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Abstract: This paper presents an assessment of the potential behind the BiGRU-CNN artificial
neural network to be used as an electric power theft detection tool. The network is based on
different architecture layers of the bidirectional gated recurrent unit and convolutional neural network.
The use of such a tool with this classification model can help energy sector companies to make
decisions regarding theft detection. The BiGRU-CNN artificial neural network singles out consumer
units suspected of fraud for later manual inspections. The proposed artificial neural network was
programmed in python, using the keras package. The best detection model was that of the BiGRU-
CNN artificial neural network when compared to multilayer perceptron, recurrent neural network,
gated recurrent unit, and long short-term memory networks. Several tests were carried out using
data of an actual electricity supplier, showing the effectiveness of the proposed approach. The metric
values assigned to their classifications were 0.929 for accuracy, 0.885 for precision, 0.801 for recall,
0.841 for F1-Score, and 0.966 for area under the receiver operating characteristic curve.

Keywords: artificial intelligence; machine learning; recurrent neural networks; time series

1. Introduction

The economic progress of developing countries directly relates to the use of electricity
by manufacturing industries. Therefore, the lack of this essential resource significantly
impacts the economy at large [1–3]. There might be numerous reasons behind the shortage
of electricity availability; the causes are classified as technical and non-technical losses [4].
Technical losses naturally occur due to irradiation and to electrical energy dissipation
during its transmission and distribution, which entails losses in dielectrics and especially
in electrical conductors by the Joule effect [5]. Non-technical losses, on the other hand, are
defined as any energy consumed or any unbilled service due to the failure of measuring
equipment or its fraudulent manipulation. These losses are caused by breakdown or illegal
handling at the consumer’s premises. Non-technical losses are very difficult to predict [6].

For electricity suppliers, the main cause of non-technical losses is the illegal use
of electricity by fraudulent customers [7]. This problem has long been one of the main
concerns in the energy system management sector, for it can imbalance demand and
supply, causing energy network regulation problems and, consequently, drastic profit
losses [8]. Theft detection in electricity networks is thus essential to avoid economic
loss and mitigate safety risks. However, conventional methods primarily rely on human
verification or specific measuring equipment which are extremely slow, expensive, and
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inefficient [9]. A considerable number of fraud detection modeling techniques in electrical
energy consumption help overcome these obstacles [10]. There are several fraud detection
techniques in electricity networks, where classification-based detection is one of the most
used approaches. This type of technique mainly distinguishes abnormal energy use patterns
from all normal consumption patterns in a test sample containing both normal class
and fraudulent class examples [11]. Some algorithms that perform this technique are: k-
nearest neighbors [12,13], Support Vector Machine [14,15], Random Forest [16,17], Gradient
Boosting [18,19], and Ensemble Learning [20,21].

Classification algorithms such as K-nearest neighbors, support vector machine, de-
cision tree, and logistic regression have already been established in several applications
based on electricity-related problems as well as in other research areas [22–24]. However,
most of these are based on artificial resources extraction that requires manual intervention
and has low electricity theft detection accuracy [25]. It is important to emphasize that
all of the above algorithms disregard the data’s sequential nature, assuming that they
are time-independent [26]. In the real world, however, the opposite happens, given the
electricity consumption dynamic behavior [9]. To address these limitations, [27] proposed
the use of a widespread deep recurrent neural network based on the detection of electricity
theft that can effectively pinpoint cyber-attacks in smart grids. Applied to energy problems,
this model explores the nature of the time series of customers’ electricity consumption to
implement a recurrent neural network of gated recurrent unit (GRU) architecture, thus
improving the detection performance and, consequently, better performance simulations
results than those of other classic methods.

Reference [28] added non-dominated sorting genetic algorithm to tune the hyper-
parameters of the GRU network, which explores the nature of the time series of power
consumption readings, thereby improving detection performance above classic algorithms.

Recurring neural networks of GRU architecture can be used with other architectures to
form hybrid models of electric power fraud detection. Authors in [29] proposed a deep hybrid
neural network model based on the combination of GRU and Convolutional Neural Network
(CNN) networks and the Particle Swarm Optimization (PSO) algorithm, where the data used
was users’ real-time electricity consumption. The selection and extraction of resources are
performed using the CNN network, which reduce the dimensionality and redundancy present
in the time series. The classification of consumption patterns as normal and fraudulent is
done using the GRU network with the PSO algorithm. The simulation results show that
the proposed model outperforms existing techniques in terms of energy theft detection.
Additionally, the proposed model is more robust and accurate than existing classification
methods. Reference [30] first used the bidirectional gated recurrent unit (BiGRU) to classify a
consumer as honest or fraudulent, using real-time historical series. The experiments showed
that this proposed model surpassed traditional classification techniques.

In view of the possibility of using classification algorithms to detect electricity con-
sumption fraud, the present work aims to improve electricity theft detection with a model
based on different layers of artificial neural networks called BiGRU-CNN. Most of the
times, the process of fraud detection is carried out manually, and it is necessary for the
energy companies’ employees to collect information on energy consumption for each user.
In many cases, this procedure is not efficient. For this reason, the Artificial Intelligence
methods proposed in this work become an important alternative solution to the problem of
fraud detection, since they allow an efficient exploration of the large amount of informa-
tion available in the database of the electric power companies. This constitutes the main
contribution of our paper.

More accurate classification models can cut costs and add revenue to energy sector
companies. The proposed classification of distinct layers BiGRU-CNN was thus compared
with the classic artificial neural networks multilayer perceptron (MLP), recurrent neural
network (RNN), long short-term memory (LSTM), and GRU to check whether their energy
theft classifications are more accurate or not. In this case, the historical series of electrical
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energy demand of several consumers of the respective company were used as feed in the
fraud detection neural models.

This paper is structured as follows: Section 2 includes the theoretical framework used
in the paper. Section 3 is the proposed methodology that includes the data used in this
research work, the data pre-processing, the neural networks used for transforming the
time series into a supervised machine learning problem, and the comparison of metrics.
Section 4 corresponds to the experiments performed during this research work. Section 5
concludes and highlights the most important aspects of the paper.

2. Theoretical Framework

The recurrent neural network (RNN) is an artificial neural network that uses the
connection edge of adjacent temporal nodes and introduces the concept of time in the pre-
dictive model, making it suitable for processing time series [31]. However, the conventional
RNN architecture is susceptible to interference from adjacent time periods, giving rise to
the problem of error flow disappearance [32]. One of the alternatives to overcome this is
the use of the GRU architecture neural network, which is basically an improved version of
LSTM [33]. Generally, both GRU and LSTM networks are suitable for solving the problem
of vanishing gradient through their multiplicative ports. However, GRU networks are
more efficient in achieving convergence and updating the internal weights during training,
in addition to its internal port structure being more succinct than the LSTM network [32].

A typical unit or cell of the GRU architecture network can be constructed from two
ports called the reset gate and update gate [34]. The first port (reset gate) filters previously
irrelevant information on hidden layers [31]; the lower its value, the greater the amount of
information ignored [33]. On the other hand, the second port (update gate) determines the
amount of information to be transferred to the output layer [31]; the higher its value, the
more information contained in the previous state is used [33].

Figure 1, adapted from [35], shows the structural diagram of a GRU neural network
cell governed by Equations (1)–(4), where zt is the update gate, ρ is the activation sigmoid
function, w represent the weights for each input, rt is the reset gate, h̃t is the candidate
hidden state of the current hidden node, ht is the hidden current state, xt is the current
input of the artificial neural network, ht−1 is the hidden state of the previous time instant,
and u represent the weights for hidden state of the previous time instant [35].

zt = σ(wzxxt + uzhht−1) (1)

rt = σ(wrxxt + urhht−1) (2)

h̃t = tan(whxxt + rt � uhhht−1) (3)

ht = (1− zt)� h̃t + zt � ht−1 (4)

For many sequential modeling tasks, it is interesting to access both past and future
information. However, the standard GRU neural network processes temporal sequences
chronologically and, therefore, is unable to obtain future context information [36]. The
bidirectional GRU (Bi-GRU), on the other hand, can perform this operation, since it consists
of two standard GRU that process the input sequence in two divergent directions (chrono-
logical and anti-chronological) which are subsequently merged into a single variable [37].
This enables the model to explore past and future information. The latter, in turn, can
provide more efficient predictive results [36].

Figure 2, adapted from [35], presents a two-intermediate layer Bi-GRU neural network
oriented by Equations (5)–(9), where f is the GRU neural network processing, g is the
activation function,

−→
h 1

t and
−→
h 2

t are the output vectors of the forward layers of the first and
second layers of the network at time instant t, respectively; w and b are the weight and bias
matrices, respectively. On the other hand, vectors

←−
h 1

t and
←−
h 2

t represent the concurrent
outputs of the first and second backward layer of the network t [35].
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Figure 1. GRU artificial neural network structural unit.

Figure 2. Structural unit of the Bi-GRU neural network.

Unlike recurring networks of GRU and Bi-GRU architecture, CNN is a type of feed-
forward network that is not formed by cyclic connections and has no memory as input [34].
Compared to traditional classification methods, CNN can not only map more complex non-
linear relationships, but it also has good generalizability [38]. Aside from classifying, CNN
networks are widely used for resource extraction through the kernel, which is, in a nutshell,
a filter or matrix that slides over the input to perform the convolution operation and produce



Electronics 2022, 11, 693 5 of 13

a resource map, where different kernels generate different resource maps and all these
are merged, thus producing the convolution layer output [39]. CNN architecture neural
networks are composed of convolutional layers, pooling layers, and fully connected layers,
where convolutional layers and pooling layers are responsible for extracting the electrical
energy theft curves characteristics [38]. Figure 3, adapted from [40], presents these layers
organized in a generic way to compose the CNN network, and Equations (10) and (11)
define their behavior; where xi is the input of the i-th layer of convolution, yi is the output
of thei-th layer of convolution, y

′
is the output of the i-th max-pooling layer, fi is the

activation function and, finally, variables bi and wi are, respectively, the offset vector and
the weights of the i-th convolution layer [38].

yi = fi(xiwi + bi) (10)

y
′
= max(yi,j) (11)

Figure 3. Convolutional neural network structure.

3. Proposed Methodology

The present study proposes a BiGRU-CNN electric energy theft detection model-
constructed using a Bi-GRU layer followed by a CNN layer. The input data set for the con-
sumer energy demand historical series was manipulated to feed the Bi-GRU layer that then
process it to extract long-term time dependencies. These time-dependent characteristics,
which are represented by two hidden state vectors that have past and future information,
were introduced into the CNN layer so that significant local relationships are captured
through the convolution and pooling layers.

After this procedure, the dataset was structured in several dimensions which were
filtered by the flatten layer to become one-dimensional again before being introduced in
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the fully connected layer which labels electricity consumers as fraudulent or honest. The
structure of the proposed model is shown in Figure 4.

Figure 4. Flowchart of the proposed BiGRU-CNN.

3.1. Data

The database used in this work, also used in the work of [41], was provided by a
Colombian electricity supplier which cannot be disclosed due to confidentiality reasons.
The data encompass the actual electricity consumption of 462.433 users, where consumption
was measured, in kWh, monthly. To complement consumer information, the company also
provided a database with manual reviews carried out on all registered customers, as well
as anomalies found at the time of such reviews. During the manual inspection, several
abnormal consumption patterns were detected, the main causes being clandestine spliced
wires, bore meters, a previous connection to the measuring box, and measuring boxes
without a security seal. It is worth mentioning that other anomalies were found during
checks, although most of them are electric power theft related. Because users’ electrical
energy consumption pattern is already labeled as fraudulent or normal, neural networks
will be trained through supervised learning. The rating provided by the models will be
compared with the actual consumer class, making it possible to ascertain greater accuracy
and reliability on whether the proposed model is able to correctly label a customer as
fraudulent or honest. Evidently, most works on this topic found in the literature lack actual
consumer classification given the complex, laborious, expensive, and time-consuming
manual fraud checks, as [41] shows. To overcome this obstacle, all consumers are considered
honest with fictitious fraud data created to conduct training in a supervised manner. Both
ways seemingly create unreliable classification models due to lack of vital data.

3.2. Data Pre-Processing

Initially, the database was cleaned to eliminate incomplete data records and remove
irrelevant theft information from the users’ consumption curve. This pre-processing step
reduced the data from 462.433 to 314.023 users. It is worth mentioning that most of the
incomplete data were from “new” customers, people relocating (new rents), or new homes,
so it will have been necessary to develop and implement very specific algorithms to fill the
missing values. Those customers would present a very atypical load growth during their
first years before reaching a steady state. One way to fill the missing data would have been
to use existing “similar” information from other customers; however, this will probably
lead to populating our data with suppositions. Fortunately, the data set was big enough
that even having removing that chunk of data, the statistical impact was very low, so it was
decided to simply discard the missing information.

The new slashed database was inserted into a python programming language code
on Google Colab. After obtaining the users’ electrical energy consumption data by the
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program, the MinMaxScaler function of the sklearn pre-processing package was used to
normalize the data before feeding it into neural networks. Normalization was needed
because energy consumption data varies considerably, potentiality affecting the algorithm’s
performance during training and thus providing misleading ratings. Equation (12) shows
how data normalization was performed by the MinMaxScaler function. In this case, x is
the observation of the electrical demand in a time instant.

xnorm = (x− xmin)/(xmax − xmin) (12)

The pre-processed dataset contains 314.023 consumers. Of these, 240.774 (76.674%) do
not steal electrical energy, they are classified “label 0”. The remaining 73.249 consumers
(23,326%) do, and they are named “label 1”. The pre-processed dataset was fragmented to
create the training and test samples. The training sample comprises 80% of all consumers
and helps artificial neural networks adjust their respective internal parameters during
training. These parameters are evaluated in the test sample, represented by the remaining
20% of total consumers, to check whether they are effective in classifying theft occurrence
(label 1) or normal electricity consumption (label 0). The 20–80% ratio for training and test
samples is common in similar studies, as seen in [42]. To avoid biased neural networks
results, training and test samples have the same proportion of normal and fraudulent
consumers as the pre-processed Dataset, i.e., 76,674% and 23,326%. Figure 5 illustrates
these sample graphs, as well as their compositions.

Figure 5. Training and test samples composition.

3.3. Neural Networks

After pre-processing the users’ historical electrical energy consumption data, the time
series were transformed into a supervised machine learning problem. In other words, a
sequence of input and output pairs was created so that a decision could be made and then
compared to the correct output. The internal parameters of artificial neural networks are
modified during training by the Adam (Adaptive Moment Estimation) algorithm so that
the rate of correct network classifications is as high as possible. This algorithm was selected
since it has proven to be effective when performing prediction of fraudulent electricity
consumption [9]. The ten neurons in each of the two intermediate layers of all predictive
models have the rectified linear unit (ReLU) [43], Equation (13), as the activation function,
while the only neuron in the output layer has the binary cross-entropy activation function
that is responsible for classifying a consumer as fraudulent or honest [44]. Regarding the
CNN architecture layers of neural networks, the kernel size quantity was set to 6 and the
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number of filters was set to 8. The training of all artificial neural networks was performed
in 150 rounds with a batch size of 32.

f (x) = max(0, x) (13)

3.4. Comparison of Metrics

After network training, neural models were fed by consumer information contained in
the test sample to ascertain whether they can provide accurate answers. These predictions
were organized in a confusion matrix (Figure 6) to improve the ability to understand each
neural network’s individual performance regarding accurate classification of fraud or
normal electricity consumption.

Figure 6. Confusion matrix.

The confusion matrix illustrated in Figure 6 is composed of four classes, where the
ordinate axis represents the desired correct response, and the abscissa axis indicates the
neural network’s forecast. The true positive (TP) class encompasses the correct response
from the network to the event of interest. In this case, the network is right that a power
consumption fraud occurred. On the other hand, the false positive (FP) class corresponds to
the total of erroneous responses from the network to the event of interest, i.e., the network
erroneously predicted a fraud occurrence which was, in fact, normal consumption. The
true negative (TN) class, on the other hand, comprises the exact classification performed by
the neural network regarding the event of no interest, in this case, the network correctly
classifies an honest consumer. Finally, the false negative (FN) class presents cases in which
the network indicated no consumer fraud when, in fact, electricity was stolen.

The confusion matrix comprehensively represents the individual performance of each
of the prediction models with regards to fraudulent consumer classification. However, com-
paring the predictive performances of different models from these matrices is insufficient.
Thus, the following metrics are extracted: Accuracy, Precision, Recall, F1-score, and ROC
AUC. Accuracy indicates the number of hits in the neural network, correctly classifying
fraudulent and honest consumers. Precision is the reason predictions are indeed true when
it comes to fraudulent consumers, and all projections cast customers as fraudulent, even
when they were not. Recall, also known as sensitivity, is the ratio between the assertive
forecasts of fraudulent consumers and all consumers who stole electricity.

The weighted average of the precision and recall metric is defined as an F1-score.
Finally, the ROC AUC is represented by the area under the curve formed by the false
positive fraction on the horizontal axis, with the true positive ratio forming the vertical axis.
Other than calculating the AUC metric, the ROC curve is also used to define an optimal
threshold that can balance the ratio of true positive and false positive. Normally a default
threshold is set at 0.5.

All metrics indicate satisfactory results when close to 1 and low predictive results when
approaching 0-, which corresponds to the correct classification of fraudulent consumers.
Equations (14)–(17) define Accuracy, Precision, Recall, and F1-score metrics, respectively. In
this case TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (14)

Precision = TP/(TP + FP) (15)

Recall = TP/(TP + FN) (16)
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Accuracy = 2/(1/Recall + 1/Precision) (17)

4. Tests and Results

After training the neural networks through training samples, the internal parameters
were tested to verify their ability to generalize the same results for unprecedented data,
which are contained in the test sample. Figures 7–9 depict the confusion matrices for
individual results of several artificial neural networks. Additionally, to ease different
models’ comparison, Table 1 lists metrics based on each matrix’s values. Table 1 also
indicates the required simulation time used by each network to obtain those metrics.

Figure 7. Confusion matrix for MLP and RNN.

Figure 8. Confusion matrix for GRU and LSTM.

Figure 9. Confusion matrix for GRU and LSTM.

Table 1 shows that the MLP model performed the worst in correctly classifying a
consumer as fraudulent or honest when accounting for Accuracy, Recall, F1-Score, and ROC
AUC metrics. This is explained by the fact that this network is unable to extract the temporal
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dynamic behavior of the energy demand data from different consumers, since its structure
does not have information feedback devices. Since it does not process the temporality of
the users’ energy consumption data, the network has fewer parameters to modify during
training and, consequently, lower simulation time than the recurring networks.

Table 1. Comparison of Metrics.

Algorithm Accuracy Precision Recall F1-Score ROC AUC Time (min)

MLP 0.767 0.620 0.011 0.022 0.660 45.25
RNN 0.894 0.787 0.751 0.769 0.936 51.17
GRU 0.811 0.557 0.939 0.699 0.912 164.45
LSTM 0.901 0.736 0.897 0.809 0.946 157.47

BiGRU-CNN 0.929 0.885 0.801 0.841 0.966 224.55

The recurring GRU architecture network, on the other hand, had the worst precision
metric performance and the best recall metric performance. When the standard GRU
was used to create the proposed BiGRU-CNN model, the comparison metrics underwent
significant changes. This new network, formed from layers of different architectures with
the bidirectional engine, performed best in 4 of the 5 metrics, namely: Accuracy, Precision,
F1-Score, and ROC AUC.

These results demonstrate that the procedures performed in the standard GRU have
considerably increased its ability to correctly classify a user’s consumption as fraudulent
or honest. Furthermore, they show their superiority in relation to neural network models.
Their simulation time was longer than others, given the larger number of parameters
modified during training. Figure 10 shows the ROC curves of all neural models used to
calculate the AUC metric in Table 1, as well as the sweet spot that increases true positive
while decreasing the false positive ratio. With these coordinates, it is possible to determine
the G-mean that is later used to find the optimal threshold, responsible for improving the
networks’ classification power. The G-mean is given by the square root of the product
between the true positive rate (TPR) and the true negative rate (TNR)—the higher its value,
the better its predictive ability to classify [17]. Once the optimal threshold is obtained
from G-mean, the network can be retrained by setting this new value in the activation
function that is responsible for defining whether an energy consumption is fraudulent or
not, improving the prediction performance of the network. Table 2 shows the G-mean
associated with its ideal threshold.
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Figure 10. ROC curve of all neural networks.

Analyzing the ROC curves constructed from the classifications of the type of electricity
consumption users made by the neural networks, it is apparent that the MLP network
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curve is the closest to the curve that indicates an inefficient classification model. Regardless
of the chosen threshold, its classification performance will always be the worst when
compared to other models capable of processing temporal autocorrelations of electric
energy consumption. When observing the recurrent networks, it is easy to see that their
performances are similar, and the BiGRU-CNN model superiority is proven by the greater
distance to the model without classification ability curve.

Table 2. ROC curve comparison metric of all neural networks.

Algorithm Best Theshold G-Mean

MLP 0.236 0.607
RNN 0.186 0.874
GRU 0.605 0.864

LSRM 0.501 0.899
BiGRU-CNN 0.330 0.908

Big data applications will be coming to the power system, bringing large benefits
especially on the distribution level; however, the smart metering and communications
infrastructure necessary to implement those kinds of algorithms is still far away on the
horizon for most utilities across the world. In the meantime, utilities facing the need
for automated theft detection today need to rely on their current data, which is basically
limited to monthly energy billing information and manual inspections by sample. The
tool presented in this paper will help narrow the sample inspections, reducing the overall
cost of manual labor and increasing the return of investment on theft detection programs;
nonetheless, if there were more data available, for example private information from smart
metering infrastructure, and public data such as technical and commercial data from other
utilities, local socio-economic data, credit scores, among others, future iterations of this
kind of algorithms will benefit the power utility industry overall, and thus the service
offered to our customers.

5. Conclusions

The present work proposed the Bigru-CNN model to classify electricity users as
fraudulent or honest based on their consumption patterns. This classification is intended to
avail energy sector companies making decisions on whether to carry out manual inspections
of electricity consuming units.

The experimental results showed that feeding a Bi-GRU layer with the historical
series to extract its long-term temporal correlations, and then introducing these time
characteristics into a CNN layer so that local trends can be captured, proved to be efficient
when comparing Accuracy, Precision, F1-Score, and ROC AUC metrics with MLP, RNN,
GRU, and LSTM networks. To ensure that the proposed BiGRU-CNN model is effectively
superior to other consumer electricity theft classification models, future work should be
carried out altering the hyperparameters of neural networks, as well as the time series of
consumers who feed them.
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