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Abstract: In recent years, modern technology has been increasing, and this has grown a derivate
in big challenges related to the network and application infrastructures. New devices have been
providing more high functionalities to users than ever before; however, these devices depend on a
high functionality of network in order to ensure a correct functioning ability over applications. This is
essential for mobile networking systems to evolve in order to meet the future requirements of capacity,
coverage, and data rate. In addition, when a network problem happens, it could be converted into
somethingmore disastrous and difficult to solve. A crucial point is the network physical change
and the difficulties, such as loss continuity of services and the decision to select the future network
to be connected. In this article, a new framework is proposed to forecast a future network to be
connected through a mobile node in WLAN environments. The proposed framework considers a
decision-making process based on five classifiers and the user’s position and acceleration data in
order to anticipate the network change, reaching up to 96.75% accuracy in predicting the connection
of this future network. In this way, an early change of network is obtained without packet and time
loss during the network change.

Keywords: cross-layer; handover; handoff decision; naive bayes; logistic regression; decision tree;
k-nearest neighbors; support-vector machines

1. Introduction

Mobile devices have acquired greater capacity for computing, storage, and connectivity
to heterogeneous networks. Nevertheless, a critical point of mobility is the network physical
change, and the problems inherent to the loss of continuity of services, as well as the
decision to change, that is, select the future network to be connected [1].

The handover or handoff in IP networks is the physical transition from one network
to another. The handover is typified by two types of transition: (A) horizontal handover
and (B) vertical handover [2]. When a mobile node (MN) changes network in the same
technology, it performs a horizontal handoff. However, if the change of network is to a
different kind of technology, then it is called a vertical handoff.
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The general procedure of change is classified into three stages according to [3,4]:

(1) Measurement of handover and initialization.
(2) Decision of handover.
(3) Execution of handover.

In the first stage, the mobile node (MN) takes measurements of the metrics of the
nearby networks. In the second stage, algorithms decide when and which networks to
change. Finally, in the third stage, the necessary procedures are made to connect to the new
network and reestablish services.

Regarding problems related to the execution of the handover, IP establishes that for all
equipment that operates within a network, its address must be derived from this network.
Under this scheme, if a computer moves from its original network to a new network, then
it will experience the following problems:

(1) All communication becomes impossible because its IP address is not valid in the
new network.

(2) Communications in progress are lost.
(3) Mobile nodes disappear from the global network.

The problems related to the handover decision arise in the design of an algorithm that
determines the right moment to change networks, because it is possible that the decision-
making algorithm is forced by the MN to switch successively between adjacent networks.
Although the MN is not in movement, this is because the change of network algorithm
is based on a measurement of the received signal strength (RSS) and the MN has a very
similar received signal strength indicator (RSSI) between both adjacent networks.

This is known as the ping-pong effect [5]. This is mainly generated when the decision-
making algorithm is based on selecting the network with the highest received signal
strength (RSSI). Thus, there are two networks that have a similar power, and the algorithm
makes the change to the strongest signal recurrently. This ping-pong effect is a very
common phenomenon that causes degradation in the quality of services. Besides, the
ping-pong effect is very common not only in network exchange, but it occurs in various
areas, and a very common strategy to combat it is to establish limits by ranges. For example,
if the frontier is 6, it does not go to the next level until it has a power of 6.5 or higher, and it
does not return to the lower level until it is 5.5 or lower. In this way, this border around 6
is blurred, and it reduces that ping pong effect. Another wall is through algorithms such
as fuzzy logic [6–9], where the idea is very similar. In other words, they use these policies
to make change decisions and at the same time try to balance the load of the networks
efficiently, using input parameters such as RSSI, latency, and data rate.

Generally speaking, the decision-making algorithm is maintained with the data pro-
vided by the network and after processing the data, and it decides which network to switch
to. They are usually changing between the wireless local area network (WLAN), universal
mobile telecommunications system (UMTS), long term evolution (LTE), among others.
Multiple proposals use artificial intelligence techniques, such as artificial neural networks
(ANN), fuzzy logic (FL), genetic algorithms (GA), decision trees (DT), among others [10–13].
In [14], the authors proposed an algorithm which optimizes the feature boundary of deep
convolutional neural networks (CNN) in order to reduce the overfitting problem, and this
is a strategy to deal with the two-stage training process. In [15], the authors proposed an
algorithm to estimate the depth map and faces from monocular 2D images. This algorithm
helps to deal with the difficulties such as accessibility, cost, and privacy of data. In [16],
an algorithm is formulated and evaluated to determine the facial diagnosis which uses
and a small dataset. Similarly, [17] gives an overview related to reinforcement learning
algorithm for handover management in 5G ultra-dense small cell (UDSC) Networks. In this
study, a variety of artificial intelligence algorithms is presented, and the authors give future
directions and challenges for 5G UDSC networks. In [18], a data augmentation framework
is formulated to improve the accuracy of deep convolutional neural networks that helps to
reduce the training cost and in the same way improve its generalization ability. A profound
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analysis of decision-making algorithms is carried out in the related works section, although
there are few works that consider the prognosis of MN movement.

This research focuses on proposing a framework to reduce packet loss during hand-
over, forecasting the movement of the mobile node using classification techniques. There-
fore, to anticipate the network processes, it is necessary to carry out the handover, generat-
ing a pro-active proposal and avoiding packet loss in mobile WLAN environments. Thus,
the main contribution of this framework proposed is maintained the communication on
track by anticipating the network switch in order to ensure continuity of services.

The main challenge is to delimit the area to train the classifiers, i.e., a lot of data
generates a longer training time, and it is possible that the model will never fit. This
challenge will be analyzed in future research.

This work is organized as follows: in Section 2, a state-of-the-art review of related
works is presented, in Section 3 the problem of selecting the next network to connect a
mobile device is described, in Section 4 a proactive cross-layer framework design based on
artificial intelligence techniques for seamless handover in mobile WLAN environments is
proposed and formulated. In Section 5, the results are presented and discussed. Finally, the
conclusions are given.

2. Related Works

The different proposals can be found divided into two areas: (1) The proposals to
improve handover protocols and (2) The decision-making proposals.

In the first section, you can find protocols that focus on reducing the scanning time
such as [19–21]; on the other hand, there are proposals that focus on reducing the handover
time such as [22,23]. This work focuses on improving decision-making, that is, in point 2.

Neural networks in the handover have been applied to solve decision-making changes
in heterogeneous networks. In [24], the authors propose a back-propagation artificial
neural network (ANN) using the RSS input parameters and the traffic intensity in the
target networks, monitoring the training of the network. However, the delay caused by
the training stage is a problem. In [25], a middleware based on an ANN is proposed to
select the best network based on user preferences. Furthermore, it increases latency during
handover execution due to the size of the signaling packets used and the time of training.
Another proposal based on the use of RN is made in [26] where a neural network with
RSSI input parameters and the speed of the MN is proposed, reducing the number of
unnecessary handovers.

Vertical handover algorithms involve several factors that can make difficult the quan-
tification. Fuzzy logic can be applied to solve change decision problems like [7–9], [27] that
use these policies to make decision changes, and at the same time they try to balance the
load of the networks efficiently, using input parameters such as RSSI, latency, and data rate.

The trend in reviewed literature shows that the networks will be more heterogeneous,
and in this way, a vertical handover will be more normal. Some of the reviewed algorithms
are classified based on the main criteria used to make the decision.

Regarding the decision-making proposals, multiple algorithms have been proposed.
These use schemes based on received signal strength (RSS), quality of service (QoS), decision
functions based on multi-criteria, and algorithms based on artificial intelligence techniques.
In general terms, the decision-making algorithm feeds on the data provided by the network.
After processing the data, it decides which network to switch to. Some of the criteria
commonly used to make this decision to change are illustrated in the following topic:
network parameters.

Network Parameters

The network parameters or criteria frequently used in handover decision-making are
mentioned below, along with their description in Table 1.
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Table 1. Features commonly used in handover decision algorithms.

Parameter Description

Received signal strength
indicator (RSSI)

Power level of received signals in wireless networks, measure
on decibels (dB).

Network load (NL) Loads of traffic on a network can be an important parameter
due to the capacity of the channel.

Bit error rate (BER)
Number of received bits that have been altered due to noise or
interference, divided by the total number of bits transferred
during the interval time, measure on bits per second (bps).

Throughput
This measure refers to the amount of data or messages that are
successfully received, on a specific channel, measure on bits
per second (bps).

signal to noise ratio (SNR)
It is the relation between the signal to noise and is defined as
the ratio between the transmitted signal power and the power
of the noise that corrupts it, measure on decibels (dB).

In addition, some user preferences such as the cost of the network and security
are considered.

In Figure 1, a generic algorithm to the handover decision phase is shown, which is
basically a representation of the input data that is passed to the algorithm in order to make
a change decision [19], [28–32]. That is, select the next network. This work focuses on the
movement of the mobile node to predict the next network to connect. For this reason, this
article proposes parameters such as position, speed, acceleration, and power of the received
signal (RSS) as features.
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Figure 1. Generic algorithm to the handover making decision.

The algorithms that make the decision to change based on artificial intelligence are
associated with high algorithmic complexity. Therefore, in this paper, different criteria are
proposed to perform a network change’s forecast based on classification techniques. In
this context, the next sub-section presents the problem to be solved after the simulation of
the proactive cross-layer protocol based on artificial intelligence techniques for seamless
handover in mobile WLAN environments.

3. The Problem of Selecting the Next Network

The problem of selecting the next network can be formulated as three sets as fol-
lows: given a set R of candidate networks to carry out the handover, consisting of the
triple {Extended Service Set Identifier (ESSID), Received Signal Strength Indicator (RSSI),
Mac Address (MA)}, that is, let R = {(ESSID1, RSSI1, MA1), . . . , (ESSID|R|, RSSI|R|,
MA|R|)}, |R| ≥ 2, and another GPS set formed by the position of the MN in decimal
degrees constituted by the triplet {latitude(lat), longitude(lon), and height(alt)}. That is,
let GPS = {(lat1,lon1,alt1), . . . , (lat|N|,lon|N|,alt|N|)}, |N| ≥ 2, and finally the set AV con-
sisting of the acceleration in the three axes, x-axis(ax), y-axis(ay), and z-axis(az), and the
velocity (v) AV = {(ax1,ay1,az1,v1), . . . , (ax|A|,ay|A|,az|A|,v|A|)}, where |A| ≥ 2. The
solution is modeled with the set Dt

i =
{

GPSt, AVt, Rt
i
}

, i = 1,..,R and t > 0.



Electronics 2022, 11, 712 5 of 19

Then the data set is expressed as follows:
Dt

i = {lat,lon,alt, ax,ay,az,v, ESSID, RSSI, MA}
That is, at time t = 1, there are three networks available to perform the network change.
D1

3 = {19.41356, −98.90195, 2242, 1.41617, 3.84269, 7.96311, 5.01, Net1, −78, e4:3e:d7:26:
cd:a7, Net2, −78, 48:8d:36:3d:04:b8, Net3, −85, 94:8f:cf:84:67:32}

Moreover, at time t = 2, there are two networks available to perform the
network change.

D2
2 = {19.491490, −98.892851, 2267, 5.75562, −0.153, 0.306, 10.726, INFINITUM68xx,

−78, 50:4e:dc:2b:fe:18, INFINITUMr5xz, −78, 7c:b1:5d:5e:4e:f8}
The data set D is variable depending on the coverage of closed networks to the position.

It is important to mention that in the trivial case where there is only one network available
to change, by definition that is the best and worst network at the same time. Therefore,
the decision-making algorithm can only evaluate one possibility and it would be the only
option to select. For these reasons, in this article an environment with at least two or more
adjacent networks is considered.

4. Proactive Cross-Layer Framework Design Based on Artificial Intelligence
Techniques for Seamless Handover in Mobile WLAN Environments

This section explains the design of the test environment inthe proactive cross-layer
framework. It is assumed that the MN is in movement, and it is in an area fully covered
with multiple WLAN networks as shown in Figure 2. The main objective of the protocol is
to forecast the next network the MN will connect to. In this scenario, eight access points
were placed on a path as shown in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 19 
 

 

AV={(ax1,ay1,az1,v1),…, (ax|A|,ay|A|,az|A|,v|A|)}, where |A| ≥ 2. The solution is modeled 
with the set { }, ,t t t t

i iD GPS AV R= , i=1,..,R and t > 0. 

Then the data set is expressed as follows: 
t
iD ={lat,lon,alt, ax,ay,az,v, ESSID, RSSI, MA} 

That is, at time t = 1, there are three networks available to perform the network 
change. 

1
3D ={19.41356, −98.90195, 2242, 1.41617, 3.84269, 7.96311, 5.01,Net1, −78, 

e4:3e:d7:26:cd:a7, Net2, −78,48:8d:36:3d:04:b8, Net3, −85, 94:8f:cf:84:67:32} 
Moreover, at time t = 2, there are two networks available to perform the network 

change. 
2
2D ={19.491490, −98.892851, 2267, 5.75562, −0.153, 0.306, 10.726, INFINITUM68xx, 

−78, 50:4e:dc:2b:fe:18, INFINITUMr5xz, −78, 7c:b1:5d:5e:4e:f8} 
The data set D is variable depending on the coverage of closed networks to the po-

sition. It is important to mention that in the trivial case where there is only one network 
available to change, by definition that is the best and worst network at the same time. 
Therefore, the decision-making algorithm can only evaluate one possibility and it would 
be the only option to select. For these reasons, in this article an environment with at least 
two or more adjacent networks is considered. 

4. Proactive Cross-Layer Framework Design Based on Artificial Intelligence  
Techniques for Seamless Handover in Mobile WLAN Environments 

This section explains the design of the test environment inthe proactive cross-layer 
framework. It is assumed that the MN is in movement, and it is in an area fully covered 
with multiple WLAN networks as shown in Figure 2. The main objective of the protocol 
is to forecast the next network the MN will connect to. In this scenario, eight access points 
were placed on a path as shown in Figure 2. 

 
Figure 2. Test scenario with eight WiFi access points with a coverage area of 100 m. 

4.1. Network Selection Process according to the Proactive Cross-Layer Protocol 
The network selection process is based on the past, present, and future data modeled 

by the following block diagram of Figure 3. 
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4.1. Network Selection Process according to the Proactive Cross-Layer Protocol

The network selection process is based on the past, present, and future data modeled
by the following block diagram of Figure 3.
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In block A, the historical data is used to know where the mobile device has been
physically connected. That is, it uses the GPS data set and GPS and Rt

i .
In block B, the current data is sampled in order to analyze the current state of the

system and make a compensation if it is necessary. That is, it uses the Kalman filter that was
proposed by Rudolf E. Kalman in 1960, where a set of mathematical equations efficiently
estimates the state of a linear system that minimizes the estimated error to achieve the
optimization. The state of vector x is defined by the set of data [p_x,v_x,a_x,p_y,v_y,a_y],
which describes the movements of the mobile in time t where p_x,v_x,a_x corresponds to
the latitude point, velocity, and acceleration, andp_y,v_y,a_y corresponds to the parameter
length of a mobile. For the measure of the change in the state of the mobile without ∆t,
we use the kinetic equation of movement (Kalman, 1960). This block is supported by the
technique using the AV data set. Next, it uses Equation (1), to draw a possible route and
anticipate a possible network change.

x = x0 + v∆t + 0.5a2∆t (1)

v = v0 + a∆t (2)

where:
x0 is the initial state of the vehicle, v is the velocity, and a is the acceleration of the

vehicle (assuming constant acceleration at time t).
In block C, a forecast of a possible future location is calculated and, using classification

artificial intelligence techniques, it is predicted which the possible network is that will be
reached. In this block, a bayesian classifier is used.

4.1.1. Model of Naive Bayes

Naive bayes is a model for classification based on bayes theorem. This model estimates
the per-class probability by assuming that the attributes are conditionally independent. Let
C denote defined class variable, in this case Ci is WLAN network, Ei denote conditional
attribute I used for classification, and P(C|E1, . . . , En) denote conditional probability of
class C, given that features of GPSt and AVt have happened. The probability model for
naive bayes classifier can be defined as shown in Equation (3).

P(C|E1, . . . , En) =
P(C)P(E1, . . . , En|C)

P(E1, . . . , En)
(3)

In case of independence, assumption was assumed instead of computing the condi-
tional probability for every combination of attributes Ei given class C. We can derive the
Equation (3) as follows:

P(C|E1, . . . , En) =
P(C)P(E1|C), . . . , P(En|C)

P(E1, . . . , En)
(4)
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where:
Ci are the available WLAN networks to change.
E1, . . . , En are the features of GPSt and AVt.
From a classification point of view, Equations (3) and (4) are also called the likelihood

functions when they are expressed as a function of C given E. For class variables C1, . . . ,
Cm we can classify the evidence into m value of likelihood. Then, we assign the evidence to
the class with maximum likelihood. When we compare likelihood function, we can filter
out P(E1, . . . , En) from Equation (4) because it is constant. Therefore, let us rewrite the
likelihood function as follows:

Likelihood(Ci) = P(Ci)P(E1|Ci), . . . , P(En|Ci) (5)

Equation (5) is more practical because it does not require a very large training set. The
reason is evidence was partitioned into multiple attributes by independence assumption.
In other words, it allows the class conditional densities to be calculated separately for
each attribute and reduces a multidimensional task to a number of one-dimensional tasks.
Therefore, the next network to switch is NRi.

NRi = argMax(Likelihood(Ci)) (6)

where:
Ci are the available WLAN networks to change.
NRi is the next network to switch to.
It is important to mention that the present data will become historical but the forecast

data will not necessarily be part of the historical data set.

4.1.2. Model of Support-Vector Machines

Support-vector machines (SVM) were developed to solve the classification problem
and regression problems. As a powerful computational intelligence theory, SVM developed
the foundations in 1995 by Vapnik. Regarding the classification problem, two classes are
separated by a hyperplane.

wx + b = 0 (7)

where:
w is the weight matrix.
b is the bias matrix.
x is feature input.
The set of vectors is said to be optimally separated by the hyperplane if it is separated

without error and the distance between the closest vectors to the hyper-plane is maximal.
Therefore, Equation (8) is as follows.

min
{

1
2
‖w‖2

}
(8)

4.1.3. Model of Multinomial Logistic Regression

A model of classification logistic regression is used for data in which the dependent
variable is unordered or polytomous, and independent variables are continuous or cate-
gorical predictors. Under a multinomial logistic regression model, the probability that x
belongs to class i is written as:

(
y(i) = 1

∣∣∣x, w
)
=

exp
(

w(i)T
x
)

∑m
y=1 exp

(
w(i)T

x
) (9)

For i ∈ {1, . . . , m}, where:
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w(i) is the weight vector corresponding to class i, in this case the class is a network and
the superscript T denotes matrix transpose. For binary problems (m = 2), this is known as a
logistic regression model; for m > 2, the usual designation is multinomial logistic regression
(or soft-max in the neural networks literature) because of the normalization condition.

∑m
y=1 P

(
y(i) = 1

∣∣∣x, w
)
= 1 (10)

The weight vector for one of the classes need not be estimated. Without loss of
generality, we thus set w(m) = 0, and the only parameters to be learned are the weight
vectors w(i) for i ∈ {1, . . . , m− 1}.

4.1.4. Model of Decision Tree

The decision tree algorithm works very well and continuously if the data are discon-
tinuous, even if noise appears. Moreover, it can handle collinearity efficiently and provide
excellent prediction explanation. On the other hand, DTs suffer from higher complexity, es-
pecially when dealing with complicated datasets, and consequently they may lose valuable
information in case of continuous variables.

The decision tree model aims to find the best split node that guarantees high accuracy.
The information gain (IG) method seeks to find the most suitable nodes that return the
highest information gain, which can be measured using an entropy factor. The entropy
factor is used to determine the degree of disorganization in the system. The entropy for the
output can be calculated using the following formula:

E(s) =
c

∑
i=1
−pi log2(pi) (11)

where pi: proportion of samples that belongs to class c for a particular node, and C is the
class, in this case the available WLAN networks to change.

4.1.5. Model of k-Nearest Neighbors

The k-nearest neighbors (KNN) model is one of the simplest and most straightforward
supervised learning models in machine learning. The key idea of this algorithm is to decide
a predicted value based on the labeled data points of the training set that are near the query
data point.

KNN starts by loading the training data points in memory. Then, the classification
task is completed by finding the nearest k data points. Finally, a vote of the k closest points
to the query point will determine the class of the query data point. One critical decision
that needs to be made is the selection of the distance function. Several distance functions
have been proposed to compute the distance between two data points; however, the most
common methods are cosine similarity and Euclidean distance.

The Euclidean distance can be calculated by subtracting the training data point from
the point to be classified, as in Equation (12).

E(x, y) =
√

∑n
i=0(xi − yi)

2 (12)

In this calculation, we determine the data point class based on the best posterior
probability value. Although KNN contains a limited number of hyper-parameters (i.e., the
k-value and distance function), which makes it a simple model, the K-value can dramatically
affect the model performance.

Five classification models were compared to each other to get the best fit for the data
set on the network. They are the support-vector machines (SVM), naive bayes (NB), logistic
regression (LR), decision tree (DT), and k-nearest neighbors (KNN).
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4.2. System Architecture

The system uses native APIs operating system android, WiFi, location, and sensors,
such as native supplicants, to obtain the data and store it in a separated file, as illustrated
in Figure 4.
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4.3. Decision Taking Procedure

The system takes a sample of the position, acceleration, and available networks every
second. Then, based on the data set, it predicts which the next network is, as illustrated
in Figure 5.
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To collect the data, an application for mobile devices is used. Then the data is exported
to a CSV file and processed with a MATLAB script. Finally, the next network is forecast.

4.4. Data Acquisition

The data was collected using an application for android mobile devices programmed
in android studio 3.5.2. Basically, the application scans the network environment, the GPS
position, speed, and acceleration every 5 s and stores it in a CSV file extension. The user
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interface of the application is very simple because it only shows the results every second,
as illustrated in Figure 6.
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Next, the data is stored in an archive csv root file in the internal storage of the mobile
device. The organization of the resulting file is by columns: latitude, longitude, height,
velocity, acceleration x axis, y axis and z axis, best ESSID, RSSI, mac address, and other
available networks following the same sequence.

This application allows viewing the proximity of the access point in four dimensions.
The longitude, latitude, and height dimensions are represented on the x, y, and z axis,
respectively. The fourth dimension is the power of the received signal and is represented
by a colored bar. Below are different views of the graph obtained for a single access point.
Please see Figure 7.
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Note that closer to the access point the power increases, and further from it, the power
decreases. This application for mobile devices can also be used to map the power of the
received signal.

4.5. Implementation and Hyper-Parameters

The software is programmed in python3.8 using the sklearn API and IDE Spyder by
Anaconda, running on omen HP laptop, whit Intel Core i7 7th gen, 16 GB of memory RAM,
and NVIDIA GeForce GTX 1050 4GB. The KNN classifier uses 8 neighbors, for the naive
bayes classifier using Gaussian naive bayes, for the decision tree, for the support-vector
machines, and for the logistic regression classifiers using default parameters. The hyper-
parameters set to KNN is Euclidean distance and k = 8, the other classifiers set default
hyper-parameters without any hyper-parameter tuning. Table 2 shows the result from
instruction “get_params”, whichreturns all hyper-parameters from each model.

Table 2. Model of hyper-parameters.

Technique Hyper-Parameters from Sklearn

LR

{‘C’: 1.0, ‘class_weight’: None, ‘dual’: False, ‘fit_intercept’: True,
‘intercept_scaling’: 1, ‘l1_ratio’: None, ‘max_iter’: 100, ‘multi_class’: ‘auto’,
‘n_jobs’: None, ‘penalty’: ‘l2′, ‘random_state’: None, ‘solver’: ‘lbfgs’, ‘tol’:
0.0001, ‘verbose’: 0, ‘warm_start’: False}

NB {‘priors’: None, ‘var_smoothing’: 1e-09}

SVM

{‘C’: 1.0, ‘break_ties’: False, ‘cache_size’: 200, ‘class_weight’: None, ‘coef0′:
0.0, ‘decision_function_shape’: ‘ovr’, ‘degree’: 3, ‘gamma’: ‘scale’, ‘kernel’:
‘rbf’, ‘max_iter’: -1, ‘probability’: False, ‘random_state’: None, ‘shrinking’:
True, ‘tol’: 0.001, ‘verbose’: False}

KNN {‘algorithm’: ‘auto’, ‘leaf_size’: 30, ‘metric’: ‘minkowski’, ‘metric_params’:
None, ‘n_jobs’: None, ‘n_neighbors’: 8, ‘p’: 2, ‘weights’: ‘uniform’}

DT

{‘ccp_alpha’: 0.0, ‘class_weight’: None, ‘criterion’: ‘gini’, ‘max_depth’:
None, ‘max_features’: None, ‘max_leaf_nodes’: None,
‘min_impurity_decrease’: 0.0, ‘min_impurity_split’: None,
‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_fraction_leaf’:
0.0, ‘presort’: ‘deprecated’, ‘random_state’: None, ‘splitter’: ‘best’}

5. Results

In the scenario of Figure 8, one hundred samples were taken per access point and then
50% were taken for training and the rest for testing to use cross validation. Figure 8 graphs
the data that was used for training, and the data that was used for testing. In addition,
the data that was correctly classified is very close to the access point to which it belonged.
Therefore, the accuracy must be very high. In the following, graph samples are taken very
far from the access point and the accuracy of the classifier decreases drastically, as shown
in Figure 8.

This is because there is a balance between the train data and the test data. Figure 9
shows the data obtained with a graph between the accuracy of the algorithm, and Table 3
shows the percentage of data used to test the different algorithms.
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Table 3. Comparison of techniques against the percentage of data testing.

Technique 50% 40% 30% 20%

LR 34.74% 36.99% 35.68% 36.59%
NB 82.14% 84.15% 82.16% 86.99%

SVM 21.43% 16.67% 12.43% 16.26%
KNN 67.53% 68.70% 70.81% 75.61%

DT 95.13% 96.34% 95.14% 96.75%

Figure 9 and Table 3 show the relationship between the test data and accuracy. We
observe from the previous graph that the algorithm that best fits the data is the decision
tree, followed by naive bayes, k-nearest neighbors, logistic regression, and finally the
support-vector machines.
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In Figure 10, the graph grouped by classifier is shown and the results obtained from
the least amount of data to the greatest amount of test data are also shown from right to
left—purple = 20%, orange = 30%, red = 40%, and blue = 50% data test. As can be seen, the
greater the amount of test data, the accuracy decreases, and in the center where the data is
equally proportional, the accuracy is similar.
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6. Discussion

This section describes the discussion of handover decision, whichis divided into two
parts: (A) The mobility forecast part, in which usually the articles consulted use techniques
for estimating the position of a SL, and (B) The part of classification techniques to determine
which characteristics belong to a class.

With regard to mobility prognosis, the techniques used in this thesis are Kalman filter
(KF), particle filter (PF), and artificial neural networks (ANN).

The specialized literature usually uses different filters to estimate the position of an
NM as in (Yan, 2019), which proposes a CSI scheme (Canal State Information) contrasting
its results with a Kalman filter of [33], please see Figure 11. This proposal obtains an error
improvement in the x axis of 0.63 m and in the y axis of 0.75 m, considering that the node
moves in a margin in the x axis of 100 m and on the y-axis of 8 m. An error of 0.63% on the
x axis and 9.37% on the y axis is estimated.
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In contrast to the proposal presented in this paper, which was tested with a movement
of 2000 m on the x-axis and 40 m on the y-axis, it yielded an average error of 33.58% in
the artificial neural network and 45.74% in the filter of particles. Considering that it is
a random movement and that in theory it does not have any movement pattern, it was
decided to define a test scenario as in all the articles consulted in this research. In this thesis,
a test scenario with uniformly accelerated movement was defined in a circuit with seven
access points.

Regarding the classification techniques used, five classifiers with seven input charac-
teristics and one output with seven possible networks are proposed. Figure 12 shows a set
of graphs that are contrasted with each other, that is, in the first row latitude is plotted on
the y-axis against the remaining characteristics in order to observe their distribution and
to know if they are linearly separable. On the other hand, if acceleration versus velocity
is plotted, it can be seen that the points are very close; therefore, a classifier with these
characteristics would not perform well.
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Figure 12. Estimated feature comparison chart.

Figure 12 diagonally shows the distribution of the eight variables of our data set. In
other cells of the plot matrix, we have correlation plots of each variable combination of our
data frame. In the first row and second row we can see latitude on ordinate and longitude
on abscissa, and the right graph shows the correlation between latitude on ordinate and
altitude on abscissa and then each combination to other variables.

Support-vector machines work very well with a lot of data because they can have
more support-vectors; however, in two case studies the classifier with similar behavior in
percentage accuracy is the naive bayes classifier with an approximate accuracy of 80%. For
this reason we recommend the naive bayes classifier as the best option because the other
classifiers vary depending on the amount of data, data distribution, or imbalanced data.

Figure 13 shows the confusion matrix results.
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The confusion matrices (B), (D), and(E) on Figure 13 have similar behaviors, which
indicates that the NB, KNN, and DT models fit better than LR and SVM to the data set.

The time to train and test models is presented in Table 4. NB, KNN, and DT have
similar behavior, while SVM and LR take alonger time to fit the model to the data set.

Table 4. Comparison of training and testing time.

Technique Training Time (ms) Testing Time (ms)

LR 33.9 1.0
NB 1.0 1.0

SVM 6.0 3.0
KNN 1.0 9.0

DT 1.0 1.0
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Other proposals in the literature have been developed with similar results as shown in
Table 5, in similar scenarios, but this approach is part of an application for mobile devices
that will be added in the future with geo-fences to delimit the behavior of the mobile node.

Table 5. Comparison of results obtained versus handover decision algorithms.

Approach Title Year Clasificator Network Features Input Accuracy

(Wang, 2014)

SVM-based spectrum
mobility Prediction
scheme in mobile
cognitive radio
networks

2014 SVM Mobile cognitive
radio networks Velocity, position 95%

(Ma, 2017)

Modeling and analysis
for vertical handoff
based on the decision
tree in a heterogeneous
vehicle network

2017 Decision tree
(DT)

heterogeneous
Network

Received signal
strength (RSS), Bit
error rate (VER),
Brocking rate (BR)

95%

(Svahn, 2019)

Inter-frequency radio
signal quality
prediction for
handover, evaluated in
3GPP LTE.

2019 Decision tree
(DT) LTE 3GPP

Reference signal
received quality
(RSRQ)

90%

(Ryder, 2018)

Predicting strongest
cell on secondary
carrier using primary
carrier data

2018 Decision tree
(DT) LTE

Reference signal
received quality
(RSRQ)

95%

(Our
Approach)

Proactive cross-layer
framework based on
classification
techniques for
handover decision on
WLAN environments

2022 KNN, SVM,
DT, NB y RL WLAN

position,
acceleration,
velocity, Received
signal strength
(RSS)

96%

7. Conclusions and Future Work

This section describes the conclusions that have been obtained from this research.
With respect to the techniques estimating the next access point (AP) being 92% average
accuracy, while the next AP is correct, this implies a seamless handover without data
lost. An exponential increase in the acquisition time of an IP address was also observed
depending on the signal strength. Therefore, performing a jump with a power greater than
−40 db or 60% of quality of link is recommended. As future work, the implementation of
this algorithm in a streaming data, or voice data call, to measure the quality of experience
will be applied.

Author Contributions: Investigation and formal analysis J.V.C.-B., L.A.S. and L.M.R.-C.; software
and validation S.L.-S., F.G.-L. and A.D.C.-R.; writing—original draft, review & editing J.d.J.R. and J.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: Authors appreciate the infrastructure provided by Autonomous University of
the State of Mexico (UAEMex), Metropolitan Autonomous University (UAM) and Autonomous
University Chapingo (UACh), because this research could not be done without your valuable support.
Authorsthankthe Instituto Politécnico Nacional, Secretaría de Investigación y Posgrado, Comisión de
Operación y Fomento de Actividades Académicas, and Consejo Nacional de Ciencia y Tecnología for
their help in this research.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2022, 11, 712 18 of 19

References
1. Wang, X.; Li, X.; Leung, V.C. Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts,

opportunities, and challenges. IEEE Access 2015, 3, 1379–1391. [CrossRef]
2. Khan, M.; Din, S.; Gohar, M.; Ahmad, A.; Cuomo, S.; Piccialli, F.; Jeon, G. Enabling multimedia aware vertical handover

Management in Internet of Things based heterogeneous wireless networks. Multimed. Tools Appl. 2017, 76, 25919–25941.
[CrossRef]

3. Kassar, M.; Kervella, B.; Pujolle, G. An overview of vertical handover decision strategies in heterogeneous wireless networks.
Comput. Commun. 2008, 31, 2607–2620. [CrossRef]

4. Nair, M.; Zhu, F. Vertical handoffs in fourth-generation multinetwork environments. IEEE Wirel. Commun. 2004, 11, 8–15.
5. Ghanem, K.; Alradwan, H.; Motermawy, A.; Ahmad, A. Reducing ping-pong Handover effects in intra EUTRA networks. In

Proceedings of the 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing, Poznan,
Poland, 18–20 July 2012; pp. 1–5.

6. Tsai, K.L.; Liu, H.Y.; Liu, Y.W. Using fuzzy logic to reduce ping-pong handover effects in LTE networks. Soft Comput. 2016, 20,
1683–1694. [CrossRef]

7. Majlesi, A.; Khalaj, B.H. An adaptive fuzzy logic based handoff algorithm for interworking between WLANs and mobile networks.
In Proceedings of the The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Lisbon,
Portugal, 18 September 2002; Volume 5, p. 2.

8. Xia, L.; Jiang, L.G.; He, C. A novel fuzzy logic vertical handoff algorithm with aid of differential prediction and pre-decision
method. In Proceedings of the IEEE International Conference on Communications, Glasgow, UK, 24–28 June 2007; pp. 5665–5670.

9. Kustiawan, I.; Liu, C.Y.; Hsu, D.F. Vertical Handoff Decision Using Fuzzification and Combinatorial Fusion. IEEE Commun. Lett.
2017, 21, 2089–2092. [CrossRef]

10. Wang, Y.; Zhang, Z.; Ma, L.; Chen, J. SVM-based spectrum mobility prediction scheme in mobile cognitive radio networks. Sci.
World J. 2014, 2014, 395212. [CrossRef]

11. Ma, B.; Wang, D.; Cheng, S.; Xie, X. Modeling and analysis for vertical handoff based on the decision tree in a heterogeneous
vehicle network. IEEE Access 2017, 5, 8812–8824. [CrossRef]

12. Svahn, C.; Sysoev, O.; Cirkic, M.; Gunnarsson, F.; Berglund, J. Inter-frequency radio signal quality prediction for handover,
evaluated in 3GPP LTE. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur,
Malaysia, 28 April–1 May 2019; pp. 1–5.

13. Ryden, H.; Berglund, J.; Isaksson, M.; Cöster, R.; Gunnarsson, F. Predicting strongest cell on secondary carrier using primary
carrier data. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW),
Barcelona, Spain, 15–18 April 2018; pp. 137–142.

14. Zheng, Q.; Yang, M.; Yang, J.; Zhang, Q.; Zhang, X. Improvement of generalization ability of deep CNN via implicit regularization
in two-stage training process. IEEE Access 2018, 6, 15844–15869. [CrossRef]

15. Jin, B.; Cruz, L.; Gonçalves, N. Face depth prediction by the scene depth. In Proceedings of the 2021 IEEE/ACIS 19th International
Conference on Computer and Information Science (ICIS), Shanghai, China, 23–25 June 2021; pp. 42–48.

16. Jin, B.; Cruz, L.; Gonçalves, N. Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis. IEEE Access
2020, 8, 123649–123661. [CrossRef]

17. Tanveer, J.; Haider, A.; Ali, R.; Kim, A. An Overview of Reinforcement Learning Algorithms for Handover Management in 5G
Ultra-Dense Small Cell Networks. Appl. Sci. 2022, 12, 426. [CrossRef]

18. Zheng, Q.; Yang, M.; Tian, X.; Jiang, N.; Wang, D. A full stage data augmentation method in deep convolutional neural network
for natural image classification. Discret. Dyn. Nat. Soc. 2020, 2020, 4706576. [CrossRef]

19. Liao, Y.; Cao, L. Practical schemes for smooth MAC layer handoff in 802.11 wireless networks. In Proceedings of the 2006
International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’06), Buffalo-Niagara Falls, NY,
USA, 26–29 June 2006; pp. 1–10.

20. Mishra, A.; Shin, M.; Arbaugh, W. An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Comput.
Commun. Rev. 2003, 33, 93–102. [CrossRef]

21. Li, C.S.; Tseng, Y.C.; Chao, H.C.; Huang, Y.M. A neighbor caching mechanism for handoff in IEEE 802.11 wireless networks. J.
Supercomputing. 2008, 45, 1–14. [CrossRef]

22. Santi, S.; De Koninck, T.; Daneels, G.; Lemic, F.; Famaey, J. Location-Based Vertical Handovers in Wi-Fi Networks With IEEE
802.11 ah. IEEE Access 2021, 9, 54389–54400. [CrossRef]

23. Chen, Y.; Niu, K.; Wang, Z. Adaptive handover algorithm for LTE-R system in high-speed railway scenario. IEEE Access 2021, 9,
59540–59547. [CrossRef]

24. Kohl, N.; Miikkulainen, R. Evolving neural networks for strategic decision-making problems. Neural Netw. 2009, 22, 326–337.
[CrossRef] [PubMed]

25. Nasser, N.; Guizani, S.; Al-Masri, E. Middleware vertical handoff manager: A neural network-based solution. In Proceedings of
the IEEE International Conference on Communications, Glasgow, UK, 24–28 June 2007; pp. 5671–5676.

26. Mahira, A.G.; Subhedar, M.S. Handover Decision in Wireless Heterogeneous Networks Based on Feedforward Artificial Neural
Network. Comput. Intell. Data Mining. 2017, 556, 663–669.

http://doi.org/10.1109/ACCESS.2015.2467174
http://doi.org/10.1007/s11042-017-4736-4
http://doi.org/10.1016/j.comcom.2008.01.044
http://doi.org/10.1007/s00500-015-1655-z
http://doi.org/10.1109/LCOMM.2017.2709750
http://doi.org/10.1155/2014/395212
http://doi.org/10.1109/ACCESS.2017.2707801
http://doi.org/10.1109/ACCESS.2018.2810849
http://doi.org/10.1109/ACCESS.2020.3005687
http://doi.org/10.3390/app12010426
http://doi.org/10.1155/2020/4706576
http://doi.org/10.1145/956981.956990
http://doi.org/10.1007/s11227-008-0175-3
http://doi.org/10.1109/ACCESS.2021.3071639
http://doi.org/10.1109/ACCESS.2021.3073917
http://doi.org/10.1016/j.neunet.2009.03.001
http://www.ncbi.nlm.nih.gov/pubmed/19362804


Electronics 2022, 11, 712 19 of 19

27. Chen, W.; Gong, S.; Jiang, X. Fuzzy multiple attribute decision access scheme in heterogeneous wireless network. Multimed. Tools
Appl. 2017, 76, 20049–20065. [CrossRef]

28. Fei, L.; Zhang, B.; Xu, Y.; Tian, C.; Rida, I.; Zhang, D. Jointly Heterogeneous Palmprint Discriminant Feature Learning. IEEE Trans.
Neural Netw. Learn. Syst. 2021, 1–12. [CrossRef]

29. Fei, L.; Zhang, B.; Tian, C.; Teng, S.; Wen, J. Jointly learning multi-instance hand-based biometric descriptor. Inf. Sci. 2021, 562,
1–12. [CrossRef]

30. Wen, J.; Sun, H.; Fei, L.; Li, J.; Zhang, Z.; Zhang, B. Consensus guided incomplete multi-view spectral clustering. Neural Netw.
2021, 133, 207–219. [CrossRef] [PubMed]

31. Marquez, G.; Taramasco, C.; Astudillo, H.; Zalc, V.; Istrate, D. Involving Stakeholders in the Implementation of Microservice-Based
Systems: A Case Study in an Ambient-Assisted Living System. IEEE Access 2021, 9, 9411–9428. [CrossRef]

32. Tylcz, J.-B.; Muszynski, C.; Dauchet, J.; Istrate, D.; Marque, C. An Automatic Method for the Segmentation and Classification of
Imminent Labor Contraction From Electrohysterograms. IEEE Trans. Biomed. Eng. 2020, 67, 1133–1141. [CrossRef] [PubMed]

33. Yan, L.; Ding, H.; Zhang, L.; Liu, J.; Fang, X.; Fang, Y.; Xiao, M.; Huang, X. Machine Learning-Based Handovers for Sub-6 GHz
and mm Wave Integrated Vehicular Networks. IEEE Trans. Wirel. Commun. 2019, 18, 4873–4885. [CrossRef]

http://doi.org/10.1007/s11042-016-4132-5
http://doi.org/10.1109/TNNLS.2021.3066381
http://doi.org/10.1016/j.ins.2021.01.086
http://doi.org/10.1016/j.neunet.2020.10.014
http://www.ncbi.nlm.nih.gov/pubmed/33227665
http://doi.org/10.1109/ACCESS.2021.3049444
http://doi.org/10.1109/TBME.2019.2930618
http://www.ncbi.nlm.nih.gov/pubmed/31352329
http://doi.org/10.1109/TWC.2019.2930193

	Introduction 
	Related Works 
	The Problem of Selecting the Next Network 
	Proactive Cross-Layer Framework Design Based on Artificial Intelligence Techniques for Seamless Handover in Mobile WLAN Environments 
	Network Selection Process according to the Proactive Cross-Layer Protocol 
	Model of Naive Bayes 
	Model of Support-Vector Machines 
	Model of Multinomial Logistic Regression 
	Model of Decision Tree 
	Model of k-Nearest Neighbors 

	System Architecture 
	Decision Taking Procedure 
	Data Acquisition 
	Implementation and Hyper-Parameters 

	Results 
	Discussion 
	Conclusions and Future Work 
	References

