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Abstract: Wi-Fi-based human activity recognition is emerging as a crucial supporting technology for
various applications. Although great success has been achieved for location-dependent recognition
tasks, it depends on adequate data collection, which is particularly laborious and time-consuming,
being impractical for actual application scenarios. Therefore, mitigating the adverse impact on
performance due to location variations with the restricted data samples is still a challenging issue.
In this paper, we provide a location-independent human activity recognition approach. Specifi-
cally, aiming to adapt the model well across locations with quite limited samples, we propose a
Channel–Time–Subcarrier Attention Mechanism (CTS-AM) enhanced few-shot learning method that
fulfills the feature representation and recognition tasks. Consequently, the generalization capability
of the model is significantly improved. Extensive experiments show that more than 90% average ac-
curacy for location-independent human activity recognition can be achieved when very few samples
are available.

Keywords: human activity recognition; Wi-Fi sensing; few-shot learning; location-independent;
Channel–Time–Subcarrier Attention Mechanism (CTS-AM)

1. Introduction

Human activity recognition (HAR) is an indispensable technique that has been widely
used in many applications, such as personalized home automation, health surveillance,
security and protection, and entertainment [1,2]. Perhaps the most well-known approaches
involving human activity recognition are the wearable-devices-based methods [3,4] and
the camera-based methods [5,6]. Although both techniques can effectively classify di-
verse human activities with a low false-alarm rate, they also expose certain shortcomings.
For instance, people have to carry the motion sensors whenever and wherever using the
wearable-devices-based method to identify the activity, which is inconvenient even if these
sensors are harmless to human health. Although the camera-based approach has a defi-
nite advantage in perceived performance, it faces tough challenges in privacy protection,
obstruction blocking, darkness conditions, etc.

Device-free sensing (DFS) technology effectively overcomes the above shortcomings
by only utilizing radio frequency (RF) signals for sensing without being aided by additional
devices carried by people [7–10]. There have been extensive studies on DFS leverag-
ing various RF signals, including Frequency-Modulated Continuous Wave (FMCW) [11],
MilliMeter-Wave (MMW) [12], Ultra-Wide Band (UWB) [13–16], Wi-Fi [17–20], etc. Among
them, since Wi-Fi networks are nearly ubiquitous in both indoor and outdoor environments,
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they could play an irreplaceable role in wireless intelligent sensing. Consequently, the study
of Wi-Fi-based HAR has increased dramatically in recent years [21–24].

A majority of the existing human behavior recognition systems pay attention to
performance improvement in a single position. To promote the industrialization application
of this field, research on cross-location sensing systems is emerging. Since the multipath
propagation of the RF signal is affected by the location of obstacles, the same human activity
at different positions would result in distinct signals patterns, which will severely harm the
generalization ability of the model across diverse locations. This challenging problem can
be described as the domain shift of different spots.

There are some solutions to solve the issue. “Location-dependent recognition” repre-
sents the identification problems requiring sufficient training data at all locations.
Ref. [25] relies on plentiful labeled activity samples for each location to obtain precise
accuracy. Although sufficient data samples will reduce the domain shift differences and
achieve satisfactory accuracy, collecting and annotating plenty of data at each position
is labor-intensive with a poor user experience. In order to alleviate the above problems,
“Location-independent recognition”, which provides only very few samples to be trained
at unseen locations within the range of perception in the single environment, is proposed.
Ref. [26] separates the location-related background information from the activity signal,
which aims to decrease the number of training locations and samples. Nevertheless, the
recognition accuracy is modest and still needs to be improved. As can be seen, in the case
of insufficient training data samples, the representation of the model is prone to overfitting,
resulting in the performance degradation of the model trained in some locations when
testing in other locations.

Based on existing solid foundations, it still needs to be further investigated how to
mitigate the domain shift to achieve location-independent sensing efficiently with as few
training samples as possible. Specifically, some fundamental issues need to be tackled.
The features learned from one location would be extremely difficult to transfer to the other
unseen positions. Since most of the feature extraction methods, especially the deep learning
methods [27], require a training set and testing set to satisfy the independent and identical
distribution (IID), it is hard to work well in our case. Therefore, we must extract the features
in a more distinguished way, enabling the model to be sufficiently distinctive among
different human activities and robust enough against the location variation. Moreover,
ensuring the transferable capability of the sensing model with inadequate samples needs
to be explored in detail.

To overcome the challenges mentioned above, we provide a location-independent hu-
man activity recognition system called LI-HAR. In this system, a Channel–Time–Subcarrier
Attention Mechanism (CTS-AM) enhanced Convolutional Neural Network (CNN) is de-
signed for feature representation, so that distinctive features without location-dependent
factors will gain more attention. In addition, to improve the transferable ability of the model
when only very few training samples from unseen locations are available, metric-based
few-shot learning is utilized to enable the model to generalize among different positions.
To demonstrate the performance of the proposed method in terms of accuracy and robust-
ness, we collect data samples, including four prescribed activities performed at 24 different
locations in an office environment.

The main contributions of this paper are listed as the following three folds:

• We elaborately analyze the influence of location change on Wi-Fi signal distribution
of different activities and observe that the existing attempts cannot realize location-
independent human activity recognition well.

• To mitigate the adverse effects of location variations in the case of insufficient train-
ing samples, we design a system named LI-HAR by leveraging a few-shot learning
approach based on a prototypical network improved via a Channel–Time–Subcarrier–
Channel Attention Block (CTSC-AB). Unlike previous attempts, our proposed method
can simultaneously extract distinguished representations for different activities and
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identify them free from the limitation of locations using only very few samples from
new positions.

• We built a dataset to evaluate the performance of the proposed approach. Comprehen-
sive experiments demonstrate that the LI-HAR system can promisingly address the
challenges presented.

We organize the rest of this paper as follows: Some preliminaries of Wi-Fi sensing
are presented in Section 2. Section 3 provides a system overview and a detailed design.
In Section 4, the performance evaluation is conducted. We conclude the paper in Section 5.

2. Preliminary and Motivation

For Wi-Fi-based DFS technology, the transmitted signals are affected by objects such
as the dynamic human activities in this paper, leading to the superposition of multipath
signals in the receiver, which can be utilized for recognition. The influenced communica-
tion link between the transmitter (TX) and the receiver (RX) can be depicted by Channel
State Information (CSI), which is fine-grained compared with the received signal strength
indicator (RSSI).

In the IEEE Wireless Local Area Network (WLAN) standards (such as 802.11
a/g/b/n/ac/ax), which are supported by most of the Wi-Fi routers, 802.11n and later
versions support both Multiple-Input Multiple-Output (MIMO) and Orthogonal Frequency
Division Multiplexing (OFDM) technologies, which could provide a higher data rate. Thus,
CSI can be extracted from multiple channels.

We take advantage of the CSI of the links to sense human activity. We denote y and
x as the received signal and transmitting signal, respectively. Their relationship can be
expressed as

y = Hx + n (1)

where H is the CSI channel matrix and n is the noise vector. In addition, H is a complex
matrix including amplitude and phase. Specifically, when the transceiver is equipped with
three antennas, the CSI measurement at frame t can be described as

H(t) = Hs
ij(t) =

 Hs
11(t) Hs

12(t) Hs
13(t)

Hs
21(t) Hs

22(t) Hs
23(t)

Hs
31(t) Hs

32(t) Hs
33(t)

 (2)

where Hs
ij(t) indicates the s-th subcarrier of CSI between the i-th transmitting antenna and

j-th receiving antenna at each frame t.

2.1. Experiment Setup

To build a human activity recognition dataset and evaluate the proposed method,
we collected the data in a cluttered office. The data collection experimental scene and
transceiver device are demonstrated in Figure 1. The room size was approximately
6 m × 8 m. Intel 5300 and Qualcomm Atheros Wi-Fi cards are the most widely used cards
for CSI measurements. The open-source CSI Tool, including 802.11n CSI Tool [28] and
the Atheros CSI Tool [29], enabled CSI to be exported from commodity wireless Network
Interface Cards (NICs). In this paper, an Intel 5300 NIC and Linux 802.11n CSI Tool were
utilized to collect the raw CSI measurement. Both the transmitter and receiver work within
802.11n wireless protocol in monitor mode and operate on channel 64 in the 5 GHz fre-
quency band. The bandwidth is 20 MHz. Since the surrounding Wi-Fi devices operate at
2.4 GHz, they only have a tiny impact on the sensing signal.

In this paper, we collected the activity data at 24 distinct positions. The specified
location layout is shown in Figure 2. The distance between transmit and receive antennas
was 4 m. The adjacent data acquisition positions were approximately 0.6 m apart. Four
typical activities were predefined, as demonstrated in Table 1. It is also worthwhile to
mention that only a single person was allowed to perform the activity for each case.
To obtain enough data samples in the experiment, we collected at least 50 samples for each
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activity at each spot. The sampling rate was set as 200 frames per second. Considering each
activity lasts for 3.5∼4 s corresponding to 700∼800 frames, we intercepted 750 frames as
an activity sample. Since the antenna number of TX and RX are both three and 30 groups
of subcarriers can be obtained from each pair of transceiver antennas, the total number of
subcarriers is 3 × 3 × 30 = 270.

Figure 1. Data collection experimental scene and transceiver device.

RX TXRX TX

23 2421 2219 20

5 63 41 2

129 107

17 181613 14

118

15

Figure 2. The layout of data collection locations.

Table 1. Predefined activities.

Mark Activity

O Drawing a circle with right hand
X Drawing a cross with right hand

PO Pushing and opening with two arms
UP Lifting up and laying down two arms

2.2. Problem Analysis

In this section, we investigate the influence of different human activities at various
locations on the transmission of Wi-Fi signals in multiple ways. As demonstrated in
Figure 3, the CSI amplitudes of the received signals measured with four different human
actions at a fixed location are given. Each subgraph of Figure 3 shows the regular attributes
reflected in the different samples of the same action. Moreover, we can observe that each
human activity yields diverse feature patterns in the received signals. This is the key to the
realization of human activity recognition.
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Figure 3. CSI amplitude of four distinct human activities at the identical position. The three curves in
each subgraph represent three samples for the same action. The horizontal axis denotes the frame;
the ordinate indicates amplitude of CSI.

Inspired by [26], to further demonstrate the location-dependent challenges of Wi-
Fi-based HAR, we leverage the low rank and sparse decomposition (LRSD) algorithm
to separate the original signal into the low-rank and the sparse part, which describe the
background and the activity, respectively. Figure 4 displays the sparse component of CSI
for the identical activity at four different positions. As can be observed, although the
location-related information has been removed to a certain extent, the same action in each
location shows distinct features. Inevitably, the low-rank part contains information related
to activities, while the sparse part also consists of certain location-related details. Therefore,
further signal processing is still required to extract action-related information.

Figure 4. The sparse component of CSI for the identical activity at four different positions.

Consequently, although it is relatively easy to classify the activities at a single loca-
tion, it may not be possible to ensure good recognition accuracy for location-independent
sensing unless some location-invariant features can be extracted. For this reason, an atten-
tion mechanism enhanced approach was selected for feature representation since it can
concentrate on the features that can generalize to different locations [30].

For a more comprehensive analysis of the problem, the maximum mean difference
(MMD) metric was utilized to investigate the distribution difference for data samples
collected at the same or different locations. We compared the distributions between two
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datasets with MMD through a kernel two-sample test [31], assuming that X, Y are two
sample sets of the same activity from two locations. The empirical estimate of MMD
distance between them is as follows:

MMD2(X, Y) =
∥∥∥∥ 1

n1
∑n1

i=1 φ(xi)−
1
n2

∑n2
j=1 φ

(
yj
)∥∥∥∥2

H
(3)

where xi ∈ X and yi ∈ Y are the randomly selected sample; n1 and n2 are the number
of X and Y, respectively. φ denotes the kernel function that maps the original data to a
reproducing kernel Hilbert space (RKHS) H. Empirically, Gaussian kernel is utilized in
this paper.

Using the same action at 12 distinct locations, we depict the calculated MMD results
for all cases in Figure 5. As illustrated, the MMD of data samples is usually smaller at the
same location while becoming larger at different locations. Meanwhile, it is also clearly seen
that activity samples at an adjacent area, as shown in Figure 2, have a closer distribution.

Figure 5. MMD distance of data samples at the same or different locations.

In the light of the analyses above, both the human activities and the location vari-
ations can influence signal transmission. Therefore, it is challenging to realize location-
independent sensing, especially when inadequate training samples are available. Aiming
to drive wireless sensing technology from academic research to industrial application, we
urgently need to propose a method to alleviate the issue of domain shifts caused by posi-
tional differences, which force the models to fail to generalize between different locations.
Considering the case of insufficient samples, we propose a model inspired by few-shot
learning [32,33] to achieve LI-HAR in this paper.

3. Materials and Methods

In this part, we first introduce the system overview of LI-HAR. Then, the attention
mechanism enhanced characteristic extraction method is proposed. Finally, an improved
prototypical network for a few-shot, learning-based HAR method is presented and analyzed.

3.1. System Overview

As shown in Figure 6, the architecture of LI-HAR includes data collection, data pre-
processing, feature representation, and model training/testing. Firstly, raw CSI samples
were obtained from the Wi-Fi communication system. Then, we computed the amplitude
of CSI and denoised the signal with a Butterworth low-pass filter. Moreover, data segmen-
tation was performed to separate the data into multiple samples—the size of which is the
frame × subcarrier, indicating the time an activity lasts for multiplied by the number of
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subcarriers. In the third step, the data were transformed to high-dimensional embedding
vectors via CNN; then, the attention block was applied to enhance discriminative feature
learning. In the final step, aiming to achieve location-independent sensing with a minimum
number of samples, the human activity sensing approach with a few-shot learning method
was proposed. Next, we present the detailed implementation of the last two steps.

Figure 6. The system architecture for LI-HAR.

3.2. Channel–Time–Subcarrier Attention Mechanism-Based Feature Representation

The deep learning method attracts extensive attention for its powerful capability in
feature representation. In terms of feature extraction for two-dimensional data, CNN has
been proved to process unparalleled advantages. It not only plays an important role in
computer vision but is also widely involved in DFS. However, for the case of location-
independent sensing in this paper, apart from the deep features captured by CNN, we
expect to gain more generalized characteristics correlated to the activities rather than the
locations. This means that the model should place a greater emphasis on the common
attributes across different positions.

Each convolution kernel of CNN extracts different types of features and has a distinc-
tive generalization ability. Each channel of the feature maps produced by different kernels
represents the characteristics that the kernels learn from different subspaces. Each channel
has a distinct significance for various specific tasks; for instance, some channels capture
similar features among different positions of the same action. Therefore, by providing such
channels with a higher proportion, the output features will be more discriminative for the
activities, even at different locations. In addition, the critical ingredient of the temporal
sequence can be hardly observed by CNN. As far as the procedure of action is concerned,
it includes raising hands or arms; performing some activities; and finally, putting down
hands or arms. Intuitively, we are more concerned with the movement in the middle
of the process in comparison with lifting and lowering. Therefore, information on the
time axis has different degrees of importance. More importantly, due to the influence of
frequency selective fading caused by the multipath effect, each subcarrier carries diverse
information related to activities and locations. Some subcarriers may be more affected by
actions while others may be susceptible to the environment. Further, the distinction and
correlation of different subcarriers would be problematic to capture. Accordingly, the in-
terchannel, intertime, and inter-subcarrier relationships should be exploited to produce
different weight distributions.

To obtain the discriminative features suitable for different activities irrespective of loca-
tions, we proposed a Channel–Time–Subcarrier Attention Mechanism (CTS-AM) improved
CNN network in this paper. Specifically, we orderly arrange channel, time–subcarrier, and
channel attention modules to form Channel–Time–Subcarrier–Channel Attention Block
(CTSC-AB). Figure 7 demonstrates the structure of the channel attention module and the
time–subcarrier attention module. Then, we are devoted to learning the attention maps
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(weight distributions), which can indicate the significance of different parts in the feature
maps and sequentially infer the information that should be emphasized or suppressed.
Finally, the attention maps are multiplied by the input feature maps to refine the feature
adaptively. Here, we design a CNN network as the feature extractor. It consists of five
blocks, each of which possesses a convolutional layer, a batch normalization layer, and a
max-pooling layer. Moreover, 64 filters with the kernel size (3,3) are utilized. The activation
function is rectified linear unit (ReLU).

Figure 7. The structure of the channel attention module and the time–subcarrier attention
module. σ denotes the sigmoid function. ⊗ denotes elementwise multiplication. ⊕ denotes
elementwise summation.

We assume that the feature map calculated by CNN is F ∈ RC×H×W , where C in-
dicates the number of channels; H and W represent the height (subcarriers) and width
(frames/time), respectively. We obtain channel significance Wchannel1 through the chan-
nel attention module. Then, we focus on the time–subcarrier dimension through the
time–subcarrier attention module to gain the time significance and subcarrier significance
Wtime−subcarrier. We append a channel attention module again to enhance the generalization
of the time–subcarrier attention block. The whole attention operation can be denoted as

F
′
= Wchannel1 ⊗ F (4)

F
′′
= Wtime−subcarrier ⊗ F

′
(5)

F
′′′
= Wchannel2 ⊗ F

′′
(6)

where ⊗ indicates elementwise multiplication. During multiplication, the attention values
are broadcasted accordingly; channel attention values are broadcasted along the time–
subcarrier dimension and vice versa. Then, each attention module illustrated in Figure 7
will be described in detail.

Channel Attention Module. To calculate channel attention weights, we concentrate
time–subcarrier knowledge of each feature map through average-pooling and max-pooling
operations, respectively. Thereby, two representation including Fc

avg and Fc
max describing

average-pooled features and max-pooled features can be obtained. Then, they are for-
warded to a shared network, which consists of a multilayer perceptron (MLP) with one
hidden layer to generate a channel attention map Mc(F) ∈ RC×1×1. This indicates the
significance of each subspace feature corresponding to each kernel. To decrease the number
of parameters, we fixed the hidden activation size to RC/r×1×1, where r is the reduction
ratio. In this paper, r is set to 8. Then, we combine the output feature vectors from the
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shared network by elementwise summation. Specifically, the channel attention can be
expressed as

Mc(F) = σ(M(AvgPool(F)) + M(MaxPool(F)))

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (7)

where σ indicates the sigmoid function, W0 ∈ RC/r×C, and W1 ∈ RC×C/r. M in the equation
is short for MLP.

Time–Subcarrier Attention Module. To calculate the time–subcarrier attention, the
average-pooling and max-pooling along the channel axis is conducted to form two 2D
features across the channel: Fs

avg ∈ R1×H×W and Fs
max ∈ R1×H×W . Then, we concatenate

them to build an efficient feature descriptor. Finally, a convolution layer is utilized to
produce a time–subcarrier attention map Ms(F) ∈ RH×W , which indicates the information
to focus on along the time and subcarrier dimension. In summary, the time–subcarrier
attention can be denoted as

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

])) (8)

where σ denotes the sigmoid function, f 7×7 represents a convolution operation with the
filter size of 7× 7, and [·; ·] means concatenation operation.

3.3. Few-Shot, Learning-Based Human Activity Recognition

Inspired by the prototypical network [34], we propose a few-shot, learning-based
activity sensing method. Unlike the traditional approach that is applied to solve the issue
involving new class learning with very few samples, this paper utilizes it for the perception
of activity at the new location when insufficient training samples are available.

We conduct the few-shot learning task by subsampling the positions and the samples
to make up a training set STrain, a validation set SValidation, and a testing set STest. Then,
the support set SSupport and the query set SQuery are randomly selected from the three sets.
We assume that there are N activities in total. The detailed procedure of class prediction
and training loss computation is described in Algorithm 1.

In this paper, Adam is applied to optimize the parameters. The exponential decay rate
ρ1 and ρ2 are empirically set as 0.9 and 0.999, and the learning rate is set as 0.001. We train
the model for 40 epochs.
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Algorithm 1 Pseudocode of class prediction and training loss computation

Input: The number of activity class K, Training set STrain={(x1, y1), . . . , (xN , yN)}, the fea-
ture extractor fϕ, the number of support samples of each class in the training set Ns,
the number of query samples of each class in the training set NQ.

Output: Predicted class label ŷ, loss J.
1: for batch in traning set do
2: for class k in classes {1, . . . , K} do
3: Choose Ns support samples for the class k to form the support set Sk

Support.

4: Choose NQ support samples for the class k to form the support set Sk
Query.

5: Sk
Support → fϕ

(
Sk

Support

)
6: Sk

Query → fϕ

(
Sk

Query

)
// feature embedding

7: Calculate the prototype of each class with the support samples

Ck =
1∣∣∣Sk

Support

∣∣∣ ∑
(xi ,yi)∈Sk

Support

fϕ(xi)

8: end for
9: Loss J = 0 //Loss initialization

10: for query samples (x̄, ȳ) in Sk
Query do

11: for class k in classes {1, . . . , K} do
12: Calculate the distance between the query samples and the prototype of each

class
dk
(
Ck, fϕ(x̄)

)
=
∥∥Ck − fϕ(x̄)

∥∥2

13: end for
14: ŷ = arg minkdk

(
Ck, fϕ(x̄)

)
// Predicted label

15: J ← J + 1
K log _so f t max(dk) // Loss update

16: end for
17: end for

4. Performance Evaluation

This section conducts the experiments and evaluates the performance of the proposed
LI-HAR system. Firstly, we investigate the feasibility of the recognition method enhanced
by the CTS-AM improved few-shot learning. Then, to verify the superiority, a comparison
study is performed. At last, the robustness is explored via evaluating the accuracy under
different conditions, including the training locations selection strategies, the number of
training positions and shots, as well as different signal-to-noise ratio (SNR) levels.

4.1. Feasibility Evaluation

Overall performance. In this section, we elaborate on the system performance under
three different experiment settings. Firstly, the training position is identical to the test
position, which is a random one of our 24 locations shown in Figure 2. Both the training
samples and the testing samples come from a single position; thus, we call it single-location
recognition. Secondly, we discuss mixed-location recognition, where the training and
testing samples are selected from all 24 locations and we have the same number of samples
at each position. Thirdly, to evaluate the performance of location-independent sensing,
we choose the samples from part of the locations as the training set and the samples from
all 24 locations as the testing set. Specifically, we divided 50 samples for each activity at
different positions into the training set, validation set, and testing set at a proportion of
60%, 20%, and 20%, respectively. We present the overall performance with four training
locations selected from 24 positions, which follows the principle of equal interval sampling.
The dataset allocation in the location-independent HAR evaluation is shown in Table 2.
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Table 2. Dataset allocation in the location-independent HAR evaluation.

Number Activities Locations Samples

Training Set 4 4 30
Validation Set 4 24 10

Testing Set 4 24 10

In this section, according to the training strategy of the few-shot learning approach,
we randomly select five support points and 15 query points from the training, verification,
and testing datasets of each activity, respectively. It is worth noting that the locations of
the five support samples and 15 query samples of each activity are random and may be
the same or different. More importantly, only data from the training set are utilized to
update the model parameters; specifically, the model parameters do not change during the
validation and testing steps.

As depicted in Table 3, LI-HAR performs well in the three experiment settings. In par-
ticular, the overall accuracy of the single-location and the mixed-location activity recogni-
tion can reach 99.39% and 98.52%, respectively. Moreover, each activity can achieve satis-
factory accuracy. For location-independent recognition, the accuracy can still attain 91.98%.
Specifically, O and PO are easier to distinguish relative to the other two. In conclusion, our
LI-HAR system is promising for both location-dependent and location-independent recog-
nition.

Table 3. The recognition accuracy of different activities.

Accuracy (%) O X PO UP Average Overall

Single location 100 100 100 100 100 99.39
Mixed locations 100 100 100 93.33 98.33 98.52

Location-independent 100 86.67 93.33 86.67 91.67 91.98

Feature visualization. To further illustrate the feasibility of our system, we reduce the
dimension of the feature representation before and after mapping the embedding space
to two dimensions and visualize the output leveraging the T-SNE method [35]. As shown
in Figure 8, samples that belong to the same category are clustered together after the
process while cluttered and intuitively indistinguishable before the process. To some
extent, it demonstrates that the proposed system is effective while applying the few-shot
learning strategy based on the prototypical network with the CNN and CTS-AM feature
representative method.

Figure 8. T-SNE of test samples before and after the model learning process.
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4.2. Superiority Evaluation

Comparison with different attention mechanisms. We perform a comprehensive
study to verify the superiority of the CTS-AM in the prototypical network. In the following
part, the term “PN” in the table or figure is shot for the prototypical network. In this section,
to distinguish the proposed attention structure from the others, we apply CTSC-AB to
denote our method. Besides the CTSC-AB, we have explored the impacts of each part,
including channel attention and time–subcarrier attention. Furthermore, we have studied
different combinations of them, consisting of channel attention (C-AB), time–subcarrier at-
tention (TS-AB), channel–time–subcarrier attention (CTS-AB), and time–subcarrier–channel
attention (TSC-AB).

Table 4 has illustrated the advantages of CTSC-AB with the different number of
training locations. We take 4/6 training locations with equal interval sampling from
24 locations as examples. The average accuracy can be improved by 1.86% and 2.39% when
there are 4 and 6 training locations, respectively. The results demonstrate that our CTSC-AB
improved the prototypical network as the most effective method compared with the others
in Table 4. As can be seen, all the attention blocks enhance the results; however, the single
block offers only a limited accuracy boost, while the combination of the C-AB and TS-AB
can achieve a relatively stable and superior performance improvement.

Table 4. The average accuracy for different attention mechanisms.

Accuracy (%) 4 Training Locations 6 Training Locations

PN 90.12 91.66
PN + C-AB 90.65 92.68
PN + TS-AB 90.16 92.06

PN + CTS-AB 91.21 92.98
PN + TSC-AB 90.67 92.88

PN + CTSC-AB 91.98 94.05

Comparison with different recognition approaches. To verify the superiority of the
proposed method, we explore the other two typical approaches, which are CNN and Wi-
Hand [26]. CNN is a classical feature representation method that is the most commonly used
in wireless sensing. LRSD-based WiHand aims to remove activity-irrelevant information
and outperforms the other location-independent sensing method. In this part, we conduct
the comparison study and discuss the recognition accuracy of the three aforementioned
experimental settings. The comparison results are shown in Table 5. Note that the selec-
tions of the four training locations are the same as the above feasibility evaluation. Thirty
subcarriers are used for recognition and 20 features are extracted for WiHand. In Table 5,
S L, M L, and L I are short for single location, mixed location, and location-independent,
respectively.

Table 5. Comparison study of different recognition methods.

Accuracy (%) S L M L L I

CNN 98.46 94.02 80.24
WiHand 96.15 91.50 80.18

PN 99.07 97.22 90.12
PN + CTSC-AB 99.39 98.52 91.98

We can observe that all three approaches achieve high accuracy in single-location
recognition. The results are also promising when recognizing activity with the mixed
locations. For location-independent recognition, LI-HAR (PN + CTSC-AB) has an av-
erage 91.89% accuracy with only four training locations. It is noted that the few-shot,
learning-based method improves the average recognition accuracy by 9.88% and 9.94%
compared with CNN and WiHand. When the prototypical network is improved by CTSC-
AB, the recognition rate increases by 11.74% and 11.80%, respectively. Although CNN
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has an absolute advantage in the case of IID, it fails to identify activity when the distribu-
tion varies at different positions. In conclusion, LI-HAR has certain advantages to realize
location-independent perception when very few training samples are available.

4.3. Robustness Evaluation

Performance of LI-HAR in terms of different training location selection strategies
and different numbers of training locations. In this section, we adopt two training posi-
tion selection strategies to show the robustness of the proposed method. One is the scheme
used in the above experiment, in which the training locations are selected with an equal
interval from 24 locations. Taking four training positions as an example, we pick one in
every six positions and there are six options. Namely, the four locations of each column
in Figure 2 are an option. The other strategy is depicted in Figure 9, in which the training
locations satisfy the axial or centroid symmetry. The positions are relatively decentralized
rather than spreading in a line parallel to the transceiver. These two position selection
strategies could demonstrate the generalization of the system. In addition, we will discuss
how the number of training locations influences sensing capability. Specifically, we explore
4/6/8/12/24 positions for training and 24 positions for testing.

Figure 9. The training location selection strategies. Specifically, for 4/8/12 training locations, the po-
sitions where the same colored straight line goes through or the inflection points and the enthesis of
the same colored broken lines constitute the training locations. For six training locations, the straight
lines or broken lines along with the same colored marked positions form the training locations.

As illustrated in Table 6, when we choose four training positions, the accuracy for the
first training position selection strategy is 91.98%, while for the second training position,
the selection strategy is 92.90%. The results indicate that the accuracy of strategy 1 is better
than that of strategy 2, except for four training locations. This may be due to some off-center
combination of positions in Strategy 1 (such as 1, 7, 13, 19 and 6, 12, 18, 24); the distribution
of other locations is considerably different. Nevertheless, satisfactory identification results
can still be obtained. We show the average recognition accuracy of each four-training-
position combination scheme in Table 7. It is also concluded that more training positions
lead to higher recognition accuracy.

Table 6. The average recognition accuracy for different training position selection strategies and
different numbers of training locations.

Accuracy (%) 4 6 8 12 24

Strategy 1 91.98 94.05 95.04 96.69 98.52
Strategy 2 92.90 93.98 94.61 95.07 98.52
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Table 7. The average recognition accuracy for distinct four-training-position combination scheme.

Training Locations Accuracy (%)

1, 7, 13, 19 89.46
2, 8, 14, 20 91.89
3, 9, 15, 21 93.17

4, 10, 16, 22 93.61
5, 11, 17, 23 92.90
6, 12, 18, 24 90.83

Average 91.98

Performance of LI-HAR for different number of shots. We discuss how the size
of support points for testing utilized to calculate the prototypes in CTS-AM improved
prototypical network influences the recognition accuracy. We take four training locations
and 24 testing locations as an example. The prototypical network for few-shot learning
before/after the improvement by CTS-AM is discussed. The identification results with
strategy 1 and strategy 2 are listed in Figure 10.

It is noted that although there is only one sample for each action of the unseen
locations, the improved prototypical network can still obtain a promising result. Moreover,
the accuracy will boost with a larger sample size. This is because the representation
capability of the prototype we compute to describe a category relies on the number of
support samples.

Figure 10. The average recognition accuracy for distinct shots.

Performance of LI-HAR with different SNR levels. To verify the robustness of the
system under different noise intensity environments, we add Gaussian white noise with a
mean value of 0 and a variance of 1 to the original CSI data, generating signals with different
SNR. We apply activities from 4 locations with strategy 1 for training and 24 locations for
testing. We discuss 3-shots and 5-shots. The recognition results are illustrated in Figure 11.

It can be observed that the recognition accuracy improves with the increase in SNR.
When applying the CTS-AM enhanced prototypical network, the 5-shots outperform
3-shots. In summary, the proposed method can fulfill location-independent activity recog-
nition with very few samples.
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Figure 11. The average recognition accuracy with the variation in SNR.

5. Discussion

Results Discussion: In this paper, we promisingly achieve Wi-Fi-based location-
independent human activity recognition with limited training samples at the unseen
positions. The performance evaluation involving feasibility and superiority indicates that
the proposed method possesses great sensing capability. Especially, the robustness evalua-
tion involving different training location selection strategies, different numbers of training
locations and shots, and different SNR levels shows great potential ability in practical
application scenarios. In addition, we recorded the training time used for the proposed
method. In the case of training 20 epochs, the training process took less than two minutes.
In this case, the model can converge well and achieve ideal recognition accuracy. When we
train the model for 40 epochs, the training process took less than four minutes. Both can
meet the time requirements of offline training and online recognition.

Limitation: Although some progress has been made in location-independent human
activity recognition, there are still many challenging issues and limitations that need to be
solved. Firstly, since we are preliminarily exploring the feasibility of the proposed method,
we only discuss the situation where there is only one active target in the environment.
However, in practical application scenarios, there is usually interference from others;
thus, how to remove the influence of such interference is also a key issue. In addition,
as required in the data collection process of most current wireless perception studies, we
will also limit the consistency of motion sample collection, such as the orientation and
space of the activity, which will have a great impact on signal transmission.

Future Work: In the future, researchers could gradually remove the restriction and
explore a more generalized and robust method to realize the human activity perception
independent of various external factors. In addition, more complex application scenarios
involving multiple targets and non-line-of-sight situations should be considered. Be-
sides Wi-Fi devices, the multisignal and multiterminal fusion methods will also provide a
broader idea for the development of high-precision intelligent sensing.

6. Conclusions

In this paper, we propose a novel location-independent human activity recognition
system named LI-HAR. The system owns the capability of transferring the knowledge
acquired from some locations to others. Technically, the proposed few-shot learning recog-
nition approach is based on the CTS-AM improved prototypical network, which can learn
the feature representation at all locations with only very few samples. The method con-
centrates on the common characteristics of distinct positions and extracts discriminable
characteristics of each action. We built a comprehensive dataset for evaluation. The exper-
iment results demonstrate that the method can attain an average accuracy of more than
90%, with four locations for training and 24 locations for testing, given only five samples
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for each activity. Consequently, it concludes that the proposed method is achievable for
location-independent human activity recognition.
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