communication, and the other interactive
parameters to make sure that the medical processes are completed as timely and operatively
planned. The Internet connectivity of the medical devices provides even more efficiency to
the requirements associated with the increase in the number of patients. The mechanism for
connection of a medical device to the Internet is displayed in Figure 29 [114], an example
of an Internet-of-Things system is shown in Figure 30 [114], and the security and privacy
taxonomy of IoMT is provided in Figure 31 [33].
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Abbreviations used: LTE, Long Term Evolution; and LTE-A, Long Term Evolution-Advanced.



Electronics 2022, 11, 610 30 of 43Electronics 2021, 10, x FOR PEER REVIEW 31 of 44 
 

 

 

Figure 30. An example of an Internet-of-Things system with “n” IoT devices, “k” aggregation 

nodes, and “m” servers [114]. Abbreviations used: IoT, Internet of Things. Reprinted with permis-

sion from ref. [114]. 2020 Elsevier. 

 

Figure 31. Security and privacy taxonomy of IoMT [33]. Abbreviations used: IoMT, Internet of 

Medical Things; IoT, Internet of Things; and CIA, Confidentiality, Integrity, and Availability. Re-

printed with permission from ref. [33]. 2017 Institute of Electrical and Electronics Engineers. 

With more medical devices being connected to each other and to the other medical 

entities, the security of this Internet-based MCPS (i.e., IoMT) requires noticeable atten-

tions. Any technology incorporated in the medical system and related to the growth of 

network connectivity requires more considerations from the security perspective. In fact, 

the more medical devices there are in the network, the more opportunities are available 

for the adversaries, and the more malicious (intentional) the medical errors that are cre-

ated. The attacks at the computing-level cause changing the functionality and the data, or 

stealing the information, while their impacts at the medical application level are medical 

errors with severe and life-threatening effects. Due to the catastrophic health conse-

quences, any security issue concerning healthcare systems should be addressed aggres-

sively and proactively. 

In recent years, several healthcare-based security issues have been reported both in 

the media and the academic community. For the advancements in cyber attacks further 

exacerbated this situation, refer to Figure 32 [115]. A story popularized in the media held 

Figure 30. An example of an Internet-of-Things system with “n” IoT devices, “k” aggregation nodes,
and “m” servers [114]. Abbreviations used: IoT, Internet of Things. Reprinted with permission from
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with permission from Ref. [33]. 2017 Institute of Electrical and Electronics Engineers.

With more medical devices being connected to each other and to the other medical
entities, the security of this Internet-based MCPS (i.e., IoMT) requires noticeable attentions.
Any technology incorporated in the medical system and related to the growth of network
connectivity requires more considerations from the security perspective. In fact, the more
medical devices there are in the network, the more opportunities are available for the
adversaries, and the more malicious (intentional) the medical errors that are created. The
attacks at the computing-level cause changing the functionality and the data, or stealing the
information, while their impacts at the medical application level are medical errors with se-
vere and life-threatening effects. Due to the catastrophic health consequences, any security
issue concerning healthcare systems should be addressed aggressively and proactively.

In recent years, several healthcare-based security issues have been reported both in
the media and the academic community. For the advancements in cyber attacks further
exacerbated this situation, refer to Figure 32 [115]. A story popularized in the media held
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that doctors disabled the wireless connectivity of a former U.S. Vice President’s pacemaker
to protect it from being hacked. Adding to this story, researchers demonstrated several
cyber-attacks on commercial products, including attack scenarios of remotely disabling
and reprogramming the therapies performed by an implantable cardiac defibrillator. More
advancements involved in the MCPS/IoMT demands more attention to the security of
devices in the network. Any defect stems from adaptation of new techniques (from differ-
ent areas) leads to a malicious attack, an intentional medical error, with life-threatening
outcomes. Moreover, the requirements of updating these techniques make the protection
mechanism even more challenging.
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There are two main reasons for the vulnerability of connectivity: (1) the information
communicated among medical devices is highly sensitive and private to both medical
organizations and patient. For this sake, such sensitive data is a valuable target for cyber-
criminals. (2) the infrastructure of MCPS/IoMT is often complicated due to the large
number and diversity of medical devices, especially Internet-enabled devices, which are
vulnerable to a broader range of cyber threats. Both passive attacks (eavesdropping of
the wireless communication) and active attacks (impersonation and control of the medical
devices to alter the intended therapy) can be successfully launched using public domain
information and widely available off-the-shelf hardware.

Alongside the networking and software attacks, the medical devices can also be the
target of hardware attacks (i.e., hardware-based intentional medical errors). Different layers
of hardware platforms (i.e., from device technology to architecture) and various entities
in the integrated circuit (IC) supply chain are targeted for launching the hardware attacks.
In addition, there are diverse threat models for this purpose, such as reverse engineering,
hardware Trojan, side-channel attack, and intellectual property privacy [43,116]. Figure 33
shows the entities in the IC supply chain to be selected for intrusion and executing malicious
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operations [117]. The crafted attacks from these entities can cause different payloads, such
as leakage of information, malfunctioning, performance degradation, energy waste, etc.
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The medical devices are remotely exploitable through the communication media (e.g.,
Wi-Fi, Bluetooth, and Zigbee) and attackers can easily eavesdrop on the communication
channel to access the transmitted information. The medical data can be stolen from hospi-
tal websites, electronic medical recording systems, communication systems, and picture
archives. This wide attack surface is the root of interest for adversaries to intrude and
create malicious medical errors. The data are subject to use for patient information leakage,
misdiagnosis, and mistreatment, leading serious danger to the physical and mental health
of patients. The characteristics of possible attacks are delivered in Figure 34.
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Similar to other distributed networks, MCPS/IoMT also suffer from insider attacks,
where the intruders have authorized access to the network resources, resulting in the
leakage of patient information. Without timely detection, insider attacks cause a network to
be paralyzed. So, there is a necessitation for defending MCPS/IoMT against various attacks,
especially insider threats (i.e., each medical device can be considered as a network node).

Unfortunately, there is no comprehensive security solution available in the industry
and research community to mitigate the emerging cyber-attacks on healthcare systems. The
healthcare domain is increasingly facing security challenges and threats due to numerous
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design flaws and the lack of proper security measures in healthcare devices and applications.
The IoMT devices have insufficient or even no protection and defense against different kinds
of software and hardware attacks. The medical field requires the immediate attention of the
security research community to develop the respective countermeasures. The researchers
in the field have proposed a few countermeasures (e.g., privacy-preserving communication
protocols, encrypted databases, etc.), but they cannot address the overall attack surface in
healthcare systems. The characteristics of possible defenses are shown in Figure 35.
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The demanding defense solutions should provide a high-level of privacy and security,
without affecting computation and usage of resources (performance) significantly. The de-
fenses should be able to detect and prevent attacks, reduce/correct the damage of executed
attacks, and preserve the patients’ privacy. In detection-based defensive approaches, the
MCPS/IoMT can also be made resilient in confronting the threats. A resilient MCPS/IoMT
is designed to endure disruptions and it remains functional despite the malign operations
from adversaries. Enhancing the medical devices with AI/CV computing elements help
them to predict and confront different behaviors and actions from the attacks launched.
A modern intrusion detection system (IDS) suitable for this application is provided in
Figure 36.



Electronics 2022, 11, 610 34 of 43
Electronics 2021, 10, x FOR PEER REVIEW 35 of 44 
 

 

 

Figure 36. Modern intrusion detection system (IDS) classification based on five factors: architec-

ture, locality, reaction–response, decision class, and detection methods [114]. Abbreviations used: 

IDS, intrusion detection system. Reprinted with permission from ref. [114]. 2020 Elsevier. 

Similar to the attacks, the defense solutions can be designed for networking com-

munications, device software, and/or device hardware. With respect to hardware-based 

defensive solutions, reverse engineering is one of the effective methods for hardware 

trust and assurance [118–120]. Although originally used for negative purposes (e.g., dis-

Figure 36. Modern intrusion detection system (IDS) classification based on five factors: architecture,
locality, reaction–response, decision class, and detection methods [114]. Abbreviations used: IDS,
intrusion detection system. Reprinted with permission from Ref. [114]. 2020 Elsevier.

Similar to the attacks, the defense solutions can be designed for networking com-
munications, device software, and/or device hardware. With respect to hardware-based
defensive solutions, reverse engineering is one of the effective methods for hardware trust
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and assurance [118–120]. Although originally used for negative purposes (e.g., disclosing
sensitive information to a competitor/adversary), it can detect malicious alteration and/or
tampering (applied by semiconductor foundries) with high accuracy.

Reverse engineering of electronic chips and systems refers to the process of retrieving
an electronic design layout and/or netlist, stored information (memory contents, firmware,
software, etc.), and functionality/specification through electrical testing and/or physi-
cal inspection. The systematic overview of a reverse engineering process is shown in
Figure 37 [119]. Possible data samples for a reverse engineering-based detection and recog-
nition system are provided in Figure 38 [121]. Figure 39 displays a component detection
system using deep learning for reverse engineering [121].
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Figure 37. The systematic overview of a reverse engineering (RE) process, which can be performed
on ICs and printed circuit boards (PCBs), its challenges and possibilities. (a) A typical workflow of RE
encompassing various stages. Two main blocks of such a workflow are: Image Analysis and Machine
Learning. The outputs of the machine learning-related block can enable us to provide hardware-based
trust and assurance, as an application of reverse engineering. (b) reverse engineering workflow for
IC: (b1) deprocessing of the IC, (b2) example of noise removal in the active region using different
imaging parameters, (b3) segmentation and extraction of polysilicon structures and vias in an IC,
(b4) netlist of extracted logic cells. (c) Reverse engineering workflow for PCB: (c1) image depicting
a multi-layered PCB. Depending on the number of the layers in a PCB, different types of reverse
engineering techniques should be considered. Irrespective of this, these challenges are inevitable,
(c2) example for misaligned layer and reconstructed image, (c3) segmentation and extraction of vias
for X-rayed PCB and labelled components on the surface of an optically imaged PCB, (c4) segmented
layout of PCB layers with connected and not-connected vias [119]. Abbreviations used: RE, Reverse
Engineering. Reprinted with permission from Ref. [119]. 2021 Association for Computing Machinery.
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In summary, The Internet connectivity of medical devices and inclusion of more
computing elements in the network introduces various security issues that can produce
malicious medical errors. Different layers of these computing devices as well as their
processing data can be the victims for different kinds of attacks. Additionally, the running
software on these devices along with the network infrastructure are subject to exploitation
by adversaries. With respect to hardware-based attacks, there are multiple parties in the IC
supply chain that can serve as malicious entities. Also, the victim of attacks for the medical
hardware can be the device technology, the circuit, the architecture, or all of them in a cross-
layer threat model. Unfortunately, there are limited studies on security analysis of medical
devices and very few solutions have been proposed. The defense solutions for overcoming
the medical security problems can be introduced for networking communications, device
software, device hardware, or be in a cross-layer form.

6. Challenges and Opportunities

With the internet, wireless technology, and increased connectivity of IoMT technologies
along with incorporation of state-of-the-art methods from AI/CV, the new generation of
medical devices is facing advanced security and privacy challenges as discussed in this
review study. It is really important to investigate the vulnerabilities of technologies of
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IoMT in depth and how they can produce intentional (malicious) medical errors. In the
evaluation, certain factors including attack surface, technical requirement, architecture
flaws, and operating system weaknesses need to be considered.

Instead of (electronic) medical equipment being well installed in hospitals along with
medical agencies with physical accessibility for experts, the new generation of IoMT devices
are worn by or implanted in patients. The traditional medical equipment in IoMT can be
remotely accessed and managed to perform the medical tasks. As the majority of the IoMT
devices have to handle personal and physiological data, the impact of security attacks on
the users could be more direct and severe compare to other IoT systems. For example,
wireless connected implantable devices are designed to manage cardiac functions, insulin
functions, nerve stimulation, etc., and they are equipped with electrodes, pumps, and other
actuators. Malicious attacks on such devices make serious medical errors and can have
life-threatening effects. With minimal security protection on these medical devices, they
can easily be hacked to perform malicious operations.

The security issues for IoMT are not limited to attacks on the medical devices, because
the network, all its associated entities, communication means, and the transmitting data
are other points of interest for staging malicious actions. Due to the fact that there are ever
new techniques for attacking networks, administrators have to be constantly aware of the
emerging problems, and they need to update the medical systems with fixing patches and
anti-virus libraries in order to protect them against the malicious attacks.

This feature is not available for the wearable and implantable medical devices, which
means it is not straightforward to inject patches and anti-viruses into them. Because of
less or no physical accessibility to these devices after their installation, they cannot be shut
down on time when an issue occurs, and the situation continues until security experts can
get access and recover them to the normal operation. These shortcomings can easily put a
patient’s life in danger.

Introducing other interesting and novel technologies in studying IoMT security and
privacy provide many research opportunities, such as blockchain that can be applied in the
healthcare domain for keeping medical records in a decentralized/distributed fashion, so
that the blocks in the blockchain depend on one another. There are a number of security
concerns and challenges for IoMT, including key management, communication protocols,
technical heterogeneity and complexity of devices and systems (e.g., in terms of processing
elements and operating systems), availability of computing resources, authentication mech-
anisms, behavioral profile for medical devices using informative features, unavailability
of source code or binary programs, data confidentiality and protection, malicious/non-
malicious error-tolerant design, intrusion detection mechanism, security of access control,
trade-off between security, energy efficiency, and performance, security-aware computing
mechanism, general and standard architectures for IoMT, privacy-preserving mechanisms,
employment of AI/CV and Big Data, shortage of data for training and analysis purposes,
and temporal and spatial considerations of network security (e.g., number, location, and
timing of patients). Tackling these problems are in fact new interesting research directions
to study.

Therefore, security in the medical domain is an important and critical factor that
can endanger the medical processes at application/human, software, and hardware levels.
Through the respective attacks, the functionality and/or information of devices and systems
are damaged leading to medical errors. The errors in the medical field are extremely serious
and life-threatening with the high possibility of causing death.

Alongside the subjects mentioned, there are many security benefits and opportunities
for IoMT to explore:

(a) AI and CV for IoMT: Two technological waves of AI and CV are great candidates for
creating significant novelties in the IoMT and its entities. These technologies are able
to improve the performance and functionality of the elements in the network and
make them intelligent. They also can be used in developing more effective security
solutions in terms of detecting, recognizing, and predicting the attacks. Meanwhile, it
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should not be neglected that the methods from AI/CV are great tools for adversaries
to create smart and unpredictable attacks.

(b) The dependency of the third-party and open-source code: the firmware on medical
devices relies heavily on third-party and open-source codes. The manufacturers
usually take new features, high performance, and low power consumption as the
main targets of their products and shorten the development cycle as much as possible
to enhance market competitiveness. This means adoption of agile development
models in the medical domain. They directly reuse open source code, refer to public
code implementation, cross-compile platform code, and rely on third-party libraries.
Many of the resources have vulnerabilities that are transmitted into the medical
devices that can create medical errors. However, this adoption of resources can also
provide opportunities for detection and discover of vulnerabilities among the existing
and future resources through similarity evaluations.

(c) Development of peripheral systems: as IoMT devices become more interactive, the
need for development of novel and strong peripheral systems increases. There are a
number of opportunities in this development for improving software and hardware
of peripheral systems in terms of firmware acquisition and analysis, terminal points,
cloud endpoints, etc. However, the new attacks that emerge from this process should
be taken into account with the respective countermeasures.

In summary, there are many challenges and opportunities in IoMT to research, espe-
cially from the security perspective. These new directions are further broadened consider-
ing the today’s desirable technologies, such as AI and CV. The novel methods from these
technologies can serve both the attack and defense parties in the network. Meanwhile,
most of the existing security studies for IoMT rely on computer simulations, and practical
assessments of both attacks and defenses are missing. Therefore, the real-world implemen-
tations of existing and future studies are needed and they introduce more challenges and
opportunities to the field.

7. Conclusions

While medical and computer technologies play key roles in our population’s health,
they are vulnerable to cyber threats and medical errors due to the presence of interconnected
medical devices and systems, easily accessible access points, outdated medical products,
and a lack of emphasis upon emerging cybersecurity attacks for the medical field. The
available studies in the medical domain mostly focus on patient care and treatments,
however healthcare technologies hold vast amounts of valuable and sensitive data, without
the presence of strong and effective defense systems. In many cases, financial gains and
national interests are extremely important motivations for the attacks, as medical identity
is more critical than other identity credentials.

Other attacks may be motivated by political and military benefits, leading to creation
of cyberwarfare in the field. With having vulnerable health systems, human lives are in
danger regardless of the social/economic importance of an individual. The attacks target
different medical processes, such as malfunctioning in critical and surgical equipment
within hospitals or even at home where interventions rely on a power supply. The intro-
duction of more dangerous and stronger threats in the medical domain jeopardizes all the
entities in this field, including humans and computing devices, resulting in serious harm to
humans and finance.

This review shows that cybersecurity is an essential part of maintaining the safety,
privacy, and trust of patients along with any entity in the medical field. There are great
opportunities at different system layers for research and investment to ensure the security
and protection of healthcare technologies and patient information. In fact, security must
be considered for the medical domain from conception to realization considering all the
entities and elements in the procedures. In short, cybersecurity must become part of the
medical culture and the area of medical security, especially from the hardware perspective,
has substantial, sophisticated, and appropriate topics to explore.
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