
����������
�������

Citation: Ma, E.; Fu, X.; Wang, X.

Scalable Path Search for Automated

Test Case Generation. Electronics 2022,

11, 727. https://doi.org/10.3390/

electronics11050727

Academic Editors: Katarzyna Antosz,

Jose Machado, Yi Ren, Rochdi El

Abdi, Dariusz Mazurkiewicz, Marina

Ranga, Pierluigi Rea, Vijaya Kumar

Manupati, Emilia Villani and Erika

Ottaviano

Received: 14 January 2022

Accepted: 23 February 2022

Published: 26 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Scalable Path Search for Automated Test Case Generation

Enze Ma 1,*, Xiufeng Fu 2 and Xi Wang 3

1 School of Information Science and Technology, Beijing Forestry University, Beijing 100107, China
2 Beijing Institute of Computer Technology and Application, Beijing 100854, China; xiufengfu1@gmail.com
3 School of Computer Technology and Science, Shanghai University, Shanghai 200444, China;

wangxi@t.shu.edu.cn
* Correspondence: joseph9morgan@bjfu.edu.cn

Abstract: Test case generation is an important task during software testing. In this paper, we present
a new test-case generation framework for C programs. This approach combines dataflow analysis and
dynamic symbolic execution together, and more importantly, it efficiently searches the program path
space for potential faults based on the tabu search strategy and the program fault statistics. Unlike
the traditional symbolic execution, which explores the program space exhaustively and is difficult to
apply to complicated programs effectively, our approach automatically explores the feasible paths of
hidden faults with high probability. The scalable and efficient path search strategy facilitates bug
finding with much fewer test cases generated. We implemented this approach, and the experimental
results presented in this paper are attractive.

Keywords: test-case generation; symbolic execution; heuristic path selection

1. Introduction

The most commonly used technique for validating the quality of software is testing,
which is a labor intensive process. It occupies more than half the total costs during software
development and maintenance [1]. Among the various kinds of testing techniques, unit
testing is popular for checking the aspects of the implementation for software component
under test. However, it is a tedious task for programmers to write test cases manually.
However, manual test cases are difficult to evaluate by coverage criteria, such as branch
coverage, path coverage, etc.

Symbolic execution [2] is a well-known technique to automate test-case generation.
Instead of supplying concrete inputs to a program, symbolic execution supplies symbols
that represent arbitrary values. Dynamic symbolic execution [3–5] is proposed to inter-
twine concrete and symbolic execution together in a way that analyzes program behaviors
dynamically for automatically generating new test inputs systematically. Though dynamic
symbolic execution improves the efficiency of generating test cases to an extent, it is still
difficult to be applied to complicated or large programs. The main reason is that dynamic
symbolic execution intends to explore the whole space that may impose the state explosion
problem. In fact, the testers do not need to generate all possible test cases for the program
under test, because what we care about is those test cases, which may lead to program
faults with high probability.

To overcome the weakness of existing techniques, we present a new test-case gener-
ation framework. This framework combines dataflow analysis with dynamic symbolic
execution and heuristically searches for program path space based on the tabu search
strategy and the program fault statistics. This approach relies on the program code itself
and directs program paths to automatically follow the ones that most likely contain faults,
instead of searching the whole feasible path space. These techniques enable us to find
more possible errors in programs with fewer test cases generated, and it scales well w.r.t.
program sizes (about 5000 lines per unit). As a result, this approach can be applied to
real-world programs to find potential errors with reasonable costs.

Electronics 2022, 11, 727. https://doi.org/10.3390/electronics11050727 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050727
https://doi.org/10.3390/electronics11050727
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11050727
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050727?type=check_update&version=2

Electronics 2022, 11, 727 2 of 22

The main contribution made by this approach is the path-selection model with which
the exploration process will be likely to search sub state spaces where the probability
of hidden errors is high based on the statistical results. Figure 1 shows a diagrammatic
comparison between a pure dynamic symbolic execution technique (CUTE [3], DART [4])
and our approach. The boxes stand for the entire program state space, and the small circles
distributed in boxes are possible bugs hidden in the state space.

Figure 1a shows the dynamic symbolic execution search, and this will exhaustively
explore continuous parts of the state space. In this way, this technique may be stuck in
parts of program space while other bugs cannot be uncovered in the left space where there
may be more possible bugs. Based on the bug statistical report [6], those possible bugs are
not in a uniform distribution in the program space. Figure 1b shows our approach, which
will search those sub-spaces where the possibility of hidden bugs highly relies on statistic
results.

Consequently, our approach does not search the program space in a uniform way, and
it works as an intelligent searching technique to some extent to further improve the search
quality. The other advantage of adopting the tabu heuristic [7–10] is to keep the search
process from becoming stuck in sub-spaces, as a tabu list can help escape from the local
search space.

This paper is organized as follows. We present a motivating example in Section 2.
Section 3 describes the test-case generation framework. Section 4 presents our algorithm
for effective path selection and discusses how to apply the tabu search strategy in order
to find potential defects more efficiently. Section 5 discusses the related work. Section 6
reports the experimental results that we obtained with the implementation of our approach.
The last section concludes the study.

Figure 1. Pure dynamic symbolic execution vs. our approach. Here (a) shows the dynamic symbolic
execution search will exhaustively explore continuous parts of the state space, and (b) shows our
approach will search those sub-spaces where the possibility of hidden bugs highly relies on statistic
results.

Electronics 2022, 11, 727 3 of 22

2. Motivating Example

We illustrate the benefits of our approach using a simple example. The code fragment
is listed in the following, where there exists a pointer misuse in the else branch, which may
lead to a runtime error. The runtime error of accessing null pointers takes place when there
is only one node in the linked list.

struct Node {
int v;
struct Node *next;

};

struct Table {
int a[1000];
struct Node *p;
int cnt;

};

void delete_from_table(struct Table *p_table) {
struct Node *p1;
int i;
if(p_table->p == NULL){

for(i = 1; i < p_table->cnt && i < 1000; i++)
p_table->a[i - 1] = p_table->a[i];

}
else{

p1 = p_table->p->next;
p_table->p->next = p1->next;
p_table->p->v = p1->v;
free(p1);

}
p_table->cnt--;

}

The first step of using our approach is to instrument the program under test. For
instance, the function delete_from_table under test will be transformed into the following,
where the for structure is replaced by goto statement with an if one. Note that there are
three embedded if branches in the code after the transformation. Thus, the path analysis
can rely on the branches of if in a uniform way. On the other hand, some instrumented
code snippets are inserted into the original in order to collect program information based
on the CIL tool [11]. For simplicity, we omit those instrumented code snippets here.

void delete_from_table(struct Table *p_table) {
struct Node *p1;
int i;
if(p_table->p == NULL){

i = 1;
while(1)
{

if(i < 1000){
if(i < p_table->cnt)

;
else break;

}
else break;
p_table->a[i - 1] = p_table->a[i];

Electronics 2022, 11, 727 4 of 22

i++;
}

}
else{

p1 = p_table->p->next;
p_table->p->next = p1->next;
p_table->p->v = p1->v;
free(p1);

}
p_table->cnt--;

}

For choosing those paths that contain potential bugs with high probability, we are
supposed to evaluate the paths in the search space. Thus, we designed a path selection
model dealing with the evaluation and choice of those feasible paths. We also designed
a path analysis engine, which helps in the analysis of the paths. To achieve this goal, the
engine uses control flow graph (CFG) to facilitate the analysis process. Figure 2 shows the
corresponding control flow graph of function delete_from_table.

However, it is impossible to evaluate each path in the search space; thus, we construct
the control flow graph of the corresponding program by which the paths can be evaluated
based on some criteria. For instance, Figure 2 shows the CFG of the example, where each
branch path has been evaluated with a weight that is computed by a simple error-statistical
model that will be explained in detail in Section 4. For instance, the path in the else part of
the transformed program is of the highest value 4.03. With the beginning of the process of
test-case generation, a memory is allocated dynamically and the corresponding address is
assigned to the pointer p_tabale.

Figure 2. Control flow graph.

Electronics 2022, 11, 727 5 of 22

The initial values of p_table−> p and cnt are null and 0, respectively. Then, the path
analysis engine first enters the if branch where (p_table−> p == NULL) holds and goes into
the while loop afterwards. If we denote the if branch as 1 and else as 0, then we obtain an
initial path whose first two elements are recorded as 1, and the third element is 0. Figure 3a
shows this scenario, where the array stands for a real program path, and the triangle in a
array represents the uncovered parts in the path.

Figure 3. The search process. (a) shows a real program path. (b) shows a test case generated for
executing of the chosen path.

In this situation, we obtain three neighbors of the current execution path. Based on
our path-selection model, the next path whose weight is the highest will be selected to be
explored. As a result, the path that goes into the outmost else branch will be selected. In
Figure 2, the path in which the first element is 0 is chosen. As a result, the error in this path
will be found in only the second execution under our path-selection model.

On the other hand, if we use the depth-first search instead of path-selection model we
adopt, the path analysis engine will first enter the if branch and stay there for thousands of
iterations because of the loop structure in that branch. To generate the test case that leads to
the path to be explored, the dynamic symbolic execution is used in the test-case generation
framework. During the execution of the current path, the path analysis engine collects the
branch constraints at the same time.

When the next path is chosen, new test input data are generated by solving the cor-
responding constraints. For instance, by solving the constraints !(p_table−> p == NULL),
the test case in Figure 3b is generated, which directs the execution of the chosen path.

3. Test Case Generation Framework

There are two main parts in the test-case generation framework shown in Figure 4.
The first handles the dataflow analysis, which provides information for the second part.

Electronics 2022, 11, 727 6 of 22

In this part, we designed a dynamic def-use chain and a path execution tree as the engine
infrastructures. The second part is the path analysis engine, which is the core part of
this framework. The dynamic symbolic execution is integrated to generate test cases
automatically. During the process of path exploration, tabu search is applied to select paths
to be analyzed.

The process of static code analysis instruments the program unit under test and
collects the path information for path selection using CIL [11]. The path analysis engine
first generates test case inputs from the results of the solving constraints recorded in the
previous executions. In the initial iteration, the test case input is generated randomly. The
second step of the engine takes the current test input generated to execute the instrumented
codes using the dynamic symbolic execution technique, which runs the program both in
concrete and symbolic value states. Third, during the exploration of the path space, the
engine smartly selects the next path to be executed and analyzed based on the tabu search
strategy. If a new path is selected successfully, the engine enters the process of constraint
solving, which generates the new test input to direct the next path execution. Otherwise, a
test report is generated for the testers.

Figure 4. Test case generation framework.

3.1. Dynamic Symbolic Execution

Traditionally, symbolic execution supplies symbols as input data to the program
under test to represent arbitrary values. Our approach takes both symbols and normal
concrete value as the test input. The greatest advantage of this approach is that the

Electronics 2022, 11, 727 7 of 22

program under test can be executed normally, and there is no need to implement a special
simulator to execute it symbolically. This technique maintains two representation forms for
variables dynamically: the symbolic form is denoted by sym_structure, and the concrete
one denoted by con_structure. A dynamic def-use chain is implemented by the dataflow
analysis technique, which is used to collect and record data information and path constraints
during dynamic symbolic execution.

Dynamic symbolic execution is a classical test generation technique, where the pro-
gram under test starts from some random inputs and is then executed through gathering
symbolic constraints on inputs from predicates in branch program points; a constraint
solver is then used to generate another input to guard different feasible path executions.
On the other hand, static symbolic execution [12] does not need to execute programs under
test, and it uses a static analysis technique to collect constraints information. However,
this approach does not perform well as complex programs always need to call APIs or
functions provided by systems, but is not easy for static analysis to abstract and reason
about complex functions effectively.

3.2. Path Execution Tree

We designed the path execution tree to record explored paths; it is the basis of our
path-selection model. This tree grows dynamically and it is a persistent data structure
during the whole process of test-case generation. When a branch statement is encountered
during the symbolic execution, the branch condition is collected, and a node is added to
this tree if the corresponding child of the current node is NULL. Then, the current node is
set to be its false branch or true branch depending on the choice of the branch statement.

Each path from root of the tree to a leaf in the execution tree stands for a real execution
path in the program under test. As we use CIL to instrument the tested program so that
any branch statement in the transformed program is a simple two-choice statement, a
sequence of “1|0” can be used to denote a path. A node in the execution tree has two
children representing the false branch and true branch, respectively. The process of building
an execution tree is shown in Figure 5.

We take the program used in Section 2 as an example. The top part of Figure 5 shows
the test input data. First, the branch statement “if(p_table→ p == NULL)” encounters, the
branch condition of current node in execution tree is set to be “p_table→ p == NULL”,
and then the current node becomes to be the true branch of the previous current node. The
next branch statement encountered is “if(i < 1000)”.

The condition of this statement is used as the branch condition of the current node in
the execution tree. In this case, the value of i is 1, and thus the true branch is taken, and
the current node turns to the true branch of the previous current node. Then, the engine
executes the branch statement “if(i < p_table→ cnt)”, and the branch condition of current
node is set to be “i < p_table→ cnt”. The concrete value of i is 1 and “p_table→ cnt” is 0.
Therefore, the false branch is taken.

When this symbolic execution terminates, the path covered in this iteration can be
presented as a sequence “110”. Path constraints can be gained from the execution tree. For
example, as Section 2 shows, the next path selected to cover is “0”. Thus, the path constraint
directing this path is “!(p_table→ p == NULL)”. If the path selected to cover is “111”, the
path constraints will be “(p_table→ p == NULL) ∧ (i < 1000) ∧ (i < p_table→ cnt)”.

Electronics 2022, 11, 727 8 of 22

Figure 5. Path execution tree.

4. Path Selection Model

When the program unit under test is complicated, exploring every path in the program
state space is an impossible job for industry applications. To alleviate the problem, we

Electronics 2022, 11, 727 9 of 22

present our path selection model and integrate it into the path analysis engine previously
mentioned. This algorithm uses tabu search and a simple statistical model for efficient and
effective path selection.

4.1. Tabu Search

We use S to denote the search space of the problem under consideration, which could
be either finite or infinite. For a point s ∈ S in the space, N (s) is called the neighborhood
of s ∈ S defined by the problem, N (s) ⊆ S . A step of the tabu search algorithm is
defined as moving from the current point s to a neighboring point s′ ∈ N (s), s′ 6= s.
Function eval : S → R is a function to evaluate the quality of the solutions. The general
process of the tabu search algorithm is described in Listing 1.

Listing 1. Basic scheme of the tabu search.

1 s = RandomlyGet(S) ;
2 while (!StopingCondition) {
3 who = null ;
4 local = MIN_VALUE ;
5 for each (s′ ∈ N (s)) {
6 if (s′ /∈ tabu list∧ eval(s′) > local)
7 who = s′ ;
8 local = eval(s′) ;
9 else if (Aspiration(s′))

10 who = s′ ;
11 local = eval(s′) ;
12 }
13 s = who ;
14 }

The tabu search algorithm maintains a list (tabu list) recording the features of the
last η visited solutions, preventing the searching process from revisiting solutions with
such features, where η is called the tabu tenure length. The search process selects the best
solution ŝ ∈ N (s) that is not recorded in the tabu list as its target of the next step. To
make the searching process more robust, an aspiration criteria can be introduced to accept
solutions rejected under certain conditions. One widely used form is that when s′ ∈ N (s)
is rejected but evaluation function eval(s′) is better than the best solution s∗ ever found
before. At this time, s′ is accepted as the next visiting point despite of its tabu state.

4.2. Search Space

The search space in the path-selection model is based on the path execution tree that
we designed earlier. The search space is composed of all the feasible paths in the path
execution tree. For example, Figure 6a denotes a path execution tree with a height of 4. If
we use 0 to denote the false branch and 1 as true branch, then a sequence of digital 0 or 1
denotes a path. In Figure 6a, the path with thick dark can be denoted the sequence 1011.
Thus, all the possible combinations of digital 0 and 1 form the search space in our model.
With the search space fixed, we define the neighborhood of element v denoted as N (v). To
illustrate the construction of the neighborhood, we use the same example in Figure 6a.

The construction of the neighborhood of element v begins with changing the last bit
of v. In Figure 6b, v1 is one of the neighborhood of v from which only the last location of
v1 is different. The second neighbor of v is v2, which is different with v on the last second
location. Note that the last bit of v2 is set a triangle, which denotes that the last location is
unknown. The reason is that the execution tree is generated dynamically, and thus the path
analysis engine does not know what other exact paths should be executed except for the
current path denoted as v.

Electronics 2022, 11, 727 10 of 22

Thus, v2 actually denotes a branch of unexplored paths. Similarly, v3 and v4 in the
neighborhood of v are constructed like v1 and v2. As a result, although the current path v
has only four neighbors, and each neighbor represents a set of paths. How to choose a path
to be performed from a neighbor will be discussed in the following parts.

In general, if n denotes the height of the execution tree without a circle, a point in the
search space has exactly n elements as its neighborhood. If there are circles denoting itera-
tions existed in the tree, we can expand the path circles as two-path branches recursively.
The loop structure may lead to the infinite paths in the search space, and one advantage of
adopting tabu search can avoid being stuck in the loop structure based on the path-selection
model.

Figure 6. Neighborhood for one path. (a) denotes a path execution tree with a height of 4. (b) shows
The construction of the neighborhood of element v.

4.3. Path Evaluation Function

To decide which neighbor of the current path should be chosen, the path evaluation
function should be designed carefully. The basic idea behind the path evaluation function
eval is that the errors hidden in programs are not universally distributed—they may
obey some statistical rules. Thus, our evaluation function is based on bug taxonomy and
statistics [6] summarized for a large number of software projects using a statistical approach.
Here, we enumerate the bug taxonomy considered in Table 1.

This table shows that the bug statistics model from [6], which covers from the re-
quirement to testing phases. We only list the bugs related to the usage of statements and
compute the corresponding weights based on the statistics column. For example, bugs
related to pointers take up almost half of all the syntax-related bugs. This tells us that

Electronics 2022, 11, 727 11 of 22

the intensive uses of pointers may introduce more bugs and the path analysis engine is
intended to set a higher priority to explore those program codes.

Table 1. Bug statistics.

Bug Taxonomy Abbreviation Statistics Weight

pointer po 7.50% 0.47
predicate pr 3.46% 0.22
loops lo 0.74% 0.05
arithmetic evaluation ae 1.72% 0.11
boolean evaluation be 1.03% 0.06
assignment as 1.56% 0.09

To compute the usage of statements listed in Table 1, we collect those information on
the corresponding control flow graph. A CFG can be represented as 〈N, E〉, where N stands
for the set of nodes and E is a set of edges. Nodes in this graph are used to denote those
branch statements, such as the if-else and loop statements; the directed edges connecting
the nodes show the direction of programs running logic and keep records of a sequence
of instructions that lie between the connected branch statements. Figure 7 shows the CFG
with the corresponding program, where a tuple attached on the edge denotes the usage
information in the current branch. For instance, tuple {1, 1, 0, 0, 1, 0} on the false branch
denotes that there is one pointer, one predicate and one boolean evaluation in this path.
Thus, the tuple is the usage time of pointers, assignments etc.

Figure 7. CFG with statement usages.

Next, we define the path evaluation function eval(v), which is a key to the path
selection algorithm, which will be introduced in the next section. Note that function eval(v)
has a parameter v, which is actually a point in search space. As shown in Figure 6, a point v
denotes a set of unexplored paths, and eval(v) will obtain the highest weight from this set
of paths as the weight of v. Listing 2 shows the algorithm of evaluation function eval(v).

Function eval(v) calls the recursive procedure max_tuple, which will always select the
branch with the higher weight. Function eval_tuple computes the weight of the correspond-
ing path, where the normalization mechanism is applied to reduce the interference of the
abnormal data. When dealing with a loop structure, we select and evaluate two different
paths. One is the path that does not enter the loop, and the other is the path that goes into
the loop once. Thus, the weight of a point containing loop structure can be computed easily.
The weights in the CFG are pre-computed in our model, and this technique can improve
the efficiency of the search process very much.

Function eval is like the algorithm of transversal of a binary tree, and the complexity
of eval is linear with the number of nodes in the tree. It does not need to enumerate all
the possible paths in the search space. Thus, the computing of the weight of the points
in the neighborhood of v is quick. Note that the path with highest weight may not be an
executable one for the current unit under test. The reason for this is that we do not analyze

Electronics 2022, 11, 727 12 of 22

the reachability property of the path, and it can be solved by path reachability analysis
before using our test-case generation framework.

Listing 2. Evaluation function.

1 /*
2 tuple : statistical information
3 {po, pr, lo, ae, be, as}
4 tuplei : the i field of tuple
5 node : a node in CFG
6 node→ tuple :
7 statistical information of node
8 node→ false_branch :
9 false branch of node,

10 also a node of CFG
11 node→ true_branch :
12 true branch of node,
13 also a node of CFG
14 eval : evaluation funciton
15 */
16
17 procedure eval
18 input : node
19 output : value
20 value = eval_tuple(max_tuple(node))
21
22 procedure max_tuple
23 input : node
24 output : tuple
25 if (node == NULL)
26 return < 0, 0, 0, 0, 0, 0 >
27 else
28 tuple1 = max_tuple(node→ false_branch);
29 tuple2 = max_tuple(node→ true_branch);
30 if (eval_tuple(tuple1) > eval_tuple(tuple2))
31 return node→ tuple⊕ tuple1;
32 else return node→ tuple⊕ tuple2;
33
34 procedure eval_tuple
35 input : tuple
36 output : value

37 u = ∑6
i=1 tuplei

n ;

38 œ =

√
∑n

i=1(tuplei−u)2

n ;
39 ∀i ∈ [1, 6], tuplei =

tuplei−u
œ ;

40 value = ∑6
i=1 tuplei ∗ wi;

4.4. Path Selection Algorithm

Based on the previous discussions, we present the path selection algorithm, which is
actually a variant of tabu search. The basic idea of this algorithm is to choose the best point
not in the tabu list from the neighborhood of the current point. The tabu list can keep the
search process from falling in the local search space. For instance, this algorithm can easily
escape from the loop structure, while the depth-first search used in CUTE or DART will
recursively perform in the loop. If the loop is infinite, then the search will not terminate.

Electronics 2022, 11, 727 13 of 22

Here, the best point refers to the path with highest bug-hidden probability based on our
computation model. The algorithm framework is presented in Listing 3.

Listing 3. Path selection algorithm.

1 /*
2 cp : current path
3 nps : all neighbors of cp
4 bnp : best element in the neighborhood
5 gbp : globally best element
6 : tabu length
7 */
8
9 procedure : path selection

10
11 cp = Initial(); gbp = cp; base =

√
|cp|; TabuLen =

12 RandomGetFrom(0.9 ∗ base, 1.1 ∗ base);
13
14 while(1){
15 if (stopCondition())
16 break;
17 nps = getNeighborhoodPaths(cp);
18 nps = removeVisitedorTabuedElements(nps);
19 if (isEmpty(nps)){
20 = 0.9 ∗ ;
21 continue;
22 }
23 select bnp from nps;
24 if (eval(bnp) > eval(gbp)){
25 = 1.05 ∗ ;
26 gbp = bnp;
27 add other paths in nps into tabu list;
28 }
29 randomly select a real executable path from bnp

The current path cp is an executable one performed by the last test case. nps denotes all
neighbors of cp, each of which is a set of paths containing both performed and unperformed
paths. The paths in the element of nps have the same path prefix explored, which was
discussed previously. We use bnp and gbp to denote the best element in the neighborhood
and the globally best one respectively. Note that bnp and gbp both stand for a bunch of
paths with the same path prefix.

The algorithm begins with initializing tabu length η with a random value near to the
square root of the length of the path. Then, nps are obtained from the current path cp, and
those paths explored in nps are removed. If all the paths in search space are covered, then
the algorithm terminates. The path is marked as a covered one if the symbolic execution
finishes (i.e., an executed path), or a constraint solving fails (i.e., an unreachable path). In
practice, we can set other stop conditions such that a predefined search height is arrived.

During the searching process, if all the possible moves become tabu ones and thus
cannot find a element in nps, η will be reduced by a factor, say 0.9, to help some points to
escape from its tabu state faster. When the best path bnp ever found is better than the global
best path gbp in one iteration, η will be increased by another factor, say 1.05, to help the
searching process to spread to further areas from the current local area. All the neighbors
except bnp in the current path will be added to tabu list, thus, ensuring that the searching

Electronics 2022, 11, 727 14 of 22

process will travel in the local space in the next η iterations, where η determines how long
the tabu state of a specific point persists.

The key aspect for selecting a path containing possible potential errors to be executed
in tabu search is the evaluation function: eval : cp → R+, which estimates whether the
current node in the search space can be chosen as the point for the next iteration. The design
of eval has been discussed previously. Though the evaluation function eval is dynamically
computed from the corresponding CFG, the computation speed of evaluation function is
very fast because it is linear to the number of elements in the search space.

As a neighbor of a the current path may be a branch of paths in tabu search space, we
randomly choose the path as a next point. It is interesting that though the chosen path to be
executed is not the one with the highest weight, the later iterations may still be performed
in the local space where the highest weight path exists. If the path with the highest weight
is performed, the later iteration will escape from the current local space and goes into the
other parts of the search space.

5. Experimental Evaluation

We developed the C Analysis and Unit Testing toolkit (CAUT) based on the approach
proposed here. We next present an experimental evaluation on CAUT. The evaluation is
designed to answer the following research questions:

• RQ1. Is CAUT more effective and efficient than state-of-the-art testing and symbolic
execution techniques?

• RQ2. Can CAUT effectively solve practical problems in real-world scenarios?

5.1. Results to RQ1
5.1.1. Settings
Benchmarks

We take open sourced programs as our benchmarks. These benchmarks are shown in
Table 2. These benchmarks are mostly related to real-world software systems, mathematical
computations, or string parsing. They also contain a large number of branches, suitable for
measuring the effectiveness/efficiency of a testing technique in exploring program paths.
We mark a total of 96 target program paths and guarantee that each path can be hit by at
least one test input.

Table 2. Benchmarks used in the evaluation.

Program Description Target

ReachSafety Programs for reachability analysis 8
MemorySafety Programs for verifying memory safety 11
NoOverflows Programs for checking overflows 13
Termination Programs for checking terminations 12
SoftwareSystems Programs collected from real software systems 21
StrictMath Math Libraries 12
Math Math computations 6
FloatingDecimal Floating point calculations 7
BigInteger Large integer calculations 6

Techniques under Comparison

We compared CAUT against two state-of-the-art testing techniques–AFL [13] and
CUTE [3]. AFL is a fuzz testing framework. Given an objective program under testing, AFL
implements an interface that obtains its code coverage and performs fuzz testing of the
program. Specifically, AFL conducts coverage-guided, mutation-based gray-box fuzzing of
the benchmarks.

CUTE is a dynamic symbolic execution tool. Like many symbolic execution tools,
CUTE explores the possible execution space of an entire program by solving path con-

Electronics 2022, 11, 727 15 of 22

straints. For every possible execution path, CUTE calculates whether it is solvable, and if
so, generate the input(s). We adopt Microsoft’s Z3 solver as the constraint solver for CUTE.

Metrics

We use two metrics to evaluate the effectiveness and efficiency of the testing tech-
niques:

1. Hit rate. The hit rate is the percentage of target program paths hit by tests generated
to the total number of target program paths. The higher the hit rate, the better the
testing technique.

2. Time/iterations. For each target program path, we count the time spent when it is
first hit, or the number of iterations (i.e. how many inputs have ever been produced).
The shorter the time spent, or the fewer the iterations, the more efficient the testing
technique.

To answer the two research questions, we compared the three techniques in their hit
rates, the time spent and the numbers of iterations. The experiment was performed on x86
Ubuntu 16.04 LTS virtual machine. Due to the randomness of test input generation, we
repeated the experiment five times and calculated the mean values of each technique.

5.1.2. Result Analysis
CAUT vs. AFL

Let AFL be used for 24 h. In 24 h, AFL generated millions of test cases and triggered 67
out of 92 target program paths, achieving a hit rate of 72.8%. During 24 h, CAUT triggered
all of the 67 target program paths triggered by AFL, and also triggered another 10 target
program paths, achieving a hit rate of 83.7%. Therefore, CAUT outperforms AFL in the hit
rate.

For the ten program paths, we recorded CAUT’s time spent and numbers of iterations,
as Table 3 shows. Note that the ten target program paths are not hit by AFL but only by
CAUT. Indeed, after running for an hour or even a few minutes, CAUT can hit many target
program paths that cannot be hit by running AFL for 24 h. Meanwhile, CAUT and AFL are
of similar speed in generating tests (about 30 iterations per second).

Sixty seven program paths are hit by both techniques successfully. We recorded the
number of iterations of CAUT and AFL. CAUT is 82.5–99.7% less than AFL in the number
of iterations, with an average of 97.2%. That is, CAUT produces much useful input than
AFL. As the two techniques are of similar speeds in generating test inputs, it can be seen
that CAUT outperforms AFL by 36× in the efficiency on average.

One reason for this is that CAUT has the assistance of Tabu search and does not need
to explore a large number of redundant execution paths in the program. Furthermore,
during the process of exploring the search space, AFL cannot distinguish the quality of
the inputs, while CAUT can choose promising ones with low costs. Therefore, let the cost
of calculation be not very large. CAUT can greatly increase the hit rate and efficiency of
exploring target program paths.

Electronics 2022, 11, 727 16 of 22

Table 3. Results of CAUT on 10 target program paths not hit by AFL within 24 h.

Target CAUT AFL
Hit Time Iterations Hit Time Iterations

FloatingDecimal-readString-1 49 min 55 s 105.4 k >24 h 2.87 M
FloatingDecimal-readString-2 2 min 21 s 3060 >24 h 2.87 M
FloatingDecimal-parseHexString-1 13 min 59 s 25.8 k >24 h 2.98 M
FloatingDecimal-parseHexString-2 25 min 45 s 55.2 k >24 h 2.98 M
StrictMath-remPiOver2-1 1 min 46 s 3499 >24 h 1.74 M
StrictMath-remPiOver2-2 2 min 40 s 5244 >24 h 1.74 M
StrictMath-sinh-1 1 min 38 s 2969 >24 h 1.74 M
BigInteger-bitLength-1 10 min 32 s 22.4 k >24 h 2.21 M
BigInteger-divide-1 1 h 12 min 130.0 k >24 h 2.21 M
BigInteger-Init-1 56 s 1184 >24 h 1.79 M

CAUT vs. CUTE

CUTE has a general requirement that the program’s input needs to be symbolized. We
keep 26 target program paths meeting the requirements for evaluation. We set the time
budget for testing of each benchmark to 20 min. The experimental results are shown in
Table 4. It can be seen that CAUT’s hit rate is better CUTE after 5 min and continues to
increase, and CUTE only triggered 12 of the target program paths.

A further analysis of the results shows that, for most of programs, CUTE produces the
final results or exits with errors within 2 min (e.g., CUTE cannot process library functions).
CUTE fails in generating test inputs for some programs within 20 min due to the path ex-
plosion problem. Four target program paths are not hit by CUTE because of the incomplete
searches by symbolic execution. This shows that CUTE’s ability will be greatly bounded
by constraint solving when facing real-world programs—CUTE’s strict requirements on
inputs make it not suitable for analyzing many programs. Comparatively, CAUT is both
effective and efficient in hitting specific target program paths–its hit rate is higher than
that of the coverage-guided fuzzing tool AFL; it is also more effective than the symbolic
execution tool CUTE.

Table 4. Comparison of hit rates between CAUT and CUTE over time.

Technique Time
2 min 5 min 10 min 20 min

CAUT 31.5% 66.2% 79.2% 96.2%
CUTE 46.2%

5.2. Results to RQ2

Here we describe the testing process in detail by the memory allocation function
kmalloc from earlier Linux kernel.

5.2.1. Settings
Subject Program

We use the kmalloc function from earlier Linux kernel release as the experimental
source code. The kmalloc function uses bucket allocation algorithm. First, the function
searches an array of predefined bucket lists that can fit the allocation unit from 32 bytes
to 4096 bytes. If the appropriate bucket list is not found, the function will then try to use
page allocation functions for retrieving a sequence pages of memory to fit the request, and
otherwise the function will search every allocation descriptor in the bucket list for free
space and return the address of first free space it found.

When all allocation descriptors in the list are out of memory, the function will check a
global variable free_bucket_desc for an unused allocation descriptor. If there is no unused

Electronics 2022, 11, 727 17 of 22

descriptor, the function will request one 4096-byte page from system and initialize the
page to 256 allocations descriptors and add them to free_bucket_desc. After finding and
adding an unused descriptor to the bucket list, the function requests another 4096-byte
page, associates the unused descriptor and the page of memory and finally returns the free
memory space to the caller of kmalloc. The size of kmalloc is about 1200 lines.

Test Preprocessing

First, in order to manage all variables that can affect the execution paths of the program,
we transform all global variables to function parameters. Then, certain mock functions are
introduced instead of those functions that cannot be managed by the testing tool but may
affect the execution results. To evaluate the ability for both CUTE and CAUT, we injected
three faults into kmalloc under test and checked if these were detected by the algorithms
we evaluated. The fault form we injected here was assert(0). The first fault injected was
placed in a mock function, which was used to simulate page allocation.

The second one was placed in the code of processing page allocation fault. The last
one was placed in the branch that handles memory allocation requests larger than 4096
bytes.

5.2.2. Result Analysis

Table 5 shows some interesting results. CUTE found the first two faults more quickly
than CAUT. However, CUTE missed the third one, while CAUT caught it in short iterations.
In this experiment, we found the test input of parameter len of kmalloc from CUTE was
always below 32, and for every iteration almost all CUTE attempted to do was to extend
the bucket list for 32-byte allocation units. It went into a situation of selecting paths from
an unbounded growth of alternatives targeting at comparing if there existed free spaces in
bucket list and fell into searching a local space.

The first and second faults were placed in the paths that all requests in the range
from 0 to 4096 could go through, and more importantly the path had an unbounded set
of alternative successive paths on comparing list items, while the third fault was far from
this path. The depth first algorithm always attempted to search at the end of the current
execution path, which is why CUTE could find the first two faults quickly but could not
find the third one.

Table 5. Experiment results.

Algorithm under Test Sample Fault Found Iteration Passed

CUTE
S1 T 3
S2 T 4
S3 F N/A

CAUT
S1 T 33
S2 T 42
S3 T 9

The first path CAUT found was the same as the one CUTE found. Then, according to
the tabu search we adopted, CAUT realized alternative paths related to input parameter
len that had higher priority. Thus, CAUT would attempt to generate different values of len
so as to not result in the situation that CUTE met. This experiments showed that our path
selection algorithm can explore more paths in the search space within a reasonable time.

We also used SGLIB library [3] as the experimental source codes. To evaluate the
ability of finding bugs for both algorithms, we planted an artificial fault by assert(0) in the
programs under test. Figure 8 shows a number of runs needed by the CUTE and CAUT
algorithms, respectively. The horizontal line above in Figure 8 denotes the maximum runs;
here, the number is set to one million. A point in the lines of Figure 8 represents the fault
located after a number of runs for a fixed size of program.

Electronics 2022, 11, 727 18 of 22

Figure 8. Experimental results.

The line that represents our algorithm grows steadily with the increase of size of
programs while the one representing the CUTE algorithm rises and falls dramatically.
In some cases, CUTE runs out of the maximum number because of its search strategy.
This shows that the path selection algorithm we designed performed very well in these
situations, and it can avoid falling into a local search space without reducing the ability of
finding bugs.

6. Related Work

Automating unit testing is a great challenge and is still a dream for most software
vendors. One key obstacle for achieving automating unit testing is how to generate
appropriate test inputs. Many methodologies [4,14–16] have been devised in recent decades.
Symbolic execution [2,17–19] is a traditional approach in static test-case generation, which
was initially proposed by James C. King in 1976. By this methodology, a program is
analyzed to build an execution tree without actually executing the program. The result tree
is complete enough to be explored to find possible bugs.

Every path along the tree is a set of constraints that can affect the execution of the
program. By using a theorem prover, the satisfiability of constraints can be reasoned [20].
Unfortunately, due to the limitations of theorem provers, a constraint containing statements,
such as function calls, is not solvable. The exclusive use of symbolic execution cannot
process pointers or complex data structures. For example, Symstra [21] cannot handle such
code that contains array indexing with variables.

Dynamic test-case generation [22] is a more practicable approach. It can be treated
as a combined technique to an extent by applying static analysis, symbolic execution and
constraint solving. It executes the target program repeatedly, usually starts with random
inputs and then collects symbolic constraints along the real executing path. By using a
constraint solver, these collected constraints are solved to infer alternative sets of inputs
that direct the next execution paths.

One mainstream of dynamic test generation is adaptive random testing, which aims
to more evenly spread the test cases over the input domain. [23,24]. Cristian Cadar et al.
devised a dynamic bug-finding method [5,25,26]. That method is based on the observation
that code can generate its own test cases at run-time by a combination of symbolic and
concrete execution. Its symbolic execution has a special feature that is bit-level symbolic
execution. Based on this method, a prototype EGT system [25] was developed and applied
to real programs.

DART [4], abbreviation of Directed Automated Random Testing, proposed by Patrice
Godefroid et al., is a typical tool using dynamic test-case generation technique. The goal of
DART is to systematically execute all feasible program paths to detect latent runtime errors.
It adopts an improved random testing technique to achieve better coverage. Systematic

Electronics 2022, 11, 727 19 of 22

Modular Automated Random Testing (SMART) [27] is an extension to DART. SMART
extends DART by testing functions in isolation, encoding test results as function summaries
expressed using input preconditions and output post-conditions and then re-using those
summaries when testing higher-level functions.

The motivation is to achieve a scalable DART, as it is clear that systematically executing
all feasible paths does not fit large programs. CUTE [3] is another tool on dynamic test-case
generation. It mixes dynamic concrete and symbolic execution—called concolic execution,
which is good for dealing with pointers and complex data types and has some optimized
constraint solving algorithms. It supports bounded depth-first search to avoid search space
explosion.

Hybrid Concolic Testing [28,29] extends the CUTE work, where random search and
bounded depth-first search are combined. A bounded depth-first search algorithm attempts
to explore all neighborhoods of the current paths exhaustively, while a random search
algorithm has the ability of reaching deep program branches quickly. The branch coverage
by using this method has a notable boost. Many other concolic unit testing tools do exist,
such as those in [30,31]. Compared to Hybrid CUTE, the difference is the path selection.
We use the tabu strategy instead of random search, and this is an orthogonal improvement
for scalability without reducing the ability to find bugs.

A key problem of dynamic test-case generation technique is the selection of alterna-
tive paths. Although a bounded depth-first algorithm can improve the branch coverage
observably, it is not helpful to find bugs quickly, especially in large and complex program
units. The depth-first path selector has to explore every branch exhaustedly in a fixed and
unpredictable order, as if exploring in the dark. In some extreme situations, such as an
infinite loop, depth-first search may cause a path set explosion and lose other paths as in
the given experiment.

To an extent, bounded depth-first search in program paths can be almost classified as a
random algorithm, because the locations of targets (bugs) as well as the paths are completely
unpredictable to the search algorithm. Fortunately, by some statistical work [6], there is
evidence to show that the bugs appearing in programs are not distributed completely
randomly. The heuristical algorithm introduced in this paper benefits from those previous
works.

The algorithm in this paper combined with control flow graph analysis is good at
selecting latent error-relevant paths as well as avoiding path set explosions. The tabu
search strategy directs coming dynamic executions to alternative paths where bugs may
appear with high probability. The resulting set of test cases generated by our approach was
designed to indicate bugs earlier with greater code coverage.

Tabu search is also frequently used for test generation. Tabu search is a local heuristic
method based on the neighborhood. It prohibits already visited solutions and others
through user-provided rules, significantly enhancing the performance of searches. Tabu
search has been applied to test generation and/or prioritization.

Díaz et al. designed a testing technique that combines Tabu search with the Korel
chaining approach to obtain a specific coverage in software testing [32]. They then presented
a tabu search metaheuristic algorithm for generating structural software tests. The test
generator has a cost function for intensifying the search and another for diversifying the
search. It also combines the use of memory with a backtracking process to avoid becoming
stuck in local minima [33].

Perumal et al. combined Cuckoo and Tabu Search in test data generation [34]. Srivas-
tava et al. presented a search algorithm for the automatic test generation and prioritization
through a clustering technique of data mining [35]. They also presented an approach for
test data generation using the cuckoo search and tabu search algorithms (CSTS) [36]. It
uses the cuckoo algorithm for converging to the solution in minimal time, and uses the
tabu mechanism of backtracking from local optima by Lévy flight.

Zamli et al. proposed a hybrid t-way test generation strategy HHH. HHH adopts
Tabu search as the meta-heuristic and leverages four low level meta-heuristics. HHH is

Electronics 2022, 11, 727 20 of 22

able to adaptively select the most suitable meta-heuristic at any particular time [10]. Yu et
al. generated test cases based on tabu search and genetic algorithm, aiming at improving
the effectiveness of generating test case for algebraic specification [9].

To ensure the quality of current highly configurable software systems, Hasan et al.
presented a search-based strategy to generate constrained interaction test suites to cover all
possible combinations [7]. The strategy generates the set of all possible t-tuple combinations,
and then filters out the set by removing forbidden t-tuples. The strategy also utilizes a
mixed neighborhood tabu search to construct optimal or near-optimal constrained test
suites.

Rathore et al. generated test-data by combining genetic and tabu search algorithms [37].
The approach uses genetic algorithm to generate test-data, supplemented by a tabu search
heuristic in mutation step. It also incorporates backtracking process that moves search away
from local optima. Sharma et al. optimized the cost of testing using Tabu search, which
provides maximum code coverage along with an Aspiration criteria of Tabu Search in order
to optimize the cost and generate a minimum cost path with maximum coverage [38].

Comparatively, our approach combines dataflow analysis with dynamic symbolic
execution and heuristically searches for program path space based on the tabu search
strategy and the program fault statistics. These techniques are combined together, enabling
us to find more possible errors in programs with fewer test cases; it also scales well w.r.t.
program sizes and, thus, can be applied to real-world software systems with reasonable
costs.

7. Conclusions

In this paper, we proposed an interesting approach towards a scalable path search for
the automated test-case generation of C programs. This approach combines dataflow anal-
ysis and effective path selection algorithm with a dynamic symbolic execution framework
together to achieve better efficiency for finding bugs. The path-selection model adopted in
this paper has two advantages. First, based on the path-evaluation function we designed,
the search process can avoid falling into a sub-space without visiting other parts of the
space; second, it is prone to exposing more program faults with less test cases generated
because the path analysis engine searches for those sub-spaces that are more likely to hide
faults.

The preliminary experiments are encouraging. The CAUT tool based on our approach
was developed, and we will attempt further experiments and improve the performance
of the tool at the same time. We are also investigating a new path-selection model that is
based on a dynamic statistics model instead of the static one that we developed here, and
this could help to locate bugs more precisely.

Author Contributions: Conceptualization, E.M. and X.W.; methodology, E.M.; software, E.M.;
validation, E.M., X.W. and X.F.; formal analysis, E.M.; investigation, E.M.; resources, X.W.; data
curation, E.M.; writing—original draft preparation, E.M.; writing—review and editing, X.W. and X.F.;
visualization, X.W.; supervision, X.W.; project administration, E.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Utting, M.; Legeard, B. Practical Model-Based Testing—A Tools Approach; Morgan Kaufmann: Burlington, MA, USA, 2007.
2. King, J.C. Symbolic Execution and Program Testing. Commun. ACM 1976, 19, 385–394. [CrossRef]
3. Sen, K.; Marinov, D.; Agha, G. CUTE: A concolic unit testing engine for C. In Proceedings of the 10th European Software

Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Lisbon, Portugal, 5–9 September 2005; Wermelinger, M., Gall, H.C., Eds.; ACM: New York, NY, USA, 2005; pp. 263–272.

http://doi.org/10.1145/360248.360252

Electronics 2022, 11, 727 21 of 22

4. Sen, K. DART: Directed Automated Random Testing. In Hardware and Software: Verification and Testing, Proceedings of the 5th
International Haifa Verification Conference, HVC 2009, Haifa, Israel, 19–22 October 2009; Revised Selected Papers; Lecture Notes in
Computer Science; Namjoshi, K.S., Zeller, A., Ziv, A., Eds.; Springer: New York, NY, USA, 2009; Volume 6405, p. 4. [CrossRef]

5. Cadar, C.; Engler, D.R. Execution Generated Test Cases: How to Make Systems Code Crash Itself. In Model Checking Software,
Proceedings of the 12th International SPIN Workshop, San Francisco, CA, USA, 22–24 August 2005; Lecture Notes in Computer Science;
Godefroid, P., Ed.; Springer: New York, NY, USA, 2005; Volume 3639, pp. 2–23.

6. Beizer, B. Software Testing Techniques, 2nd. ed.; Van Nostrand Reinhold: New York, NY, USA, 1990.
7. Hasan, I.H.; Ahmed, B.S.; Potrus, M.Y.; Zamli, K.Z. Generation and Application of Constrained Interaction Test Suites Using Base

Forbidden Tuples with a Mixed Neighborhood Tabu Search. Int. J. Softw. Eng. Knowl. Eng. 2020, 30, 363–398. [CrossRef]
8. Rathee, N.; Chhillar, R.S. Model Driven Approach to Secure Optimized Test Paths for Smart Samsung Pay using Hybrid Genetic

Tabu Search Algorithm. Int. J. Inf. Syst. Model. Des. 2018, 9, 77–91. [CrossRef]
9. Yu, B.; Qin, Y. Generating test case for algebraic specification based on Tabu search and genetic algorithm. Clust. Comput. 2017,

20, 277–289. [CrossRef]
10. Zamli, K.Z.; Alkazemi, B.Y.; Kendall, G. A Tabu Search hyper-heuristic strategy for t-way test suite generation. Appl. Soft Comput.

2016, 44, 57–74. [CrossRef]
11. Necula, G.C.; McPeak, S.; Rahul, S.P.; Weimer, W. CIL: Intermediate Language and Tools for Analysis and Transformation of

C Programs. In Compiler Construction, Proceedings of the 11th International Conference, CC 2002, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, 8–12 April 2002; Lecture Notes in Computer Science;
Horspool, R.N., Ed.; Springer: New York, NY, USA, 2002; Volume 2304, pp. 213–228.

12. Beyer, D.; Chlipala, A.; Henzinger, T.A.; Jhala, R.; Majumdar, R. Generating Tests from Counterexamples. In Proceedings of the
26th International Conference on Software Engineering (ICSE 2004), Edinburgh, UK, 23–28 May 2004; Finkelstein, A., Estublier, J.,
Rosenblum, D.S., Eds.; IEEE Computer Society: Piscataway, NJ, USA, 2004; pp. 326–335.

13. Gutmann, P. Fuzzing Code with AFL. Login Usenix Mag. 2016, 41, 11–14.
14. Csallner, C.; Smaragdakis, Y.; Xie, T. DSD-Crasher: A hybrid analysis tool for bug finding. ACM Trans. Softw. Eng. Methodol. 2008,

17, 1–37. [CrossRef]
15. Tillmann, N.; de Halleux, J. Pex-White Box Test Generation for .NET. In Proceedings of the Tests and Proofs—2nd International

Conference, TAP 2008, Prato, Italy, 9–11 April 2008; Beckert, B., Hähnle, R., Eds.; Springer: New York, NY, USA, 2008; Volume 4966,
pp. 134–153.

16. Zhang, C.; Yan, Y.; Zhou, H.; Yao, Y.; Wu, K.; Su, T.; Miao, W.; Pu, G. Smartunit: Empirical evaluations for automated unit testing
of embedded software in industry. In Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2018, Gothenburg, Sweden, 27 May–3 June 2018; Paulisch, F., Bosch, J., Eds.; ACM: New York,
NY, USA, 2018; pp. 296–305.

17. Braione, P.; Denaro, G.; Mattavelli, A.; Pezzè, M. Combining symbolic execution and search-based testing for programs with
complex heap inputs. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis,
Santa Barbara, CA, USA, 10–14 July 2017; Bultan, T., Sen, K., Eds.; ACM: New York, NY, USA, 2017; pp. 90–101.

18. de Boer, F.S.; Bonsangue, M.M. Symbolic execution formally explained. Formal Asp. Comput. 2021, 33, 617–636. [CrossRef]
19. He, W.; Shi, J.; Su, T.; Lu, Z.; Hao, L.; Huang, Y. Automated test generation for IEC 61131-3 ST programs via dynamic symbolic

execution. Sci. Comput. Program. 2021, 206, 102608. [CrossRef]
20. Ruan, H.; Zhang, J.; Yan, J. Test Data Generation for C Programs with String-Handling Functions. In Proceedings of the Second

IEEE/IFIP International Symposium on Theoretical Aspects of Software Engineering, TASE 2008, Nanjing, China, 17–19 June
2008; pp. 219–226.

21. Xie, T.; Marinov, D.; Schulte, W.; Notkin, D. Symstra: A Framework for Generating Object-Oriented Unit Tests Using Symbolic
Execution. In Proceedings of the Tools and Algorithms for the Construction and Analysis of Systems, 11th International
Conference, TACAS 2005, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, 4–8 April 2005; Lecture Notes in Computer Science; Halbwachs, N., Zuck, L.D., Eds.; Springer: New York, NY,
USA, 2005; Volume 3440, pp. 365–381.

22. Do, T.; Khoo, S.; Fong, A.C.M.; Pears, R.; Quan, T.T. Goal-oriented dynamic test generation. Inf. Softw. Technol. 2015, 66, 40–57.
[CrossRef]

23. Huang, R.; Sun, W.; Xu, Y.; Chen, H.; Towey, D.; Xia, X. A Survey on Adaptive Random Testing. IEEE Trans. Softw. Eng. 2021,
47, 2052–2083. [CrossRef]

24. Huang, R.; Chen, H.; Sun, W.; Towey, D. Candidate test set reduction for adaptive random testing: An overheads reduction
technique. Sci. Comput. Program. 2022, 214, 102730. [CrossRef]

25. Cadar, C.; Ganesh, V.; Pawlowski, P.M.; Dill, D.L.; Engler, D.R. EXE: Automatically Generating Inputs of Death. ACM Trans. Inf.
Syst. Secur. 2008, 12, 1–38. [CrossRef]

26. Yang, J.; Sar, C.; Twohey, P.; Cadar, C.; Engler, D.R. Automatically Generating Malicious Disks using Symbolic Execution. In
Proceedings of the 2006 IEEE Symposium on Security and Privacy (S&P 2006), Berkeley, CA, USA, 21–24 May 2006; pp. 243–257.

27. Godefroid, P. Compositional dynamic test generation. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2007, Nice, France, 17–19 January 2007; Hofmann, M., Felleisen, M., Eds.; ACM:
New York, NY, USA, 2007; pp. 47–54.

http://dx.doi.org/10.1007/978-3-642-19237-1_4
http://dx.doi.org/10.1142/S0218194020500151
http://dx.doi.org/10.4018/IJISMD.2018010104
http://dx.doi.org/10.1007/s10586-016-0681-7
http://dx.doi.org/10.1016/j.asoc.2016.03.021
http://dx.doi.org/10.1145/1348250.1348254
http://dx.doi.org/10.1007/s00165-020-00527-y
http://dx.doi.org/10.1016/j.scico.2021.102608
http://dx.doi.org/10.1016/j.infsof.2015.05.007
http://dx.doi.org/10.1109/TSE.2019.2942921
http://dx.doi.org/10.1016/j.scico.2021.102730
http://dx.doi.org/10.1145/1455518.1455522

Electronics 2022, 11, 727 22 of 22

28. Majumdar, R.; Sen, K. Hybrid Concolic Testing. In Proceedings of the 29th International Conference on Software Engineering
(ICSE 2007), Minneapolis, MN, USA, 20–26 May 2007; pp. 416–426.

29. Godboley, S.; Dutta, A.; Mohapatra, D.P. Java-HCT: An approach to increase MC/DC using Hybrid Concolic Testing for Java
programs. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016,
Gdańsk, Poland, 11–14 September 2016; Ganzha, M., Maciaszek, L.A., Paprzycki, M., Eds.; IEEE: Piscataway, NJ, USA, 2016;
Volume 8, pp. 1709–1713.

30. Kim, Y.; Choi, Y.; Kim, M. Precise concolic unit testing of C programs using extended units and symbolic alarm filtering. In
Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, 27 May–3 June 2018;
Chaudron, M., Crnkovic, I., Chechik, M., Harman, M., Eds.; ACM: New York, NY, USA, 2018; pp. 315–326.

31. Ahmadi, R.; Jahed, K.; Dingel, J. mCUTE: A Model-Level Concolic Unit Testing Engine for UML State Machines. In Proceedings
of the 34th IEEE/ACM International Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA, 11–15
November 2019; pp. 1182–1185.

32. Díaz, E.; Tuya, J.; Blanco, R. Automated Software Testing Using a Metaheuristic Technique Based on Tabu Search. In Proceedings
of the 18th IEEE International Conference on Automated Software Engineering (ASE 2003), Montreal, QC, Canada, 6–10 October
2003; pp. 310–313.

33. Díaz, E.; Tuya, J.; Blanco, R.; Dolado, J.J. A tabu search algorithm for structural software testing. Comput. Oper. Res. 2008,
35, 3052–3072. [CrossRef]

34. Perumal, K.; Ungati, J.M.; Kumar, G.; Jain, N.; Gaurav, R.; Srivastava, P.R. Test Data Generation: A Hybrid Approach Using
Cuckoo and Tabu Search. In Proceedings of the Swarm, Evolutionary, and Memetic Computing—Second International Conference,
SEMCCO 2011, Visakhapatnam, India, 19–21 December 2011; Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C., Eds.;
Springer: New York, NY, USA, 2011; Volume 7077, pp. 46–54.

35. Srivastava, P.R.; Vijay, A.; Barukha, B.; Sengar, P.S.; Sharma, R. An Optimized technique for Test Case Generation and Prioritization
Using ‘Tabu’ Search and ‘Data Clustering’. In Proceedings of the 4th Indian International Conference on Artificial Intelligence,
IICAI 2009, Tumkur, Karnataka, India, 16–18 December 2009; Prasad, B., Lingras, P., Ram, A., Eds.; Springer: New York, NY, USA,
2009; pp. 30–46.

36. Srivastava, P.R.; Khandelwal, R.; Khandelwal, S.; Kumar, S.; Ranganatha, S.S. Automated Test Data Generation Using Cuckoo
Search and Tabu Search (CSTS) Algorithm. J. Intell. Syst. 2012, 21, 195–224. [CrossRef]

37. Rathore, A.; Bohara, A.; Prashil, R.G.; Prashanth, T.S.L.; Srivastava, P.R. Application of genetic algorithm and tabu search in
software testing. In Proceedings of the 4th Bangalore Annual Compute Conference, Compute 2011, Bangalore, India, 25–26
March 2011; Shyamasundar, R.K., Shastri, L., Eds.; ACM: New York, NY, USA, 2011; p. 23.

38. Sharma, A.; Jadhav, A.; Srivastava, P.R.; Goyal, R. Test Cost Optimization Using Tabu Search. J. Softw. Eng. Appl. 2010, 3, 477–486.
[CrossRef]

http://dx.doi.org/10.1016/j.cor.2007.01.009
http://dx.doi.org/10.1515/jisys-2012-0009
http://dx.doi.org/10.4236/jsea.2010.35054

	Introduction
	Motivating Example
	Test Case Generation Framework
	Dynamic Symbolic Execution
	Path Execution Tree

	Path Selection Model
	Tabu Search
	Search Space
	Path Evaluation Function
	Path Selection Algorithm

	Experimental Evaluation
	Results to RQ1
	Settings
	Result Analysis

	Results to RQ2
	Settings
	Result Analysis

	Related Work
	Conclusions
	References

