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Abstract: As optical networks evolve towards flexibility and heterogeneity, various modulation for-
mats are used to match different bandwidth requirements and channel conditions. For correct re-
ception and efficient compensation, modulation format identification (MFI) becomes a critical issue. 
Thus, a novel blind MFI method based on principal component analysis (PCA) and singular value 
decomposition (SVD) is proposed. Based on square operation and PCA, the influence of phase ro-
tation is removed, which avoids phase rotation-related discussions and training. By performing 
SVD on the density matrix about constellation, a denoise method is implemented and the quality of 
the constellation is improved. In the subsequent processing, the denoised density matrix is used as 
the feature of the support vector machine (SVM), and the identification of seven modulation formats 
such as BPSK, QPSK, 8PSK, 8QAM, 16QAM, 32QAM and 64QAM is realized. The results show that 
lower OSNR values are required for the 100% accurate identification of all modulation formats to 
be achieved, which are 5 dB, 7 dB, 8 dB, 11 dB, 14 dB, 14 dB and 15 dB. Moreover, the proposed 
method still retains the advantage, even when the number of samples decrease, which is beneficial 
for low-complexity implementation. 

Keywords: optical communication; digital signal processing; modulation format identification; 
principal component analysis; singular value decomposition; support vector machine 
 

1. Introduction 
Applications such as the Internet of Vehicles [1], cloud computing and flow media 

bring tremendous challenges to optical networks, especially in terms of bandwidth and 
flexibility [2]. To tackle these challenges, optical networks are evolving from traditional 
fixed wavelength grid architectures to flexible and adaptive architectures [3]. For the evo-
lution of optical networks, elastic optical networks (EONs) are widely accepted as the 
critical solution for next-generation optical networks due to their flexible, heterogeneous, 
low-cost, and reconfigurable characteristics. In EONs, multiple modulation formats exist 
to match different data rates and bandwidth requirements. Therefore, modulation format 
identification (MFI) algorithms need to be deployed in digital receivers for correct recep-
tion and demodulation. 

Furthermore, the digital signal processing (DSP) flow of optical fiber communication 
digital receivers includes multiple steps to compensate for different signal impairments. 
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Some of these steps, such as carrier frequency offset estimation and phase recovery, re-
quire a priori information on the modulation format to work properly or achieve excellent 
results. Therefore, it is necessary to determine the modulation format of signals before 
performing these steps to compensate for the signal. 

Overall, MFI is an important issue in the field of optical communications, both from 
the perspective of correct reception and high-performance compensation. In order to sat-
isfy the mentioned signal identification demands of digital receivers in EONs, various 
MFI methods have recently been proposed [4–33]. According to technical characteristics, 
these methods can be classified into the following categories. 

Based on aided data, such as training sequence and radio frequency (RF), various 
MFI methods have recently been proposed [4–6]. For example, an RF-pilot aided MFI 
method is proposed in [4] to enable a hitless flexible transceiver. Additionally aided by 
RF data, MFI based on frequency offset loading are proposed in [5,6]. These methods often 
achieve excellent modulation format independence identify performance. However, they 
require additional cost to aid identification, which results in a reduction in the effective 
rate or bandwidth utilization. 

To avoid the loss of efficiency, a large number of MFI methods are based on statistical 
features such as signal cumulants, amplitude histograms or peak-to-average power ratio 
(PAPR) [7–15]. These methods classify different modulation formats by setting the thresh-
old of the statistical variable. For example, the fourth order cumulants of received signals 
are calculated in the literature [7] for the distinction of on-off keying (OOK), binary phase 
shift keying (BPSK), quadrature phase-shift keying (QPSK) and 16 Quadrature amplitude 
modulation (QAM). As for the amplitude features, a scheme based on the intensity profile 
is proposed in [8] to identify QPSK and 8/16/32/64 QAM. For the identify of QPSK and 
16/32/64 QAM, a method based on the information entropy is proposed in [9], which is 
calculated from the amplitude distribution. In [10], the asynchronous amplitude histo-
grams are used to distinguish OOK, differential QPSK (DQPSK) and 16QAM. As for the 
MFI methods based on the PAPR features, a simple method based on the evaluation of 
PAPR under the particular optical signal-to-noise ratio (OSNR) is proposed in [11]. More-
over, by using some transformations, more hidden features can be obtained. These trans-
formations could be fourth-power [12], nonlinear power transformation [13] or others 
[14,15]. MFI methods based on statistical features utilize the properties of the received 
signals and avoid additional overhead. However, the identification performance in the 
presence of multiple PSK modulation formats needs to be improved because the PSK sig-
nals have the same amplitude histograms. 

Applying the Stokes transformation, a variety of MFI methods in Stokes space have 
been proposed [16–20]. By mapping the received signals into Stokes space and extracting 
the density distributions, a low complexity MFI method is proposed in [16]. When differ-
ent energy level features of different modulation formats are considered, a density peak-
based MFI method is proposed in [17]. To reduce the number of clusters in Stokes space, 
the scheme in [18] executes the square operation before Stokes mapping, and with princi-
pal component analysis (PCA), achieves a better performance with lower complexity. For 
the features extraction, two Stokes space analysis schemes based on singular value de-
composition (SVD) and radon transformation are proposed in [19], respectively. For the 
clustering algorithm in Stokes space, an improved particle swarm optimization clustering 
algorithm combined with a two dimension Stokes plane is proposed in [20]. Stokes space-
based MFI methods are insensitive to carrier phase noise and frequency offset, which 
saves many MFI preprocessing procedures. The problem is that using these methods 
make it difficult to identify the high order modulation format because the Stokes mapping 
operating will greatly increase the difficulty of clustering and pattern recognition in 
Stokes space. This is why there is so much literature devoted to reducing the number of 
clustering in Stokes space [18,20,34]. Recently, many MFI methods based on machine 
learning have been proposed [21–33]. For example, an MFI method based on deep neural 
networks (DNNs) combined with amplitude histograms is proposed in [21], realizing the 
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identification of QPSK, 16QAM and 64QAM. By additionally utilizing DNNs, the identi-
fication of four modulation formats is realized in [22], by combining the density distribu-
tions in Stokes axes. For the convolutional neural networks (CNNs), a lightweight CNNs-
based MFI scheme in Stokes plane is proposed in [23] for the identification of QPSK, 8PSK 
and 16/32/64 QAM. Another method in [24] is based on convolutional the neural network 
and asynchronous delay-tap plot, achieving the recognition of 16/32/64 QAM by using 
image processing. More MFI method-based CNNs are proposed in [25,26]. For the appli-
cation of the multi-task neural networks in MFI, various of MFI methods are proposed in 
[27–30]. Other MFI methods based on machine learning can be found in [31–33]. These 
MFI methods can achieve fast and high-accuracy identification after good training. The 
challenge is that images often contain too many pixels, and both computation and storage 
are enormous projects. What is more, to enhance the tolerance of phase rotation, the ma-
chine learning MFI method based on constellation pattern recognition needs additional 
training of constellation patterns under different rotations. 

In this paper, a blind MFI based on principal component analysis and singular value 
decomposition is proposed for the identification of seven modulation formats of BPSK, 
QPSK, 8PSK and 8/16/32/64 QAM. In our methods, the square operation of received sig-
nals and PCA is used for the removal of phase noise, so that both amplitude and phase 
information can be available for the identification of seven modulation formats. After 
PCA, the density distribution matrix of the received constellation is calculated, and then 
SVD is applied to the matrix to achieve noise removal and trend smoothing. Finally, a 
support vector machine (SVM) is used for identification according to the smoothed ma-
trix. 

Without the aided data and Stokes mapping, the decreasing effectiveness of the sys-
tem and increasing complexity is avoided, which would occur in data-aided-based MFI 
and Stokes space-based MFI, respectively. Due to the proposed correcting method based 
on PCA, the phase information is available to improve the accuracy of identification, and 
to extend our method to the scenario even with multiple PSK modulation formats, which 
will be unavailable in the MFI methods based on amplitude information. In order to avoid 
over-fitting in the machine learning-based MFI method, a distribution matrix instead of 
the image is utilized for identification. 

The remainder of this paper is organized as follows. In Section 2, our MFI method 
based on PCA and SVD is described, and the methodology is explained by mathematical 
equations and figures. The setup of the verification system and the performance of pro-
posed MFI methods is discussed in Section 3. Section 4 outlines our conclusions and dis-
cussions about our method. 

2. Principle of MFI Method Based on PCA and SVD 
The receiver DSP flow used in the optical digital coherent receiver including the pro-

posed MFI is shown in Error! Reference source not found.. All the algorithms (except 
MFI) in flow could be divided into a modulation format independent DSP and modula-
tion format dependent DSP. First, the modulation format independent DSPs are used to 
compensate the impairment of signals. Then, based on the compensated signals, MFI is 
executed to get the modulation format. Lastly, the modulation format dependent DSPs 
are configured according to the MFI results. 
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Figure 1. The DSP flow in optical digital coherent receive; (a) Receiver DSP flow with MFI; (b) The 
proposed MFI method based on PCA and SVD. 

During the stage of modulation format independent DSPs, the received signals are 
normalized to the standard power at first. Then, QI compensation is used to mitigate the 
mismatch within the I-branch and Q-branch signals caused by receiver. After that the 
chromatic dispersion (CD) compensation and the nonlinear (NL) compensation are per-
formed to compensate for the channel impairment, and the timing recovery is used to 
reduce timing error. Before MFI, the constant modulus algorithm (CMA) equalization is 
taken to compensate for residual impairment. 

After MFI, the modulation formats undergo cascaded multi-modulus algorithm 
(CMMA), frequency offset estimation, carrier phase recovery, decision and decoding, re-
spectively. 

Error! Reference source not found.b shows the schematic of the proposed MFI 
method based on PCA and SVD, which consists of five crucial steps: square operation and 
average power detection; principal axes correction based on PCA; density distribution 
analysis (DDA); denoising and smoothing based on SVD; SVM classification. 

2.1. Square Operation and Average Value Detection 
In the proposed MFI method, the square operation is executed for the signals after 

CMA firstly because the symmetry of constellation will degenerate after this operation. 
For example, signals with a constellation rotational symmetry with a degree of 4 will only 
have a degree of 2 after the square operation. 

To illustrate the changes after square operation, consider signals with the following 
form: 

( )ij
i i eE A θ φ+= ⋅  (1)

where iE  represents the i -th complex signal in the symbol sequence with the modu-

lated amplitude of iA  and the modulated phase of iθ , and φ  donates the phase rota-
tion caused by laser linewidth or initial phase difference between the laser sources at the 
transmitter and receiver. 

Consider the rotational symmetry with the degree of n , which means: 
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where kE  is another complex signal with the same modulation format as iE . 
After the square operation, the complex signal in Equation 

Error! Reference source not found. can be represented by: 
(22 2

2

2

2 )

(2( ) 2 )

(2 ) 2 )
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k
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j

j

j
n

i i

n
k

k

eE A

A e

eA

θ φ

πθ φ

πθ φ

+

− +

− +

⋅

⋅

=

=

=

⋅  (3)

This means that only the rotational symmetry with the degree of / 2n  is satisfied after 

the square operation. It should be noted that although the condition k i n
πθ θ= +  is as-

sumed in Equation Error! Reference source not found., the same result can be deduced 

under the condition of ) 2(  k i Mod
n
πθ θ π= + , where Mod  means the modulo oper-

ation. 
More intuitively, the changes between constellations before and after the square op-

eration of these seven modulation formats (BPSK, QPSK, 8PSK and 8/16/32/64 QAM) are 
shown in Error! Reference source not found.. Using this property, it is easier to find the 
direction with the greatest variance, which will be useful in next step of principal axes 
correction. 

5

( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g )

( h ) ( i ) ( j ) ( k ) ( l ) ( m ) ( n )  
Figure 2. Constellation diagrams before and after the square operation of signals in modulation 
formats of BPSK, QPSK, 8PSK, 8QAM, 16QAM, 32QAM and 64QAM, respectively; (a−g) Constella-
tion diagrams before the square operation of signals; (h−n) Constellation diagrams after the square 
operation of signals. 
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Another property that should be noted is the average power after transformation. 
When considering the modulation format of BPSK in Equation (2), the average power of 
1 is obtained according to 2 2 2j

i iE A e φ⋅= , since 1i kA A= =  and 0 }, { ,i kθ θ π∈ . 
Focusing on Error! Reference source not found.h, the average power of BPSK signals 

after the square operation is approximately 1, while others with an average power is ap-
proximately 0. Thus, the BPSK signals can be identified by detecting the average power 
after the square operation. 

2.2. Principal Axes Correcting Based on PCA 
Affected by the non-homogeneity of the laser sources at the transmitting end and 

receiving end, the overall phase rotation of the receiving constellation occurs. In the pre-
vious MFI methods based on constellation diagrams, constellation diagrams with differ-
ent rotation angles need to be trained, which greatly increases the complexity of imple-
mentation. In this paper, principal axes correcting based on PCA is proposed to correct 
the constellations of different phase rotation angles to a unified datum. Thus, the phase 
rotation invariant properties to the constellation diagram are obtained without additional 
training on the phase rotation. 

In contrast to the application of PCA in data dimension reduction, the usage of PCA 
in this paper is to find the direction with the greatest variance. Furthermore, the phase 
rotation is removed by correcting this direction. For convenience, the coordinate axis com-
posed of the direction with the largest variance and one of its orthogonal vectors is called 
the principal axis. 

As shown in Error! Reference source not found.b–g, the distributions of the signals 
before the square operation are uniform, without any direction showing prominent vari-
ance. However, the distributions after the square operation exist in the desired directions, 
which is extracted and corrected through the process as follows. 

For the received signals of length N after the square operation, a N × 2 matrix do-
nated as R is obtained: 

1 1
2 2

11 12
2 2

21 22

2 2
1

2 2

2

Re{ } Im{ }
Re{ } Im{ }

Re{ } Im{ }N N N N

r r E E
r r E E

r r E E

  
  
  = =
  
  
    

R
   

 (3)

where Re{}⋅  and Im{}⋅  means to take the real and imaginary parts of the signal, re-
spectively. The values of real and imaginary parts are the projections of complex signals 
to the real axis (the magenta line Error! Reference source not found.a) and imaginary axis 
(the red line in Error! Reference source not found.a), respectively. It should be noted that 
here our signals suffer from phase rotation. 

( a ) ( b ) ( c ) ( d ) ( e )  
Figure 3. The process diagram of principal axes corresponding based on PCA (64QAM for example). 
(a) The projections of signals on the real and imaginary axes after the square operation; (b) The 
principal axes formed by eigenvectors of covariance matrix; (c) The phase rotation of principal axes 
with respect to the original axes after the square operation; (d) The phase rotation of principal axes 
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with respect to the original axes before the square operation; (e) Signals after principal axes correct-
ing based on PCA. 

At first the mean values of R is subtracted to obtain the zero-mean matrix 0R , and 

the element 0,ijr  in 0R  is calculated as follows: 

0,
1

1 N

ij ij kj
k
r

N
r r

=

= −   (4)

Next, the covariance matrix for the real and imaginary parts are calculated: 
T= 0 0C R R  (5)

The largest eigenvector of the covariance matrix points in the direction of the greatest 
variance and the second largest eigenvector is always orthogonal to the largest one. The 
principal axes as shown in Error! Reference source not found.b can be attained by eigen-
value decomposition or singular value decomposition of the matrix. 

The eigenvalue decomposition of covariance matrix can be expressed as: 
T=C UΛU  (6)

where [ ]= 1 2U u u  denotes the eigenvector matrix and 1 2( , )diag λ λ=Λ  is the di-

agonal matrix of eigenvalues. The eigenvectors 1u  and 2u  form the desired principal 
axes, which is shown in Error! Reference source not found.b. The eigenvector with larger 
eigenvalue is the direction with the greatest variance (the red line in Error! Reference 
source not found.b). 

Looking further at Error! Reference source not found.i–n, for original QPSK, 8PSK 
and 8QAM, the constellations after the square operation have the greatest variance in the 
real axis, and in the imaginary axis for 16/32/64 QAM. Since the modulation formats of 
received signals are unknown during the MFI process, the direction with the greatest var-
iance is corrected to the imaginary axis consistently. The direction with greatest variance 
is given by the following equation: 

m
{1,2}

, arg maxx
i

iy

u
m

u
λ

∈

 
= = = 

 
u u  (7)

The angle 2φ  of phase rotation after the square operation shown in Error! Refer-
ence source not found.c is calculated as follows: 

arccos( ) ,  
2 arcco

0
s )  0(

2
,

y x

y x

u if u
u if u

φ
π −

≥
<


= 


 (8)

Note that this angle is between the direction with the greatest variance and the imaginary 
axis, so it is yu  instead of xu  in the arc-cosine function. 

Equation Error! Reference source not found. shows that the phase rotation after the 
square operation is twice as much as before. Therefore, the angle of phase rotation before 
the square operation can be attained by halving the 2φ . 

Finally, the received data is projected onto the principal axes in Error! Reference 
source not found.d to obtain the data without phase rotation as shown in Error! Reference 
source not found.e. 

In addition, the above method can also be applied to the BPSK signals without square 
operation, thus, restoring its phase. 

After the principal axes correcting based on PCA, the signals without phase rotation 
is obtained, which is shown in Error! Reference source not found.. Furthermore, accord-
ing to the final MFI results, the constellations of QPSK and 8QAM can be rotated by 45 
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degrees, so as to realize the rough phase recovery of all modulated signals and reduce the 
complexity of the subsequent carrier phase recovery algorithm. 

( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g )  
Figure 4. Signals after the principal axes correcting based on PCA. (a−g) BPSK, QPSK, 8PSK and 
8/16/32/64 QAM, respectively. 

2.3. Density Distribution Analysis 
Based on the signals like Error! Reference source not found., the density distribution 

analysis is employed to obtain the distribution of constellations. 
Considering the signals are normalized to the average energy of 1, the maximum 

level of the in-phase component and quadrate component is approximately 1. Thus, a 
range for analysis is set, and any signal outside this range is treated as noise. 

This range is then divided into several intervals, both in real and imaginary axes, and 
these intervals are used to divide a constellation into several blocks. The number of signals 
in each block is then calculated. 

Finally, the density is calculated according to the number of signals in each block and 
then a matrix of density distribution is obtained. 

2.4. Denoising and Smoothing Based on SVD 
Since the received signal contains noise, there are many noise spots on the constella-

tion diagram. To reduce the impact of noise on the accuracy of identification, the density 
matrix based on SVD is denoised, and the low-value zeroing method is used to highlight 
the main features. 

The principle of it is to make use of the characteristic in which the large singular value 
of the density matrix contains the main information, while small singular values contain 
more noise. By SVD of the matrix, the part with large eigenvalues are extracted, and the 
denoised matrix is obtained. 

For the density distribution matrix, M , SVD is applied: 
T=M USV  (9)

where U and V are the left and right singular matrices, respectively. S  is the singu-
lar value matrix of the following form: 

1 2( , ,...)diag σ σ=S  (10)

where iσ  is the singular value. Selecting the first n  larger singular values, the density 
distribution matrix is reconstructed as: 

11 12 1

21 22 2

1 2

'

l

lT
l n n n l n

l l ll

m m m
m m m

m m m

× × ×

 
 
 = =
 
 
 

M U S V




   


 (11)

where 
l n×

U  and 
l n×

V  are the first n  columns of U  and V  with l  rows, respec-

tively. n n×S  is the submatrix consisting of the first n  rows and the first n  columns of 
S . 
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After SVD, the density for blocks with low density is set to 0: 

,  
0 ,  
jk jk thr

jk
jk thr

m if m m
m

if m m
≥

=  <
 (12)

Here, thrm  is the threshold of low density. 

2.5. SVM Classfication 
Since BPSK was identified in the previous process, only the remaining modulation 

formats of QPSK, 8PSK and 8/16/32/64 QAM need to be classified in the SVM classifier. In 
order to apply SVM classifier, the density distribution matrix is reshaped into a vector as 
the feature vector. 

3. Simulation Setup and Results 
A co-simulation platform is utilized to verify the proposed scheme. In the simulation 

system, the 28-GBaud signals of dual polarization (DP) BPSK, QPSK, 8PSK and 8/16/32/64 
QAM is transmitted through the fiber channel. The MFI accuracy is obtained after coher-
ent reception and modulation format independent DSP processing. 

3.1. Simulation Setup 
The setup of the simulation system for the verification of the proposed blind MFI 

method is shown in Error! Reference source not found.. First, pseudo-random bit se-
quences (PRBS) are generated and used to generate different modulation signals in the RF 
modulator at a symbol rate of 28-GBaud. In the polarization division multiplexing (PDM) 
IQ modulator, four channel RF signals are modulated to two optical carriers of different 
polarization states, respectively. The optical carriers are generated by a continuous-wave 
(CW) laser with a central wavelength of 1550 nm and linewidth of 10 kHz and are split 
into different polarization states by a polarization beam splitter (PBS). Then, the modu-
lated optical signals in two polarization states are combined into one by using of polari-
zation beam combiner (PBC). A combination of a tunable optical attenuator (VOA) and 
an erbium-doped fiber amplifier (EDFA) is used for the power control, and the optical 
power is set to 0 dBm before entering the transmission link. The transmission link consists 
of multiple loops, and each of them contain an 80 km standard single mode fiber (SSMF) 
and an EDFA whose gain is 16 dB to compensate for fiber attenuation. The attenuation, 
chromatic dispersion, differential group delay and nonlinear refractive index coefficient 
of SSMF are set as 0.2 dB/km, 16.75 ps/(nm∙km), 0.2 ps/km and 26 × 10−21 m2/W, respec-
tively. The adjustment of different OSNR is achieved by coupling the amplified sponta-
neous emission (ASE) noise of different powers into the fiber at the receiving end using 
couplers. For this purpose, an EDFA is employed as an ASE noise source and a VOA is 
used to adjust the noise power. After the filtering out of out-of-band noise by an optical 
bandpass filter (OBPF) with a central wavelength of 1550 nm and bandwidth of 0.4 nm, 
the received signals are obtained in the DP coherent receiver. Finally, processed by the 
offline DSP in the figure, the modulation format information is obtained. It should be 
noted that the noise figure (NF) of the EDFA employed in the simulation system are all 
set as 4 dB. 
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Figure 5. Simulation setup of the proposed blind MFI method. 

3.2. Simulation Results 
In the simulation system shown in Error! Reference source not found., OSNR varies 

from 5 dB to 35 dB with a step value of 1dB. In each OSNR, 1000 data sets are generated 
for each modulation format, and each of them contains 4096 samples of received signals. 
Then, the proposed MFI method is applied to the data sets to obtain the SVM classification 
feature sets. From each OSNR, 70% of the 1000 feature sets for each modulation format 
are mixed together as training features and the remaining 30% as testing features. Since 
features under different OSNR are mixed together for training and testing, the proposed 
method is blind and do not require prior information of OSNR. 

In the process of proposed MFI, the average power of signals of each modulation 
format after square operation is shown in Error! Reference source not found.. The lines 
of different modulation formats in Error! Reference source not found. represent the mean 
value of the average power of 1000 data sets under each OSNR and the regions in light-
color represent the range of the average power of all data sets. As shown in Error! Refer-
ence source not found., BPSK is obviously different from other modulation formats in the 
average power after square operation, so the identification of BPSK can be realized only 
by setting a threshold value. In our work, the threshold shown by the dotted purple line 
is set to 0.0554. 
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Figure 6. The average power of signals after the square operation. 

After the square operation and average value detection of the signal power, principal 
axes correcting based on PCA is performed for the remaining signals. Take the 16QAM 
signals for example, the constellation before and after correcting are shown, respectively, 
in Figure 7a,Error! Reference source not found.b. The density distribution matrix is then 
obtained by the processing of density distribution analysis. For visualization and compar-
ison, the distribution of the matrix is shown in Error! Reference source not found.c. It can 
be seen that there are many noise points in the original matrix, which is not conducive to 
identification. In order to improve the identification accuracy, denoising and smoothing 
based on SVD is applied to the matrix. After the matrix is reconstructed with the first five 
largest eigenvalues, the distribution, as shown in Error! Reference source not found.d, is 
obtained. By comparing these two matrices, it will be found that the density distribution 
of the matrix after our treatment is more concentrated and clearer. 

( a ) ( b ) ( c ) ( d )  
Figure 7. The process and effect of the proposed MFI method after the square operation, take the 
16QAM signals for example. (a) Constellation before principal axes correcting; (b) Constellation af-
ter principal axes correcting; (c) Density matrix obtained by DDA; (d) Density distribution matrix 
after denoising and smoothing based on SVD. 

Finally, the density distribution matrix is converted into the vector as the feature of 
the SVM classifier for training or testing, and the identification accuracy of the proposed 
MFI method is obtained as shown in Error! Reference source not found.. The minimum 
OSNR values to achieve an identification accuracy of 100% for these seven modulation 
formats of BPSK, QPSK, 8PSK, 8/16/32/64 QAM are 5 dB, 7 dB, 8 dB, 11 dB, 14 dB, 14 dB 
and 15 dB, respectively. 
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Figure 8. The identification accuracy of the proposed MFI. 

For the purpose of further evaluating the performance of the proposed MFI method, 
the minimum required OSNR for 100% identification accuracy has been compared with 
other methods found in [14,17,18,20,22,26]. The minimum OSNR required for the identi-
fication of modulation formats under different MFI methods is shown in Error! Reference 
source not found.a, and the number of modulation formats identified by these methods 
is shown in Error! Reference source not found.b. 

( a ) ( b )

proposed

 
Figure 9. Performance comparison between the proposed method and the methods in the other 
literature, where * indicates that there is no identification result at the corresponding position. (a) 
The minimum required OSNR for 100% accurate identification; (b) Total number of identified 
modulation formats. 
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For the identification of BPSK, QPSK, 8PSK and 64QAM, the minimum required 
OSNR for the proposed MFI method to achieve 100% accuracy are 5 dB, 7 dB, 8 dB and 15 
dB, respectively. In other methods, the best achievable performance is 8 dB, 7.5 dB, 13 dB 
and 21 dB, respectively. Therefore, we achieved gains of OSNR of approximately 3 dB, 0.5 
dB, 5 dB and 6 dB, respectively, in the identification of these modulation formats. For the 
remaining modulation formats of 8QAM, 16QAM and 32QAM, the minimum required 
OSNR for the proposed MFI are 11 dB, 14 dB and 14 dB, respectively, which is comparable 
to the best performance among other schemes. In terms of the number of identified mod-
ulation formats, the identification of most modulation formats is realized by the proposed 
method, with the total number of seven, while in other methods, they are four, four, six, 
six, four and four, respectively. 

The more modulation formats an MFI method can identify, the more difficult it is to 
improve the accuracy because the increase in modulation formats means that more dis-
tinguishing features are required. However, as shown in Error! Reference source not 
found., the proposed method requires lower OSNR for the identification of most modu-
lation formats, even though it needs to complete the identification of more modulation 
formats, which demonstrates the superior performance of the proposed method. 

To evaluate the flexibility of the proposed method, the identification performance 
under different numbers of samples is tested. The average power after the square opera-
tion of different modulation formats with sample numbers of 2048, 1024 and 512 are 
shown in Error! Reference source not found.a–c, respectively. As can be seen from these 
figures, there are still significant differences between BPSK and other modulation formats 
after the square operation, which means that BPSK can still be easily separated from other 
modulation formats. This can be reflected in the identification accuracy in Figure 10d–f: 
the identification accuracy of BPSK does not deteriorate with the decrease of the number 
of samples. Except for BPSK, the recognition performance of the other modulation formats 
decreases with the decrease in the number of samples. 
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( a )

( b )

( c )

(d )

( e )

( f )  
Figure 10. The identification performance under a different number of samples. (a–c) The average 
power of signals after square operation with the number of samples of 2048, 1024 and 512, respec-
tively. (d−f) The identification accuracy under 2048, 1024 and 512 samples, respectively. 
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For comparison, the minimum required OSNR values to achieve 100% identification 
accuracy for the proposed method and the other two methods in [14,18] under different 
sample numbers are shown in Error! Reference source not found.. In this figure, the dif-
ferent colors of the bars represent a different number of samples. The horizontal axis is 
divided into seven equal parts according to the modulation formats, and under each mod-
ulation format the bars are grouped according to the MFI method. When the number of 
samples is 4096, the proposed method has obvious advantages in the identification of 
BPSK, QPSK, 8PSK and 16QAM, and achieved OSNR gains of at least 3 dB, 1 dB, 10 dB, 1 
dB and 2 dB, respectively. Under the condition of 2048 samples, the best identification 
performances of BPSK, 8PSK,16QAM and 64QAM are achieved by the proposed method, 
with the advantages of 3 dB, 12 dB, 4 dB and 6 dB. For BPSK and 8QAM, the same OSNR 
requirements for the best performances in the other methods are required for the pro-
posed method. As for the sample number of 1024, the best performances are achieved by 
the proposed method for all modulation formats, and the OSNR requirements are reduced 
by at least 3 dB, 2 dB, 11 dB, 0 dB, 7 dB, 7 dB and 7 dB. It should be noted that the bars 
with slashes in Error! Reference source not found. indicates that 100% identification ac-
curacy cannot be achieved until the corresponding OSNR (35 dB). When the number of 
samples is 512, only the comparison between the proposed method and the method in [14] 
is carried out. The results show that advantages in all modulation format identifications 
exist in the proposed scheme. For BPSK, QPSK, 8PSK, 16QAM and 64QAM, the ad-
vantages are 3 dB, 9 dB, 15 dB, 2 dB and 3 dB. These results show that our method works 
well even with reduced sample numbers, which is beneficial for low-complexity imple-
mentation. 

* * **** **** * * **** * *

 
Figure 11. The comparison of the minimum required OSNR to achieve 100% accuracy for different 
MFI methods, under a different number of samples. 

4. Conclusions 
In this work, a novel blind MFI method based on principal component analysis and 

singular value decomposition is proposed. Without any priori information, the proposed 
MFI can achieve accurate identification of seven modulation formats over a large OSNR 
range from 5 to 35 dB. In the proposed method, PCA is used to determine and correct the 
direction of the maximum variance of the received signals after square operation. Through 
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this process, the effect of phase rotation can be removed and there is no need to train 
constellations under different rotations like the previous method based on constellation 
image processing, so the complexity of training is greatly reduced. The density distribu-
tion matrix instead of image is used to count the amplitude and phase information of the 
received signal constellation to prevent over-fitting caused by too many pixels in the im-
age. SVD is employed to extract the main features of the density distribution matrix, and 
then the matrix is reconstructed by using the main features to achieve denoising and 
smoothing. Finally, a SVM classifier is used for the identification based on the matrix. 

The performance of the proposed MFI method is evaluated in a 28-GBaud dual-po-
larization optical fiber communication system. Results shows that the minimum OSNR 
values required to achieve 100% accurate identification of BPSK, QPSK, 8PSK, 8QAM, 
16QAM, 32QAM and 64QAM are 5 dB, 7 dB, 8 dB, 11 dB, 14 dB, 14 dB and 15 dB, respec-
tively. Compared with the other six proposed methods, more types of modulation formats 
are identified in our method, with a total number of seven. More importantly, among 
these modulation formats, the best identification performance is achieved in our method, 
with the advantages up to 5 dB, 5 dB, 6 dB, 4 dB, 5.5 dB, 7.5 dB and 8dB. Additionally, in 
the identification of BPSK, QPSK, 8PSK and 8/16/32/64QAM, the OSNR gains of 5 dB, 5.04 
dB, 9.38 dB, 6.14 dB, 4.75 dB, 8 dB and 9 dB relative to the 7% FEC threshold are obtained, 
respectively. 

Furthermore, the influence of the number of samples on the performance is investi-
gated. As the number of samples decreases, the accuracy of identification degrades. The 
results show that the proposed method still holds the advantage even under the number 
of samples of 4096, 2048, 1024 and 512, which is beneficial for low-complexity implemen-
tation. 

For the further study, the challenge that needs to be faced is how to alleviate the 
influence on the phase caused by factors such as frequency offset and linewidth of laser 
source. After all, phase information has a prominent contribution in the identification of 
modulation formats, especially in the identification of multiple PSK modulation formats. 
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