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Abstract: This selective review explores biologically inspired learning as a model for intelligent
robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning
is discussed as a functionally relevant model for machine learning and intelligence, as explained
on the basis of examples from the highly plastic biological neural networks of invertebrates and
vertebrates. Its potential for adaptive learning and control without supervision, the generation
of functional complexity, and control architectures based on self-organization is brought forward.
Learning without prior knowledge based on excitatory and inhibitory neural mechanisms accounts
for the process through which survival-relevant or task-relevant representations are either reinforced
or suppressed. The basic mechanisms of unsupervised biological learning drive synaptic plasticity
and adaptation for behavioral success in living brains with different levels of complexity. The insights
collected here point toward the Hebbian model as a choice solution for “intelligent” robotics and
sensor systems.

Keywords: Hebbian learning; synaptic plasticity; neural networks; brain; reinforcement; sensory
processing; robot control

1. Introduction

The Hebbian synapse and synaptic learning rules [1] are the fundamental conceptual
basis of unsupervised learning in biological and artificial neural networks [2]. A synapse
refers to a connection between two neurons in a biological or artificial neural network,
where the neuron transmitting information via a synapse or synaptic connection is referred
as the presynaptic neuron, and the neuron receiving the information at the other end
of a synaptic connection as the postsynaptic neuron. The information propagation, and
its efficiency, of biological and artificial synapses is strictly self-reinforcing, following a
principle called self-organization, which is explained in further detail in Section 4.3. The
more a synapse is stimulated, the more effectively information flows through the connection,
which ultimately results in what Hebb [1] and subsequently others have called the long-term
potentiation (LTP) of neural connections. Synaptic connections that are no longer repeatedly
stimulated and, as a consequence, no longer self-reinforced will lose their information
propagation efficiency, which ultimately results in the long-term depression (LTD) of neural
connections. A schematic illustration of synaptic learning is shown below (Figure 1).
This selective review starts with a brief recall of the principles of Hebbian synapse-based
learning (Section 2). On this basis, specific examples of biological learning in vertebrates
and invertebrates (Sections 3 and 4) are then brought to the forefront to illustrate the
potential for bioinspired neural network models and self-organizing control of simple and
complex agentic functions of robots or other artificially intelligent system. Such functions
include rhythmic movement generation and control, goal-directed behaviors, task space
coding, sequential action timing, alternative event choice, and sensorimotor integration for
action. Such functions are then discussed using examples from current developments in
robotics (Section 5) to further clarify how converging sensory and reinforcement (reward)
learning can make a functional network as a whole capable of acquiring task structures and
self-organizing toward further learning. The conclusions include a summary table with
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references to specific models (with equations) of self-organization as a function of the type
of behavior (function), model organism (species), and level of complexity for “intelligent”
robot design architectures.
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Figure 1. Schematic illustration of synapses within a small neural network. Self-reinforcing (Heb-
bian) synaptic learning leads to the progressive increment of the synaptic weights (w) of efficiently
stimulated neural connections, which are thereby long-term potentiated. The connectivity of nonre-
inforced synapses weakens and, ultimately, becomes long-term depressed. The synaptic learning
rules are the fundamental conceptual basis of unsupervised reinforcement learning in biological and
artificial intelligence.

2. Biological Synapse: Adaptive Learning “from Scratch”

Any object of the physical world is defined by multiple features and properties such
as shape, texture, luminance, color, weight, taste, sound, or function. Each such feature is
represented via different modalities in interconnected cortical regions of the mammalian
brain [2–4]. The brains of living systems learn about such physical regularities “from
scratch”, i.e., without any prior knowledge, through unsupervised mechanisms. The
Hebbian learning principles generate distributed multimodal brain representations, as
clarified further below, in networks of functionally connected neurons, each contributing to
specific sensory and/or motor processes related to an object and generating short-range
representations in dedicated neural networks (populations) that interact with each other at
long-range spatial scales.

2.1. From Single Synapses to Brain Networks

According to Hebb [1], each type of cell assembly has a functionally specific connectiv-
ity, thereby acquiring the status of a functionally dedicated neural network selective for a
particular sensorial or cognitive function, or a particular type of information. The propa-
gation of information during synaptic learning may be event-driven [5], clock-driven [6],
or a combination of both [7,8]. The general basis of all computational development in this
regard is a simplified synapse model, where the spike input will trigger a synaptic electric
current into the postsynaptic neuron. The Hebbian learning principle in its most general
form is expressed in mathematical terms as

∆wij ∝ vivj, (1)

where wij refers to the change of synaptic weight between the presynaptic neuron i and
the postsynaptic cell j, and v represents the activities of those neurons, respectively. Any
network of strongly connected neurons in a functionally dedicated neural network or
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cell assembly may communicate with another functionally dedicated network to generate
multimodal brain representation. According to Hebb [1], the combined activity of function-
ally specific networks in the mammalian brain explains the full complexity of cognitive
representation (“intelligence”, “intelligent processes”) on the basis of a from-simple-to-
complex processing hierarchy. Functionally connected neurons act as a functional unit,
with the activation of a fraction of that unit leading to the activation of the whole unit.
When no longer activated, the weight of synaptic connections is weakened and, ultimately,
the functional connectivity extinguishes as a result of the mechanisms of LTP and LTD
that govern biological neural learning. LTP and LTD are triggered by the timing of neural
signals (spikes) in the short-range spatial regime governing interactions between adjacent
neurons. The hypothesis that the same timing principles apply to the long-range regime
of functional interaction between neurons across distant cortical areas is supported by
functional neuroanatomy and psychophysics [3,4].

2.2. Timing of Neural Signals

The timing of neural signals in a network [5–8] determines whether neural connections
are reinforced (excitation) or suppressed (inhibition). When a presynaptic signal precedes a
postsynaptic signal, potentiation of the synapse resulting in a stronger weight w is observed,
with repeated strengthening ultimately leading to long-term potentiation (LTP); a repeated
reverse temporal signal order weakens synaptic strength and, ultimately, leads to long-
term depression (LTD). Because of the absence of explicit goals, correction functions, or
prior knowledge, Hebbian synaptic learning is categorized as unsupervised learning. The
information propagation in such networks may be event-driven [5], clock-driven [6], or a
combination of both [7,8]. In self-organizing reinforcement learning, the weight w of an
eligible synapse c changes in time t with the reinforcement signal R.

w(t) = R(t) × c(t), (2)

where R(t) is the “reward” signal at a given moment in time t. Starting from these basic
functional principles, LTP and LTD promote increasingly effective functional organization
in neural networks such as those found in biological brains. Neural encoding therein is
to represent information from the physical world, such as the direction of object or limb
movement, in the activity of a neuron (spike activity, firing rate). Information decoding is
the reverse process of interpretation of neuronal activity and its translation into electrical
signal for actuators (such as muscles, digits, or limbs). The biological brain encodes
information in two continua corresponding to physical space and neural space. The
physical space may be the physical properties of objects such as their color, shape, or
temperature; the neural space consists of functional properties of a neuron such as firing
rates and peaks. In binary coding, neuron models take two values corresponding to on/off
states while ignoring the timing and multiplicity of spikes. Binary coding [9] converts
the spike timing of neurons during specific time intervals into binary codes and is, for
example, used to represent categories during learning [10]. Rate coding, on the other hand,
is based on the coding of intensity of sensory stimuli [11]. Often a population or assembly
of neurons is used as a whole to encode specific information, a strategy that is consistent
with that of brains in living agents, where specific functions are controlled by a specific
class of neurons.

2.3. Reinforcement and Extinction

One of the ambitions of biologically inspired neural coding in models for robot control
is to characterize and provide a plausible brain model for the behavioral neuroscience of
reinforcement and extinction [12,13].

These are phenomena in which a behavior that has been acquired through reinforce-
ment in operant learning decreases in strength until its full extinction when the outcome or
event that reinforced it is no longer occurring (Figure 2). The mechanisms of reinforcement
and extinction appear to involve three functionally identified regions of neural circuitry
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formed by the amygdala, the prefrontal cortex, and the hippocampus [14]. The remainder
of this article discusses the principles of reinforcement and extinction in biological learn-
ing using examples. These were selected on the basis of the self-organizing mechanisms
brought to the fore in the work cited. How their implementation in artificial neural network
architectures can promote the design of intelligent robots and sensor technology is then
made clear. An essential ground condition of self-organizing intelligence is the functional
plasticity of neural networks.
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Figure 2. Phenomena of reinforcement (left) and extinction (right) account for all learning in brain
and behavior. A system response (SR) to a conditional stimulus (CS) steadily reinforced by a specific
outcome (O) or “reward” during learning leads to a consolidated functional network connectivity
(left). Such connectivity decreases in strength until its full extinction when the outcome that initially
reinforced it is no longer delivered (right).

2.4. Functional Plasticity

Throughout the process of synaptic learning and memory consolidation, structural
changes driven by activation of one or several neurotransmitter receptors take place in the
target neural networks [15]. These neurobiological changes are the basis of all functional
plasticity. The most important excitatory neurotransmitter system in this respect would
probably be the glutamatergic system [16], since its involvement in persistent forms of
synaptic plasticity is well recognized [17]. After the activation of neurotransmitter receptors,
several downstream signals are triggered. The most important signal for synaptic learning
is calcium, which has the ability to interact with the actin cytoskeletons of dendrites and,
through this interaction, regulates structural and, as a consequence, functional synaptic
plasticity [18]. After synaptic activation, the flow of calcium ions (Ca2+) into cells, either
through gated calcium channels or via internal reservoirs, results in complex series of transi-
tory oscillatory signals [19]. Such signaling complexity needs to be transformed into stable
and persistent messages, which explains the need for self-organizing structural change in
biological neural networks [20]. In a relatively constant environment, animals may express
variable behaviors or motor actions as a consequence of internal drives and motivations.
Such actions are driven by adaptive pressure, i.e., the need to survive in a changing en-
vironment, and arise from the dynamic properties of so-called central networks, i.e., the
control structures of a given function, behavior, or agency, in a living brain. Such adaptive
processes may result in stereotyped behaviors and action patterns or in highly variable
and goal-directed choice behaviors [21–25]. Feeding, sexual, and aggressive behaviors in
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invertebrates and vertebrates are goal-directed actions relying on lesser or higher degrees
of functional complexity in which internal “decisions” to act determine the spontaneous
expression of survival relevant actions and activity patterns [25–29]. “Decision to act” here
implies that the neural network has structural and functional mechanisms which enable the
selection of a particular behavior, action, or activity pattern from several variants thereof.
Such mechanisms internally represent the conditions for external expression in the form
of action. The network mechanisms that govern this kind of internal decision making
are subject to plastic changes by self-organization, i.e., through regulation by changes in
sensory inputs from the outside world associated with the positive (reward) or negative
(punishment) consequences of a specific action, behavior, or response [30–32]. Sensory
feedback in associative learning enables memory representation and modification of in-
ternal motivation [21–32]. With increasing structural and functional complexity of neural
network connectivity, internal feedback mechanisms become increasingly essential for de-
termining the relevance (“value”, “meaning”) of an external context for the production of a
specific response or activity pattern [33–35]. Research data pointing toward specific neural
structures implicated in such internal, behaviorally relevant decision making in living
organisms are available [36–39]. However, the functional principles of self-organization
that account for the capability of a neural network or a set of multiple inter-connected
networks to generate and organize neuronal activity for coherent action-in-context selec-
tion, spontaneously and at different levels of complexity, have remained the holy grail
in functional and computational neuroscience. A related and still unresolved question is
how internal decision-making processes are regulated by further learning and long-term
memory changes.

3. Invertebrate Models of Adaptive Learning

Invertebrate mechanisms of learning and memory illustrate that the biological brain
mechanisms that control learning have a long evolutionary history. Living beings may
be conceived as evolving, developing agents with a need to cope with environmental
uncertainty. Most of the current knowledge of the central nervous system (brain) to spon-
taneously trigger motor behavior and actions that follow a specific pattern stems from
the analysis of rhythmic, largely stereotyped, behavior of invertebrates. Limb and body
movements (locomotion) and respiratory activities (breathing patterns) are examples of
such stereotypes. So-called “rhythmogenic networks” or “central pattern generators” have
been proposed to account for the synaptic and intrinsic membrane properties of neurons
governing stereotypic behaviors [40–44]. Ongoing operations can be dynamically regulated
or modulated in such networks by sensory input, but their functional variability is not
necessarily determined by internally represented motivational components [45,46]. Inverte-
brate neural network models provide a mechanistic account for this kind of “low-level”
learning, with and/or without internal representation [25–31]. Insights into the functional
design and properties of motor networks able to autonomously elaborate action patterns
and context setting for their expression [47] mainly stem from the neuroscience of inver-
tebrate organisms [24–30], suggesting model circuits for low-level command processes
governing invertebrate behavior(s). Experimental and model data have allowed character-
izing the synaptic organization, cellular properties, and dynamic network organization in
invertebrates including mollusks [48–50].

3.1. Motor Learning and Memory

The sea snail Aplysia is among the most widely used ‘model organisms’ in the cellular
biology of low-level motor learning and memory. For his contributions to this field of
discovery, Eric Kandel [51] shared the 2000 Nobel prize for Physiology or Medicine. Aplysia
has two functionally identified motor neurons (Figure 3); the large size of these neurons
correlates with the sensory areas they connect to, and each neuron can act as a single
integrative center for the control of multiple motor behaviors. This species, thus, exploits
a distinct strategy from others where complex tasks are controlled by several thousands
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of neurons. Aplysia can develop both non-associative and associative forms of long-term
memory [48] needed for all fundamental learning (habituation, sensitization, classical and
operant conditioning). The cellular and molecular mechanisms of long-term plasticity in
Aplysia have many parallels in humans, which suggests a profound evolutionary conser-
vation of the most elementary events underlying all learning and memory [51]. This has
important implications for biologically inspired artificial intelligence for robot movement
control, as made clear later. Until recently, learning and memory in invertebrate organ-
isms were believed to be mediated by relatively simple presynaptic mechanisms. New
experimental evidence from research using Aplysia indicates that the previously defended
distinction between invertebrate and vertebrate synaptic mechanisms of learning is invalid.
Learning in Aplysia cannot be explained in terms of presynaptic mechanisms only, given
that NMDA receptor-dependent LTP appears to be necessary for classical conditioning in
Aplysia [30]. Moreover, modulation of postsynaptic ionotropic glutamate receptor traffick-
ing underlies behavioral sensitization in this snail [52]. Exclusively presynaptic processes
drive relatively brief memory in Aplysia; more persistent memory forms in invertebrates are,
therefore, likely to be mediated by postsynaptic processes as in vertebrates or by presynap-
tic mechanisms that depend on feedback signals [52,53], which results in the same outcome.
In short, the neuronal underpinnings of variable motor strategies employed by simple
living organisms such as invertebrates already depend, at least partly, on autonomous
neural mechanisms, i.e., self-organization. The structural and functional properties of the
networks mediating invertebrate motor activity spontaneously select external conditions
for the expression of distinct, sometimes opposing, actions [48,54–57]. Invertebrate neural
networks are capable of driving extinction learning [52–58], which relates to the ability to
update previously learned information by integrating novel and, in essence, contradictory
information. Such relearning has an important adaptive function and relevance for artificial
intelligence design approaches in robotics.
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Figure 3. Snapshot view of the neuroanatomy of Aplysia central nervous system. This invertebrate
exploits a distinctly different coding strategy compared with higher-order species, where behavior is
controlled by several thousands of neurons. In Aplysia, synaptic actions attributed to neural activities
governing positive and negative responses in feeding behavior are produced by large spontaneously
active motor neurons (M), of which two have been functionally mapped in the cerebral ganglia.
These motor neurons have an unusually large soma and act as multi-action interneurons, generating
inhibitory and/or excitatory synaptic potentials in connected neurons linking the buccal to the
abdominal ganglia. At high-frequency firing rates during feeding behavior, the synaptic potentials
may convert from excitatory to inhibitory [52,53].
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3.2. Avoidance and Approach

Insect models [56] have been exploited to shed light on fundamental processes of
memory formation and memory update in behavioral processes of attraction and aversion
producing alternative choice responses [57,58].

Fruit flies can learn to associate an odor stimulus with a positive or negative con-
sequence, such as food reward or electric shock punishment [59–61]. In the training
phase, flies are typically exposed to two odors (differential conditioning) where one odor
is perceived alone, whereas a second odor is presented together with either reward or
punishment [59]. Once an association has formed between a stimulus and its consequence
(reward, punishment), the learned anticipation of reward or punishment can be observed in
a memory test that enforces a binary choice behavior (approach or avoidance) to positively
and negatively reinforced stimuli [61]. A single learning trial [61,62] can be sufficient to
form a stable memory. The so-called prediction error theory [57] describes a basic theoreti-
cal concept in the field of classical conditioning. It accounts for the fact that the efficacy
of learning is determined by the discrepancy (or error) between the expected and the
received reinforcement (reward or punishment). Re-exposing flies to a conditional stimulus
(odor) after successful training in the absence of positive or negative reinforcement leads
to a reduction in the previously learned behavior, a phenomenon called extinction learn-
ing [57,58,63–69], which is observed across invertebrate and vertebrate species. According
to prediction error theory, extinction learning is driven by the repeated mismatch between
the expected outcome (reward or punishment) of the initial learning (conditioning) phase
and a different and unexpected new outcome, i.e., the absence of either positive or negative
reinforcement, for example.

3.3. Adaptation to the Unexpected

In humans and in robots, extinction learning is of high relevance for behavioral
adaptation to the unexpected. Such would include the ability to choose an alternative
trajectory when the programmed one presents an unexpected obstacle, for example. Data
from conditioning experiments suggest that two parallel but opposing memory traces
coexist in the functional neural network architectures of biological reinforcement and
extinction learning [70–76]. A minimalistic model of such circuitry has been proposed
recently [74] to account for classical appetitive and aversive conditioning with memory
extinction. This model is tailored to existing anatomical data, with two circuits of critical
importance that exploit highly plastic synaptic connections between principal neurons
(PN), functionally identified Kenyon cells (K), essential for olfactory learning and memory
facilitated by dopamine-driven plasticity [72–75] of their signaling in response to odors,
and functionally identified output neurons (ON) in separate and mutually inhibiting
reward (attraction) and punishment (repulsion) learning pathways. Neuromodulation
through recurrent network connections and the plasticity thereof permit implementing a
simple mechanism that generates testable predictions in the temporal domain for the rapid
encoding of associations of the conditioned stimulus with a reward or a punishment in
single-trial learning (Figure 4). Each PN of the network model is activated at a random rate
drawn from a uniform distribution within the range between 0 and 1. PNs are connected
to K neurons via a first synaptic weight matrix (W1); each connection has a fixed synaptic
weight. Activation of the K vector in the next layer results from the matrix product of the
PN population vector and the respective weight matrix W1. K neurons are fully connected
to the ON via a second weight matrix (W2). With all synaptic weights initially set to 0.01,
the excitatory input to ON4 and ON1 mediating negative reinforcement results from a
summation of inhibitory and excitatory input

ON4 = ON4+ + ON4−, (3)

ON1 = ON1+ + ON1−, (4)
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whereas, for ON3 and ON2 mediating positive reinforcement, the activation rate is solely
determined by excitatory input. KPOS and KNEG neurons receive excitatory feedback
from ON4 and ON1 neurons, respectively. Reinforcing stimuli have an effect on both. A
rewarding, unconditioned stimulus (positive reinforcement) generates excitatory input
to the POS neurons while excitatory feedback from ON1 to the NEG neurons is partially
suppressed. Conversely, a punishing, unconditioned stimulus (negative reinforcement)
generates excitation of NEG neurons, as well as the partial suppression of excitatory input
from ON4 to the POS neurons. The complete model and equations for all processing stages
are given in [74].
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Figure 4. Invertebrate neural network model inspired by [74] for olfactory coding, olfactory memory
formation during the negative or positive reinforcement of odors (reinforcement learning), and
extinction learning when positive or negative reinforcement is no longer delivered. The neural
network architecture and its functional properties account for transitions between approach and
avoidance behaviors, and vice versa, in response to odors during extinction learning. The network
consists of three fully connected functional layers of principal neurons (PN), reward (POS), and
punishment (NEG) coding dopaminergic Kenyon neurons (K), and output neurons (ON), representing
the three major stages of the olfactory pathway in Drosophila.

Similar neural network models based on a predictive form of Hebbian synaptic plas-
ticity [75] account for a wide range of experiments on insect learning in uncertain envi-
ronments including risk aversion. The predictive Hebbian model uses neuromodulatory
influences to bias specific actions and to control synaptic plasticity. The neural substrates of
prediction and reward [76] provide model accounts that have been in behavioral simula-
tion [74–77].

4. Vertebrate Models of Learning for Cognitive Control

Evolution and individual brain development are open-ended processes of information
increase and, as a consquence, information processing capacity [77], where an agent’s
capabilities of learning and acting, i.e., the level of agency, represent a functional compro-
mise between stability and specificity, on the one hand, and the anticipation of external
(environmental) change, on the other. Unsupervised reinforcement learning therein is a
universal mechanism, widely used to explain behavior and behavioral control. It accounts
for the lower-level adaptive learning in invertebrates illustrated in Section 3, and the higher-
level learning for cognitive control in vertebrates including the nonhuman and human
primate [78–89]. In vertebrate species, reward (reinforcement) learning consists of an agent
learning specific values associated with specific states that constitute a so-called task state
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space [80–89]. The agent then uses the learnt knowledge to control the multiple-alternative
choice of actions likely to lead to desired (reinforced) outcomes [79–82].

4.1. Task State Learning and Control

It has been proposed that neural networks in the mammalian orbitofrontal cortex [83–88]
encode task states and task state spaces [82] during reinforcement learning. How the
OFC acquires and stores this kind of information is not well understood. Neural network
hypotheses and models [79–92] have attempted to propose and simulate cortical candidate
mechanisms inspired by known functional properties of the primate brain. Neural network
models based on reservoir computing represent a suitable approach for encoding task state
information during reinforcement learning [79–82]. Reservoir networks [82] exhibit hetero-
geneous and dynamic activity patterns that can be exploited (Figure 5). Most reinforcement
learning models account for human or animal behavior whilst assuming that the agent
knows the task structure; yet, in the case of real agents (animals, humans, robots), the task
structure needs to be learnt. It is critical for such a network to receive reward information as
part of its input and, just as the orbitofrontal cortex receives converging sensory and reward
inputs, the network is able to acquire task structure and support reinforcement learning
by encoding combinations of sensory and reward events [81–83]. The network is based on
the principles of a two-stage decision task where the agent (primate, robot) has to choose
between two options A1 and A2. Their choices then lead to two intermediate outcomes
B1 and B2 with different fixed probabilities. Choosing A1 is more likely to lead to B1, and
choosing A2 is more likely to lead to B2. The final reward associated with a given choice is
contingent only on the intermediate outcomes, and this contingency is reversed across trial
blocks. Thus, the probability of getting a reward is higher for B1 in one trial block, and then
becomes lower in the next while the probabilistic association between initial choices and
intermediate outcomes never changes. The learning agent is not informed of the structure
of the task and has to figure out the optimal choice response by tracking not only the final
reward outcomes but also the intermediate outcomes. Further details, in the framework
of a self-organizing neural network model for state encoding and reward association, can
be found in [81]. The work described therein makes a compelling model case for the
habitual process of reinforcement learning in interaction with specific goal-directed aspects
by showing that such an interaction need not be coordinated by external arbitration. The
principle of self-organization [81,82] plays an important part to such effect, as clarified later
with regard to unsupervised control of robot and sensor learning.

Thus, biological learning algorithms have the possibility to resort to internal processing
hierarchies in the formation of action sequences for habit learning and goal-directed actions,
on the one hand, and the habituated sequencing of actions, on the other, through excita-
tory and inhibitory brain-inspired mechanisms [80–94]. This accounts for so-called event
coding [81,84] during reinforcement learning in line with experimental findings [78–81].
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Figure 5. Cortical neural network model simulating reward (R) and non-reward associations with
alternative choice decisions (A1, A2) leading to different consequences (B1, B2) that have equal
probabilistic weight but change between trial blocks. A state-encoding layer between input and output
simulates the excitatory and inhibitory neural mechanisms generating the conditional encoding
(internal representation) of reward versus non-reward contingencies associated with a given choice
response (decision) during reinforcement learning.

4.2. Memorizing Temporal Order

Remembering the temporal order of a sequence of events is easy for humans and most
mammals in everyday life. The underlying neuronal dynamics are self-organizing, as illus-
trated in models inspired by functional properties of the primate brain [2,3]. Overt human
behavior and its full expression proceed on a timescale of seconds or minutes for longer
tasks [95], which appears to contrast with the ultrafast millisecond timescale of neuronal
processing in the primate brain. Sequence learning (Figure 6) in neural networks has been
a model in terms of finely tuned temporal firing activities enabling the compression of slow
behavioral sequences down to the millisecond timescale, which is that of synaptic plasticity.
Mathematical analysis and computer simulations have produced the phenomenon of phase
precession [95–99]. Within critically short synaptic learning windows, phase precession was
found to improve temporal-order neural network learning [98,99]. Putative mechanisms
for linking the millisecond timescale of synaptic plasticity to the slow timescale of behavior
relate induction times of synaptic plasticity to spike-timing-dependent plasticity, a specific
form of synaptic plasticity, taking into account the temporal order of presynaptic and post-
synaptic spiking, on the one hand, and the slower firing rates of place cells [97–99], a specific
class of location coding neurons, on the other. Such neurons start firing in specific patterns
when an animal visits certain learned locations in its familiar environment. A ‘learning
window’ constitutes the temporal intervals at which presynaptic and postsynaptic activities
induce synaptic plasticity during learning, and model accounts have simulated precisely
timed neural activity generated by phase precession, i.e., the successive across-cycle shift
of from-late-to-early spike phases by comparison with a background oscillation [98]. Phase
precession allows for a temporal compression of a sequence of behavioral events from
the timescale of seconds to that of milliseconds [99–101], matching the widths of generic
spike-timing-dependent plasticity (STDP) learning windows [102–104].
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Figure 6. Encoding of spatial sequences in the mammalian brain through neural mechanisms of
temporal compression, as described earlier [98,99]. The place fields (top), corresponding to oscillatory
neural activities of place cells in the hippocampus, may spatially overlap, an important condition for
network learning of trajectories.

The processes of synaptic plasticity are described activity-dependent alterations of
synaptic transmission efficiency (functional plasticity) resulting from or accompanied by
changes in the structure and number of synaptic connections (structural plasticity). In-
formation storage for memory represention is highly influenced by activity patterns of
neurons and networks the timing of their firing activity. Both determine the plasticity
potential of neurons by generating changes in their input-output characteristics. Excellent
overviews of these synaptic mechanisms, from molecules to neural circuit integration, are
provided in [98,99]. Precisely timed integration of spatial locations and the trajectories
linking them has been accounted for by plastic mechanisms in the hippocampus, where
overlapping place cell activities and their subsequent temporal compression determine the
time windows for spike-timing-dependent synaptic plasticity (STDP). Detailed mathemati-
cal accounts for the putative synaptic learning rules in such models are provided in [98–102].
These examples illustrate how the network representation of action and event sequences
is formed, modified, and modified again in time by the self-organizing mechanisms of
synaptic learning and plasticity [103–105].

4.3. Self-Organization

Biological learning is, as highlighted above using selected examples from invertebrates
and vertebrates, by definition self-organizing. On this basis, the brain representation of
agentic experience is generated by groups of highly interconnected neurons called cell
assemblies in both invertebrate and vertebrate learning. In higher-order learning, allocation
and storage of information in connected circuitry operate on the basis of synaptic weight
adaptation in different types of synapses, networks, and functionally connected assemblies
of networks. Synaptic plasticity is the basis of all cognition and memory [2,3]. While mem-
ory allocation is sometimes associated with the synaptic changes at feedforward synapses,
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storage with the adaptation of recurrent connections most likely involves both [103–105].
The functional principle through which memory allocation and storage is achieved, and
the adaption of different synapses and networks involved is coordinated allows for reli-
able representation of multiple memories without disruptive interference between. This
functional principle is that of self-organization [105–107]. As discussed in full detail else-
where [106], there are seven key properties of self-organization in vertebrate brain systems:
(1) modular connectivity, (2) unsupervised learning, (3) adaptive ability, (4) functional
resiliency, (5) functional plasticity, (6) from-local-to-global functional organization, and
(7) dynamic system growth. They are derived from insights in neurobiology, cognitive
neuroscience, physics, and, in particular, Grossberg’s [2] adaptive resonance theory (ART),
which provides a mechanistic, mathematically supported, account of how self-organization
achieves stability and functional plasticity while minimizing structural system complex-
ity. The principle is exploited in Kohonen’s [107] self-organizing map, a computationally
parsimonious example of self-organizing, brain-inspired artificial neural network (ANN)
recently employed in simulations of brain-like sensory learning for automatic (sensor or
robot driven) detection of microscopic changes in physical environments [108–112]. The
SOM has a functional architecture that formally corresponds to the nonlinear, ordered,
smooth mapping of high-dimensional input data to representations in terms of a regular,
low-dimensional array [107]. Any set of input variables can be defined as a real vector
x of n-dimension. A parametric real vector mi of n-dimension is associated with each
representation in the SOM, with the vector mi being a model, and the SOM an array of
model representations. Assuming a general distance measure between x and mi given by
d(x,mi), the map of an input vector x on the SOM array is then defined as the representation
mc that best matches x yielding the smallest d(x,mi). During unsupervised learning, an
input vector x is compared with all the mi to identify mc. Euclidean distances ||x–mi||
define mc. Models topographically close in the map, up to a certain geometric distance,
indicated by hci, activate each other to learn from their joint input x. This results in a local
relaxation or smoothing effect on the models in the neighborhood and leads to global
ordering. Self-organized (SOM) learning is inspired by the Hebbian principles summarized
in Equations (1) and (2). SOM learning can be expressed in the form

m(t + 1) = mi(t) + α(t)hci(t)[x(t)− mi(t)], (5)

where t = 1, 2, 3 . . . represents an integer, the discrete-time coordinate hci(t) is the neigh-
borhood function, a smoothing kernel defined across the ma which converges toward zero
with time, and α(t) is the learning rate, which also converges toward zero with time. This
particular form of unsupervised learning uses the winner-take-all principle, where each
image input vector x is matched to its best matching model within the map mc. Simi-
larly [105], recent network simulations and phase space analyses have revealed that the
interplay between long-term synaptic plasticity and homeostatic synaptic scaling simul-
taneously self-organizes the adaptation of feedforward and recurrent synapses such that
a new stimulus forms a new memory wherein different stimuli are assigned to distinct
cell assemblies. The resulting dynamics can reproduce experimental in vivo data relative
to neuronal excitability and network connectivity, as well as their influence on memory
formation. Thus, it is made clear that the few fundamental Hebbian synaptic mechanisms
follow self-organizing principles for plastic and, at the same time, stable representation in
biological neural circuitry.

4.4. Toward “Intelligent” Robotics

The Hebbian learning principles are a rich source inspiration for the design of biologi-
cally plausible lower- and higher-level, multifunctional control in robotics. On the basis
of functionally identified neurons and connectivity principles in combination with biome-
chanical parameters driving multifunctional behavior, testable experimental hypotheses
are generated, which then in return clarify the biological mechanisms and purposes of mul-
tifunctionality. A biologically relevant control framework is likely to be computationally
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efficient in the direct, real-time control of artificial robotic systems. At the same time, these
systems can provide deeper functional insights into the biological system that serves as
the model, building a bridge between systems neuroscience and robotics. The Hebbian
synaptic learning model and its implementations account for neuromodulatory effects in
invertebrates and vertebrates, as shown above using examples. Elementary (reflex-like)
learning in invertebrates can be directly exploited for the control of robot motor learning in
the absence of reward principles that account for motivational representation. As shown
above using examples from invertebrates and vertebrates, the control of high-level learning
for precisely timed and motivated movements and actions, including the avoidance of
obstacles and choice of pertinent alternatives in response to the unexpected, relies on
synaptic plasticity and the neural substrates of reinforcement learning through punishment
or reward. The functional principle of self-organization offers computational solutions for
unsupervised learning algorithms toward autonomous robot function and control. One of
the advantages of the biological models reviewed above is that they all can be tested and
have been in behavioral simulations. Not all their aspects are currently exploited in robotics
for developing new functional architectures. How this may become possible in the near
future is illustrated in the next section by discussing examples of current developments in
“intelligent” robotics.

5. Current Developments in Brain-Inspired Robot Control

Multifunctional control in real time is a critical target in intelligent robotics. Combined
with behavioral flexibility, such control enables real-time robot navigation and adaption
to complex, often changing environments. Multifunctionality is observed across a wide
range of living species and behaviors. As made clear above, even seemingly simple
organisms such as invertebrates demonstrate multifunctional control. Living systems rely
on the ability to shift from one behavior to another, and to vary a specific behavior for
successful action under changing environmental conditions. Truly multifunctional control is
a major challenge in robotics. A plausible approach is to develop a methodology that maps
multifunctional biological system properties onto simulations [113] to potentiate rapid
prototyping and real-time simulation of solutions (control architectures). The resulting
controllers can then be tested and improved accordingly by comparison with the original
biological system. Their relative effectiveness as simulated controllers of an artificial device
(robot) is then evaluated on the basis of clear criteria (benchmarks). Below, some examples
of current development in this direction, inspired by biological learning mechanisms
discussed in the previous sections, are highlighted.

5.1. Repetitive or Rhythmic Behavior

Hybrid model frameworks combining synaptic plasticity-dependent neural firing with
simple biomechanics at speeds faster than real time illustrate how invertebrate learning
directly inspires “intelligent” robotics [114,115]. Such frameworks exploit a multifunctional
model of Aplysia feeding rhythms, which are capable of repeatedly reproducing three types
of behavior: biting, swallowing, and rejecting. These simulate behavioral switching in
response to external sensory cues. Model approaches incorporate synaptic learning and
neural connectivity in a simple mechanical model of the feeding apparatus [116], with
testable hypotheses in the context of robot movement control. As explained in detail in
Section 3.1, the neural networks that govern feeding in Aplysia include motor neurons and
cerebral–buccal target interneurons.

Learning-induced synaptic plasticity in such modular circuitry controls behavioral
switching (Figure 7), as recently simulated in biologically inspired model approaches di-
rectly exploitable for multifunctional robot control. For the model equations, the reader is
referred to [116–120]. This modeling framework can be extended to a variety of scenarios
for multifunctional robot movement and rhythm control, and it has several advantages. It
allows rapid simulation of multifunctional behavior and it includes the known functional
circuitry and simplified biomechanics of peripheral anatomy. The direct relationship with
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the underlying neural circuitry makes it possible to both generate and test specific neurobi-
ological hypotheses. The relative simplicity of the network (Figure 7) makes it attractive
as a basis for robot control. Unlike other artificial neural network architectures, synthetic
nervous systems are explainable in terms of structures directly informing the functional
system output [121–125]. Although the connections and trained weights of other artificial
neural networks may provide similar control capabilities, these, unlike synthetic nervous
systems, have to be trained on large datasets. The very strength of synthetic nervous sys-
tems is that they use a restricted, functionally identified set of biological neuron dynamics,
thereby generating robust control without the need for additional training [125]. Neural
network learning-inspired robotics include reactive systems emulating reflexes, neural oscil-
lators to generate movement patterns, and neural networks for filtering high-dimensional
sensory information [126]. To such effect, biologically motivated neural-network-based
robot controllers, inspired by control structures in the sensory brain, where information is
routed through the network using facilitating dynamic synapses with short-term plasticity,
have been proposed [123–128]. Learning occurs through long-term synaptic plasticity
using temporal difference learning rules to enable the robot to learn to associate a given
movement with the correct, i.e., appropriate as defined, input conditions. Self-organizing
network dynamics [127,129] provide memory representations of the environments that the
robot encounters.
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5.2. Sensorimotor Integration

Recent progress in neuromorphic sensory systems which mimic the biological receptor
functions and sensorial processing [129–132] trends toward sensors and sensory systems
that communicate through asynchronous digital signals analogous to neural spikes [127],
improving the performance of sensors and suggesting novel sensory processing principles
that exploit spike timing [128], leading to experiments in robotics and human–robot in-
teraction that can impact how we think the brain processes sensory information. Sensory
memory is formed at the earliest stages of neural processing (Figure 8), underlying percep-
tion and interaction of an agent with the environment. Sensory memory is based on the
same plasticity principles as all true learning, and it is, therefore, an important source of
intelligence in a more general sense. Sensory memory is consolidated while perceiving and
interacting with the environment, and a primary source of intelligence in all living species.
Transferring such biological concepts into electronic implementation aims at achieving
perceptual intelligence, which would profoundly advance a broad spectrum of applications,
such as prosthetics, robotics, and cyborg systems [129]. Moreover, transferring biologically
intelligent sensory processing into electronic implementations [130–132] achieves new
forms of perceptual intelligence (Figure 8). These have the potential to profoundly advance
a broader spectrum of applications in robotics, artificial intelligence, and control systems.
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novel forms of “perceptual intelligence”.

These new, bioinspired systems offer unprecedented opportunities for hardware archi-
tecture solutions coupled with artificial intelligence, with the potential of extending the
capabilities of current digital systems to psychological attributes such as sensations and
emotions. Challenges to be met in this field concern integration levels, energy efficiency,
and functionality to shed light on the translational potential of such implementations.
Neuronal activity and the development of functionally specific neural networks in the
brain are continuously modulated by sensory signals. The somatosensory cortical net-
work [133] in the primate brain refers to a neocortical area that responds primarily to
tactile stimulation of skin or hair. This cortical area is conceptualized in the current state
of the art [133–136] as containing a single map of the receptor periphery, connected to a
cortical neural network with modular functional architecture and connectivity binding
functionally distinct neuronal subpopulations from other cortical areas into motor circuit
modules at several hierarchical levels [133–136]. These functional modules display a hi-
erarchy of interleaved circuits connecting, via interneurons in the spinal cord, to visual
and auditory sensory areas, and to the motor cortex, with feedback loops and bilateral
communication with the supraspinal centers [135–137]. This enables ’from-local-to-global’
functional organization [134], a ground condition for self-organization [106,107], with plas-
tic connectivity patterns that are correlated with specific behavioral variations such as
variations in motor output or grip force, which fulfills an important adaptive role and
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ensures that humans are able to reliably grasp and manipulate objects in the physical
world under constantly changing conditions in their immediate sensory environment.
Neuroscience-inspired biosensor technology for the development of robot-assisted mini-
mally invasive surgical training [138–143] is a currently relevant field of application here
as it has direct clinical, ergonomic, and functional implications, with clearly identified
advantages over traditional surgical procedures [144,145]. Individual grip force profiling
using wireless wearable (gloves or glove-like assemblies) sensor systems for the monitor-
ing of task skill parameters [138–141] and their evolution in real time on robotic surgery
platforms [141–143,146–148] permits studying the learning curves [140–142] of experi-
enced robotic surgeons, surgeons with experience as robotic platform tableside assistants,
surgeons with laparoscopic experience, surgeons without laparoscopic experience, and
complete novices. Grip force monitoring in robotic surgery [146–148] is a highly useful
means of tracking the evolution of the surgeon’s individual force profile during task exe-
cution. Multimodal feedback systems may represent a slight advantage over the not very
effective traditional feedback solutions, and the monitoring of individual grip forces of a
surgeon or a trainee in robotic task execution through wearable multisensory systems is by
far the superior solution, as real-time grip force profiling by such wearable systems can
directly help prevent incidents [146,147] because it includes the possibility of sending a
signal (sound or light) to the surgeon before their grip force exceeds a critical limit, and
damage occurs. Proficiency, or expertise, in the control of a robotic system for minimally
invasive surgery is reflected by a lesser grip force during task execution, as well as by a
shorter task execution times [146–148]. Grip forces self-organize progressively in a way
that is similar to the self-organization of neural oscillations during task learning, and, in
surgical human–robot interaction, a self-organizing neural network model was found to
reliably account for grip force expertise [149].

5.3. Movement Planning

To move neural processing models for robotics beyond reactive behavior, the capacity
to selectively filter relevant sensory input and to autonomously generate sequences of
processing steps is critical, as in cases where a robot has to search for specific visual
objects in the environment, and then reach for these objects in a specific, instructed serial
order [150,151]. In robotic tasks where the simultaneous control of object dynamics and
internal forces exerted by the robot limb(s) to follow a trajectory with the object attached to
it is required, plasticity and adaptation permit to deal with external perturbations acting
on the robot–object system. On the basis of mere feedback through the internal dynamics
of an object, a robot is, like a human, able to relate to specific objects with a very specific
sensorimotor pattern. When the object-specific dynamical patterns are combined with
hand coordinates obtained from a camera, dedicated hand-eye coordination self-organizes
spontaneously [152–154] without any higher-order cognitive control. Robots are currently
not capable of any form of genuine cognition. Cognition controls behavior in living brains,
where sensing and acting are no longer linked directly to ensure control, as is the case for
any robot currently, including humanoids. When an action is based on sensory information
that is no longer directly available in the processing loop at the time where action is to
ensue, the relevant information must be represented in a memory structure, as it is in any
living brain. Information for the control of action then becomes abstracted from sensor data
through the neural memory representations and mechanisms of memory-based decision
making [150]. Plastic mechanisms in neural network-based control architectures (Figure 9)
effectively contribute to the learning of dynamics of robot–object systems, enabling adaptive
corrections and/or offset detection.
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Figure 9. Biological learning-inspired processing model inspired by [150] for robotic control beyond
reactive behavior, with a capacity to selectively filter relevant sensory input and to autonomously
generate sequences of processing steps. The illustration here shows the dynamic neural network
architecture for the control of perceptual learning (L), memory storage of objects/actions, their serial
order, and recall (R) through node structures with plasticity enabled connections. Selectively gated
feedback is enabled through computational nodes (outlined in yellow here) for the updating of sensory
representations (such as offset detection) as a function of changes in input from the environment.

This allows for progressive error reduction by incorporating distributed synaptic
plasticity according to feedback from actual movements in the given environment. It
has been shown previously that such feedback processes are omnipresent in voluntary
motor actions of human agents [154], where rapid corrective responses occur even for
very small disturbances that approach the natural variability of limb movements. Robot
control toward autonomy [155] ultimately implies that the robot generalizes across time
and space, is capable of stopping when an element is missing, and updates a planned action
sequence autonomously in real time when a scenario suddenly changes. Using biologically
plausible neural learning, the flow of behavior generated can emerge new neural system
dynamics through self-organization without any further control or supervision algorithm(s).
In robotic control based on biologically inspired neural network learning, the universal
training method is based on Hebbian synaptic learning. Several variants of the latter are
discussed and compared, with detailed equations, in [150]. The neural network dynamics
described therein can, in principle, be combined with other network structures that receive
reward information as part of their input in an extended model approach based on known
functional dynamics of the mammalian brain. As discussed in previous sections, the
orbitofrontal cortex receives converging sensory and reward inputs, which makes the
network as a whole capable of acquiring task structure and support reinforcement learning
by encoding combinations of sensory and reward events [81,82].

Such networks possess self-organizing state-encoding dynamics of the type shown
here above (Figure 5), based on the principle of multiple-stage decision tasks, where a
human agent or robot has to choose between decisions (options) and their consequences.
More knowledge from and interaction between the fields of cognitive neuroscience and
robotics are needed here to further explore existing possibilities.

6. Conclusions

Living organisms have a long evolutionary history of structure and function ensuring
their survival in natural environments. Such adaptation relies on biological adaptive learn-
ing, from single synapse to networks, which is unsupervised and self-organizing. Table 1
gives a schematic overview of selected references, highlighted here as a function of the type
of agency (behavior or function), species exploited (model), and level of self-organizing
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functional complexity for the development of self-organizing neural network solutions
(control) toward “intelligent” robotics. By emulating biological mechanisms for the devel-
opment of electronic systems for sensorimotor control, the approaches reviewed here push
humanoid robots, exoskeletons, and similar electronic systems toward increasing levels
of autonomy. Artificial synapses have emulate the brain’s plasticity with much simpler,
less costly structures than most other traditional computing methods. They, therefore,
offer promising perspectives for future robotic and neuromorphic systems. The work-
ing mechanisms of biological synapses and brain plasticity demonstrate the learning and
memory potential of extremely simple and highly complex functions in living organisms.
Some of them already comprise the sensory systems of robots. Synaptic learning can be
used to control artificial nerves and muscles that have the same working mechanism as
biological ones, and new models derived from brain learning can breathe lifelike motion
into mobile robots. In the near future, neuromorphic systems are expected to become
vital components of robots and electronic applications, including biocompatible neural
prosthetics, exoskeletons, soft humanoids, and integrated cybernetics, exploiting natural
sensory and memory systems to project robotics into the future.

Table 1. Levels of robotic agency and species serving as model (I = invertebrate, V = vertebrate) for self-
organized control architectures in increasing order of functional complexity (NN = neural network).

Functional
Complexity Agency Species Control Level Implemented? Selected

References

Single NN Rhythmic
movement I Self-organized Yes [42,44,46,54]

Single NN Goal-directed
action I, V Self-organized Yes [30,64,68,70–72,80–83,91,98]

Single NN Alternative
choice I, V Self-organized Yes [10,26,53,62]

Single NN Sequenced
action I, V Self-organized Yes [46,98,99,105,128,150,152–155]

Multiple NNs Sensorimotor
integration I, V Self-organized Yes [53,62,114,115,128,129,131,132]

Multiple NNs Cognitive
planning V Self-organized Partially [2,3,98,99,150]

Multiple NNs Voluntary
action V Self-organized No [2,3,98,151]
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