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Abstract: Human Activity Recognition (HAR) is the process of identifying human actions in a specific
environment. Recognizing human activities from video streams is a challenging task due to problems
such as background noise, partial occlusion, changes in scale, orientation, lighting, and the unstable
capturing process. Such multi-dimensional and none-linear process increases the complexity, making
traditional solutions inefficient in terms of several performance indicators such as accuracy, time, and
memory. This paper proposes a technique to select a set of representative features that can accurately
recognize human activities from video streams, while minimizing the recognition time and memory.
The extracted features are projected on a canvas, which keeps the synchronization property of the
spatiotemporal information. The proposed technique is developed to select the features that refer only
to progression of changes. The original RGB frames are preprocessed using background subtraction
to extract the subject. Then the activity pattern is extracted through the proposed Growth method.
Three experiments were conducted; the first experiment was a baseline to compare the classification
task using the original RGB features. The second experiment relied on classifying activities using the
proposed feature-selection method. Finally, the third experiment provided a sensitivity analysis that
compares between the effect of both techniques on time and memory resources. The results indicated
that the proposed method outperformed original RBG feature-selection method in terms of accuracy,
time, and memory requirements.

Keywords: human activity recognition; image processing; video processing; feature selection; deep
learning; neural networks; data analysis

1. Introduction

Video activity recognition is the process of identifying certain actions that represent an
activity based on a collection of video-streams observations. Since the 1980s, this area has
attracted the research community due to its realistic implementations in several fields such
as healthcare surveillance systems [1,2], smart environments [3,4], surveillance and security
systems for indoor and outdoor activities [5,6], and entertainment [7]. Video-based activity
recognition is a challenging task due to the spatiotemporal aspect of frames. Specifically,
consecutive video frames are dependent and reflect redundant information.

Although a video clip comprises a collection of 2D frames, action recognition from
videos tends to be a complex image-based classification approach. Besides the spatial
features and details found in a single frame, videos add an extra dimension of temporal
aspects with essential motion features [8]. Some activities may simply be recognized by
using a single image. Since single frame analysis can sometimes be ambiguous to distin-
guish an activity from others. Therefore, motion patterns are very essential to distinguish
different activities.
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The vast number of features that can be extracted from a video to recognize a hu-
man activity complicate the process, making traditional solutions inefficient in terms of
several performance indicators such as accuracy, time, and memory. Recently, many at-
tempts have been made to overcome this problem, which adopt several strategies such
as Hidden Markov Models [9,10], optical flow-based techniques [11], and most recently,
deep-learning [12].

Despite the successful progress of Deep-Learning in image classification, the high com-
putational cost has been negatively affecting the development of video classification [13].
The performance of a visual recognition system is greatly influenced by the choice of visual
features. Searching for the best feature representation is a priority to improve system
performance in terms of accuracy. Based on this insight, researchers have presented several
solutions to elicit the most important features through video streams. One approach, for
instance, is the key frame-based method to find out the most relevant RGB frames in videos,
which represent well the distinct actions for their corresponding videos and, consequently,
decreasing learning scope [14].

In the domain of deep-learning neural networks, existing research methods are limited
as they separate the representation of temporal information from the motion estimation
techniques [15], which resulted in the need for more complex neural networks. Furthermore,
existing methods depend on the assumption that the color of the moving points (pixel
intensities) does not change among frames, which is not feasible in real situations. Due to
such factors, there is a need to enhance the video features representation that is compatible
with the principles of deep neural networks, searching for a common pattern between
different examples within the same category.

This paper proposes a new feature-selection method that can capture relevant features
only, while ignore irrelevant ones to recognize human activities in videos. The methodology
assumes that each activity has its own movement-pattern that is well distinctive to be
identified through activity recognition systems. To capture the basic pattern movements, we
created what we intend to call a Growth method, which keeps track of the pattern’s change
through consecutive frames. This novel technique modeled motion features explicitly, while
avoiding the negative effects of different body shapes, sizes, and other parts of irrelevant
aspects that might affect the motion estimation.

The proposed methodology, in this paper, will simplify the neural network classifiers
and drive it to process only relevant features to distinguish among different activities.
Consequently, this new vision to capture motion patterns will minimize the complexity of
designing deep-learning architectures to learn motion features.

The contribution of this research is to propose an efficient technique that extracts the
basic movements for each activity through a Growth function that captures the shape of
movement between two consecutive frames. The proposed technique is efficient since it
achieves acceptable classification accuracy and minimizes the time and memory require-
ments.

This novel method of activity pattern representation is a suitable alternative to repre-
sent temporal information in videos instead of motion estimation techniques. The proposed
video representation improves the learning process of deep neural networks of recognition
systems in terms of accuracy, time, and memory consumption.

This paper is organized as follows: Section 2 highlights the contributions of this re-
search among related work in the literature. Section 3 explains the proposed research
methodology with detailed algorithmic descriptions. Section 4 presents our experiments to
validate the proposed technique in terms of performance analysis, running time, and mem-
ory requirements. Finally, Section 5 concludes the research and discusses the future work.

2. Related Work

Video activity recognition is a time series classification task that requires combining
motion features with video classification models into a machine learning system [16]. This
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section tracks the progress in activity recognition research, motion representation, and
architecture design to handle the learning of spatial and temporal information.

Donahue et al. [17] proposed LRCN (Long-term Recurrent Convolutional Networks).
This model considers both RGB and optical flow images as inputs to their recognition
system. The system follows the Two Stream networks methodology of Simonyan and
Zisserman in [18] and utilizes the CNN-LSTM networks instead of the ConvNet classifi-
cation model. Each video entered both networks at the same time in its two versions of
RGB and optical flow. Consequently, the training of both networks learns the Spatial and
Temporal features for each video and network. However, this approach is unable to capture
wide-range temporal information.

Khan, S. et al. in [19] employed low-cost RGB-D sensors to combine skeletal data from
RGB-D sensors with RGB and depth data. Using trained CNN on skeletal pictures as the
fifth CNN stream resulted in high accuracy. Despite this, the approach supports the idea
that as the amount of supporting evidence grows and recognition improves, this approach
increases complexity to the recognition system in terms of extracting different views of
information.

Ullah, A. et al. in [20] proposed two models that are able to classify full-length video
streams. The first model is a Convolutional Temporal feature pooling that modifies a
CNN for video recognition. The second model is a Long Short-Term Memory LSTM. The
output of the underlying CNN is linked to the output of the LSTM layers at the class
prediction score level. They additionally train both temporal models on optical flow images
after training on RGB frames and perform late prediction fusion. The proposed method
doubled the training time of both networks on two types of data besides using two separate
networks, which considered time and memory consuming.

Tran et al. in [21] introduced an experimental design based on a Single Stream method-
ology. They applied 3D convolutions on a video volume using 3D filters. The research has
applied different experiments to achieve the best 3D convolutional kernel and architecture
that may achieve the best score of accuracy. They also discovered that the 3D convolutional
networks (C3D) networks traced spatial information in the first few frames before the
following movement in subsequent frames. However, the model was unable to capture
long-range temporal features.

In order to accomplish a higher accuracy and learning convergence, Duta et al. in [22]
introduced an improved version of the convolutional neural network (ResNets). Their
technique allowed for the learning of exceptionally deep networks with over 400 layers (on
ImageNet) and over 3000 layers (on CIFAR-10/100) with no optimization problems. The
proposed building block contains four times more spatial channels in a building block than
the original structure.

Feichtenhofer et al. in [23] developed a Convolutional Two-Stream network model
that captures temporal characteristics by reducing long-range losses. Their contribution
was to aggregate temporal neural networks’ output across time frames to derive long-term
dependency. They propose combining the networks at an early level so that the responses
at the same pixel position are put in parallel rather than fusing at the end, like in the original
two-stream structure. The researchers observed that spatially fusing both networks at the
final convolutional layer was more accurate than fusing them earlier.

The concept of depth-based human action recognition, where the depth gives addi-
tional data to enhance the performance based on RGB frames, was studied by Gu et al. [24].
In this method, the recognition process is provided with depth information for additional
motion patterns for human action. To extract the action pattern from the proposed depth-
based motion history images (MHIs), the deep-learning model was used. This technique
generated the MHI images with the depth information so the MHI could convert the motion
history along with the depth directions instead of the single MHI from RGB images, since
these can only characterize the motion bounded by the image plane. To capture the motion
patterns, the CNN network of ResNet-101 was used. The study results showed that a better
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performance can be achieved when the deep-learning model can discover discriminative
characteristics from the depth MHIs of human actions.

The process of generating activity representation, based on pose estimation, is as
suggested by Wang et al. in [25]. The pose is composed of several joints at the first layer,
which are clustered and merged as spatial and temporal component sets, to model an action.
This procedure is still a difficult problem due to its sensitivity to strong articulations, barely
visible joints, occlusions, clothing, and lighting changes.

Other research in [26,27] provided efficient solutions for optimizing the classification
process of human activities including aggregation of actions, pose recognition, and multi-
modal sequences. There is a gap in maintaining running time and memory requirements.

3. Background Subtraction

Background subtraction is the process of separating the targeted moving objects from
the static background. Since our work, in this research, is limited to videos from fixed-
positioned cameras, the sequence of frames is expected to repeat the background on a large
scale. Obviously, the background objects might be changed by time or have differed from
one video to another. Therefore, in this section, we present our algorithmic technique to
handle this issue. Furthermore, background model estimation depends on low-level pixel
classification to produce an image with no moving objects, which must be kept regularly
updated (not fixed). This is to adapt to the significant changes in the video frames related
to geometry settings, illumination, weather, background motion, etc.

The Temporal Median Filter approach for background subtraction is adopted. This is
to generate a dataset with a primary representation that will be used to produce the final
feature representation of a clear activity pattern. The Temporal Median Filter approach is
composed of four main processes: generating an initial background model; computing the
difference of frames; applying binary thresholding; and updating the background model
under the assigned learning rate. Table 1 provides a description for required parameters
that will be used in the algorithmic description of the proposed methodology.

Table 1. Algorithmic Parameters.

Parameter Explanation

stream Stream of pixels that represents
Frames[ ] Array of available frames

N Number of frames in a given image
temp[ ] Temporary array to hold a random number of frames.

(x,y) Pixel coordination (2D)
ti Temporal time (round number i)
I A frame that exists at median based on a given set of frames

D(x,y,t) Distance between the background and the median at time t.
alpha Threshold value

The initial background model (as shown in Algorithm 1) is formed by assuming that
the pixel, which remains unchanged for over half of the time duration of the video, is
considered as part of the background. The time threshold is empirical and based on several
previous experiments.
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Algorithm 1 Background Modeling Abstraction Algorithm

bkg (stream) :
1 Input : Frames [N]
2 begin
3 temp[ ] = random(Frames)
4 For each f rame f in temp [ ]
5 For each pixel(x, y) in f
6 bkg(x, y) = median{I(x, y, ti)}, ∀(I ∈ N)
7
8 Output : I(x, y, ti)
9
10 end

Algorithm 1 depicts the procedural method to initiate the background by selecting N
random frames and compute the median. The median (I), on the other hand, is a frame by
itself. This process is illustrated in Figure 1 to show how the initial frame is selected.
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Figure 1. Simulating background modeling starting from a set of frames to induce the static back-
ground.

At this point, we can apply the temporal median approach in order to identify the
background and then, remove it. Algorithm 2 illustrates the procedure to locate the
background part using the initial model. The algorithm scans all frames after converting
them into their gray-scale representation. The distance between the initial model and
the given frame background is computed. Then, the resulting distance is compared to a
threshold value in order to develop a binary image for each frame.

Algorithm 2 Temporal Median Filtering Algorithm

Temporal Median Filtering
1 Input : Frames [N]
2 begin
3 t = 1
4 bkg (t)
5 while t < N do
6 Grayscale (t)
7 D(x, y, t) = | I(x, y, t)− bcg(x, y, t)|
8 F(x, y, t) =

{
1 i f D(x, y, t) > thresh
0 otherwise

9 bkg(x, y, t) = alpha× I(x, y, t) + (1− alpha)× bkg(x, y, t− 1)
10 t = t + 1
11 loop
12 end
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As stated in line eight, the array F(x, y, t) is created for each frame to reflect a new
binary representation. The binary image is produced by setting a threshold value for
the pixel intensities of the gray-scale image to classify each pixel value into a foreground
(white: 1) or background (black: 0) according to the threshold value.

Finally, binary images are passed to the next task in order to select the moving object’s
features, while ignoring the original frames.

4. Movement Feature Selection

The proposed technique aims to generate new images to extract the essence of the
movement through consecutive frames to form an activity pattern. Therefore, each image
encapsulates the moving parts of a given object. A major contribution of this research is
the development of the function Growth, which tracks the development of movement,
performs pixel-wise processing and run on each two consecutive binary frames resulting
from the previous phase. In other words, the Growth function plays the role of a trajectory
function for the corresponding physical activity. As a result, any human activity that
contains movement of single or multiple body parts will be identified and extracted.

The Growth function aims to capture the development of movement through frames,
according to the truth table presented in Table 2. The Growth function assumes that the
activity pattern image is initially black. The black image is modified at a pixel location
to white once the status of the activity at that location is moving, which means only at
locations where the movement is currently passing by. The body part in its static status is
not observed in the output image.

Table 2. The Truth Table of the Growth Function.

Current Frame
Pixel Value at (xt,yt)

Next Frame
Pixel Value at (xt+1,yt+1)

Activity Status
Pixel Location (x,y)

Activity Pattern
Location (x,y)

black (0) black (0) Not exist black (0)
black (0) white (1 or 255) Moving white (1 or 255)

white (1 or 255) black (0) Leaving black (0)
white (1 or 255) white (1 or 255) static black (0)

A simple illustration of how the growth function work on the binary images that has
produced in the previous phase is explained as follows:

1. Pixel (Xt,Yt) is black and pixel (Xt+1,Yt+1) is black: means the movement does not
exist at this location. The corresponding location at the pattern image is still black.

2. Pixel (Xt,Yt) is black and pixel (Xt+1,Yt+1) is white: means the activity is now moving
in this location. The corresponding location in the pattern image is white.

3. Pixel (Xt,Yt) is white and pixel (Xt+1,Yt+1) is black: means the movement is now
leaving this location. The corresponding location in the pattern image is black.

4. Pixel (Xt,Yt) is white and pixel (Xt+1,Yt+1) is white: means the movement is now
static at this location. The corresponding location in the pattern image is black.

Figure 2 shows an example of applying the growth operation between two consecu-
tive frames. The Growth operation extracts the parts that are currently moving. Framet
represents an object at a time: (t) in blue. Framet+1 represents the object that moved at
the time: (t + 1) in blue. The output image represents the movement that occurred. The
three locations in red in framet had no movement. The object moved in framet+1 to three
locations. Applying the growth operation between framet and framet+1 have detected
these three locations that had moved and recorded them on the black image. At every
two consecutive frames, the growth function records the shape of movement at the time
(t). Applying this method on every consecutive frame will allow for the development of a
pattern of movements; activity.
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Figure 2. Semantic Explanation of the Growth Operation.

The growth operation captures the modifications of the activity pattern alone. If a part
of the body had a role in performing the activity at a time and (t) had no role at a time
(t + 1), then it disappears in the pattern images. Figure 3 show the behavior of the growth
operation on the binary images of the swing bench activity.
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Figure 3. The Application of the Growth Function on Swing Activity.

Figures 4 and 5 illustrate the movement pattern of the Jumping Jack sport as generated
by the growth function. It shows how the function behaves to induce the actions that
represent a pattern for the whole activity.
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The images of the movement pattern Figures 4 and 5 show the body parts that were
involved in performing the activity. Moreover, the body parts appear relatively different in
volume through the frames. This indicates distinct movements in performing the activity,
in terms of speed and distance moved. Hands, legs, and the torso performed different
movements to accomplish the activity. Therefore, they appear relatively different in the
activity pattern images, which indicates the different ways these body parts were involved
in the activity.
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What distinguishes each activity in this representation is the shape of the movement
itself, rather than the body shape or the displacement alone during the video stream.
Furthermore, this research assumes that this shape of movement is important to learn
during training recognition models. Since it contains the spatiotemporal information of the
pixels related to the activity only.

Compared with the existing techniques of motion estimation such as Motion History,
Optical Flow, and Poses Estimation, the proposed method produces the activity class by its
nature. This can be an alternative to the RGB frames as an input to the activity recognition
systems. In addition, the growth operation does not rely on the assumption that pixel
intensities of an object remain constant between consecutive frames as optical flow images.
The Growth function extracts how pixels behave in response to the activity rather than
what the actual intensity is.

The following pseudo-code (Algorithm 3 and Algorithm 4) shows the algorithmic
details of activity pattern generation using the Growth function:

Algorithm 3 Growth Function Pseudo-code

Function Growth returns the shape of movement between two Frames
Growth_ f un (current_ f rame, next_ f rame)

1 movement_shape_image < −−−− black
2 For i = 1 to m
3 For j = 1 to n
4 IF (current_ f rame [i, j] == Black and next_ f rame [i, j] == white)
5 movement_shape_image [i, j] = white
6 End IF
7 End FOR
8 End FOR
9 Return movement_shape_image
10 End Function

Let m be the number of rows in the 2D matrix movement_(shape_image) that store a
given image (frame) and n be the number of columns. Line 1 requires O(1) to execute. Lines
(4) and (5) require O(2) to execute since both the condition and the assignment statements
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require O(1) for each. The inner loop (Lines 3 to 7) requires O(n)×O(2) ≈ O(n). The
outer loop (Lines 2 to 8) requires O(m× n). Finally, the return statement in Line (9) requires
O(1).

Therefore, the time complexity for the function Growth is defined as the sum of the
time complexity of line (1), the outer-loop, and line (9). This is equal to:

O(1) + O(m× n) + O(1) ≈ O(m× n)

Algorithm 4 Pattern Generation Algorithm

Generating Activity Pattern Images for a video of frame size n×m
main ( )

1 Activity_Pattern_Images = [ ]
2 current_ f rame [n, m]
3 next_ f rame [n, m]
4 Shape_o f _movement _image [n, m]
5 t = 1
6 While (current_ f rame! = last_ f rame)
7 current_ f rame < −−−− Frame(t)
8 next_ f rame < −−−− Frame(t + 1)
9 Shape_o f _movement _Image = Growth_ f un(current f rame, next_ f rame)
10 Activity_Pattern_Images.append(Shape_o f _movement _Image)
11 t = +2
12 End While

End Program

Let the total number of frames in a 2D image is k. Lines 1, 2, 3, 4, and 5 require O(5) ≈
O(1) to execute. The while loop requires O(k), where k is the total number of frames in
a given video stream. Lines 7 to 11 require O(1 + 1 + (m× n) + logm×n + 1) ≈ O(m× n).
Notice that m× n� log2 for all m× n > 0. This is due to Line 9 requiring the exact time
complexity of Algorithm 3. Furthermore, Line 10 scans logm×n every time. This implies
that Algorithm 2 requires:

O(5) + [O(k)×O(m× n)] ≈ O(k×m× n)

5. Experiments and Results
5.1. Datasets

The computer vision research center at the University of Central Florida (UCF) has
developed a video-based action recognition dataset (UCF-101) that consists of 13,320 short
videos. This collection depicts 101 different activities. The activities in UCF-101 belong
to a large set of categories; making UCF-101 the most diverse dataset in this domain as
compared to other benchmarks. The activities in the entire dataset can be classified into
several groups: Human-Object Interaction, Only Body Motion, Human-Human interaction,
Playing Musical Instruments, and Sports Videos. In this research, we chose the Sports
category in order to generate activity patterns for each of its classes (8 classes) as shown in
Table 3.
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Table 3. Selected classes with number of videos per class.

Classes Number of Videos

1 Body Weight Squats 87
2 Boxing Punching Bag 114
3 Hula Hoop 69
4 Jumping jacks 93
5 Pommel Horse 49
6 Tennis Swing 101
7 Wall Pushups 102
8 Table Tennis Shot 111

Each activity class contains 25 s-long videos, and each video has been divided into
4–7 shorter ones. The videos for each class were kept with the same orientation, pose,
viewpoint, and the same background as the original long video. Moreover, these videos
have different time durations; thus, for training purposes, a fixed sequence length for the
recognition network is required.

To glean a robust overview about the results of this research, we included two pub-
licly available datasets; the KTH [28] and WVU [29] datasets. The KTH dataset contains
six categories where each class is executed several times by 25 subjects during different
scenarios. Each video in the KTH dataset is 160 × 120 spatial resolution and is 100 frames
long. The WVU dataset has twelve different actions. Each sequence in this is for a subject
who performs only one action. The spatial resolution of each video is 640 × 480 and is
71 frames long. For comparing the results with other methods only, we omit two classes
included in the WVU datasets: namely, waving one hand and bowling.

5.2. Experiment Setup

Data preprocessing and experiments are implemented in Python 3.8.3 on Google Colab
Pro platform using Graphics Processing Unit (GPU) at runtime. The experiments have been
conducted on Google Colab Pro with GPU RAM limited to (25.46) GB, and time sessions
limited to 24 h. Colab Pro virtual Machines (VMs) disk space is limited to (147.15) GB as
well. It allows for accessing the fastest Colab GPUs such as to NVIDIA P100 or T4. The
GPU is operating at a frequency of (1290) MHz, whereas memory is running at (876) MHz.

5.3. Experiment Results and Discussion

Two types of experiments have been conducted to analyze the effect of our proposed
technique in terms of performance accuracies and computer resources (CPU and Memory)
as compared to the baseline method; RBG. We applied both RBG and Growth methods
to extract and select representative features for the purpose of recognizing activities in
UCF-101, KTH and WVU datasets. Accordingly, we measured the performance of state-of-
the-art classifiers using RBG and Growth methods. Furthermore, we measure the effect of
applying the Growth method on the computer resources: CPU time and Memory space.

We have set the callback function to Early-Stopping, with a patience value equal to
seven—this is to stop training if there were no improvements after the assigned number
of epochs. Moreover, early stopping also prevented the model from over-fitting. The loss
function that applied to calculate the prediction error was the categorical cross-entropy loss
for multi-class classification. The optimization algorithm used in the network, to update
the attributes’ values to reduce the losses, was the Stochastic Gradient Descent (SGD). The
network iterates through the batch and produces the prediction results. The difference
between the actual value and the predicted value was computed as a loss, and then the
optimizer continued adjusting the weights directed by the actual result.

5.3.1. Performance Indicators

During the training of the first experiment, videos were resized to 64× 64 dimensions
in all datasets. We trained the neural network with RGB videos of (71) sequence length to
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align all datasets. Multiple k-filters were tested during several experiments. The network
of 32 filters, two dropout layers with the rate of (0.5) and (0.5), respectively, to avoid over-
fitting, a learning rate of (0.001), and dataset splitting (80% training, 20% testing) were
adjusted for the RGB baseline experiment. During the training of the second experiment,
videos were resized to 64× 64 dimensions as well. We trained the neural network on
videos of pattern images of (71) one-channel frames to align all datasets. Several numbers
of filters were tested during several experiments. The network of 16 filters, two dropout
layers with the rate of (0.2) and (0.3), respectively, to avoid over-fitting, a learning rate
of (0.001), and dataset splitting (70% training, 30% testing) were adjusted for the Growth
images experiment. Tables 4–6 depict the performance measurements (Precision, Recall,
and F1-score) for both experiments using UCL, KTH and WVU datasets, respectively.

Table 4. RGB base (R) and Growth (G) Performance Analysis on UCL dataset.

Precision (%) Recall (%) F1-Score (%)

R G R G R G

Body Weight Squats 93 96 91 95 91 97
Boxing Punching Bag 85 87 99 99 90 94

Hula Hoop 99 100 81 90 88 93
Jumping jacks 58 96 100 100 75 97
Pommel Horse 99 95 82 94 90 94
Tennis Swing 99 96 100 100 100 98
Wall Pushups 98 99 73 100 82 100

Table Tennis Shot 100 100 90 94 94 97
Average Accuracy 89 96

Macro Average 92 96 89 97 88 96
Weighted Average 91 96 90 97 89 97

Table 5. RGB base (R) and Growth (G) Performance Analysis on KTH dataset.

Precision (%) Recall (%) F1-Score (%)

R G R G R G

Walking 93 97 87 97 89 96
Jogging 87 91 88 93 91 97
Running 94 99 86 98 91 97
Boxing 82 99 92 100 82 99

Handwaving 96 99 89 97 92 96
Handclapping 92 95 94 99 97 96

Average Accuracy 91 97 89 97 90 97

Table 6. RGB base (R) and Growth (G) Performance Analysis on WVU dataset.

Precision (%) Recall (%) F1-Score (%)

R G R G R G

Standing Still 90 91 88 94 89 92
Nodding head 89 96 88 98 89 97

Clapping 94 97 91 96 90 96
Waving 2 hands 87 98 91 100 89 99

Punching 91 98 90 96 91 98
Jogging 92 95 91 95 90 95

Jumping Jack 90 94 90 95 92 95
Kicking 90 96 86 97 89 97
Picking 85 93 89 95 87 96

Throwing 87 96 86 97 87 97
Average Accuracy 90 95 89 96 89 96
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As shown in Tables 4–6, the performance indicators of the proposed feature-selection
technique outperform the RGB baseline. Furthermore, we notice that the enhancement on
recall measure was high. This indicates that the proposed growth-based pattern technique
was able to recognize activities precisely as compared to the well-known RGB feature-
selection technique. Moreover, we performed statistical analysis to study the resulting
differences between both experiments. The T-test analysis (one-tailed with 0.05 significant
level) is applied to infer whether the significance of the difference between the means of both
samples. The results are as follow: Mean = 0.0695, SS

d f = 0.01, SM = 0.0289, and t = 2.25.
The value of p is 0.0294. Therefore, the results indicated that the difference is significant at
p < 0.05. This implies that the proposed method achieved a significant enhancement with
confidence of 95%.

Moreover, we ran the pools of features, which have been selected by both RGB-base
and Growth-base techniques, on different state-of-the-art classification techniques that have
been discussed in the literature section. Table 7 illustrates the resulted average accuracies.

Table 7. Comparison with State-of-the-Art methods using the Average Accuracy Measure.

Model RGB Based (%) Growth Patterns (%) Improvement (%)

Conv-Lstm [17] 68.20 82.34 20.73
KcWKNN (on KTH) [19] 91.1 98.3 −1.0
KcWKNN (on WVU) [19] 92.4 98.7 −1.1

3D Convolutional [21] 82.30 90.40 9.84
Convolutional Two Stream Fusion [23] 92.50 94.20 1.84
Improved two streams architecture [25] 94.00 94.20 0.21
Two Stream Fusion Convolutional [26] 92.70 93.60 0.97

Convolutional (ResNet-101) [24] 67.96 84.44 24.25
Two Stream Fusion MLP- LSTM [30] 79.21 96.92 22.36

Convnet conv-Lstm [27] 75.40 77.90 3.32

As shown in Table 7, our proposed technique achieved an acceptable level of per-
formance in terms of average accuracy in almost every state-of-the-art classifier in the
domain of video-based activity recognition. Indeed, the growth method achieved such
performance with a significantly smaller number of required features to identify activities.
When compared to KcWKNN on KTH and WVU datasets, the Growth patterns achieved
negative improvement. This could be due to the fact that the KcWKNN approach uses the
fusion of two well-known deep learning methods (DenseNet201 and InceptionV3). The
approach applies a feature selection based on kurtosis by using the fourth momentum. As
a result, their method provided very high accuracies on KTH and WVU datasets.

Figure 6 depicts a trending analysis that explains the growth of the number of features
as more datasets are used. The analysis shows a linear increase as compared to an exponen-
tial one for the RGB method. Furthermore, the R2 value on each line in Figure 6 indicates
the correlation of the trending-line to the original real data. In the case of the growth-based
technique, R2 = 0.79 is a strong positive relationship, which indicates that the trending line
shows a realistic correlation with the original data.

To conclude, the performance indicators showed that our proposed feature-selection
method achieved a significant goal: achieving an acceptable accuracy as compared to the
state-of-the-art techniques, while requiring less feature dimensionality. In fact, the utmost
goal of our proposed method is maintaining high accuracy, while minimizing the pressure
on computer resources: CPU and RAM. Moreover, the proposed growth-pattern method
is compatible with the deep learning principles of learning common patterns of a given
class. Therefore, the quality of features in the pattern images is more powerful for the
learning process, as compared to the features in original images that contain the whole
scene features relevant to the activity and the irrelevant ones.



Electronics 2022, 11, 732 13 of 16Electronics 2022, 11, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 6. Trending Analysis of how the number of features grow as the number of datasets increase. 

To conclude, the performance indicators showed that our proposed feature-selection 
method achieved a significant goal: achieving an acceptable accuracy as compared to the 
state-of-the-art techniques, while requiring less feature dimensionality. In fact, the utmost 
goal of our proposed method is maintaining high accuracy, while minimizing the pressure 
on computer resources: CPU and RAM. Moreover, the proposed growth-pattern method 
is compatible with the deep learning principles of learning common patterns of a given 
class. Therefore, the quality of features in the pattern images is more powerful for the 
learning process, as compared to the features in original images that contain the whole 
scene features relevant to the activity and the irrelevant ones. 

5.3.2. Running Time and Memory Analysis 
We performed additional experiments to measure the effect of the proposed method 

on the classification task in terms of actual running time and memory requirements. The 
experiments have been conducted on Google Colab Pro with GPU RAM limits to (25.46) 
GB, and time sessions limit to 24 h. Colab Pro VMs also generally come with double the 
disk of standard Colab VMs limits to (147.15) GB Disk space. Colab Pro allows to access 
the fastest Colab GPUs such as to NVIDIA P100 or T4. The GPU is operating at a frequency 
of (1290) MHz (the speed of the GPU’s chip), whereas memory is running at (876) MHz 
(the speed of the VRAM on the GPU). 

We conducted these experiments to show such effects as the number of different in-
put videos increased gradually. First, we ran the classification model on small dataset of 
50 videos and then, increased the number by 50 videos each time. Consequently, this 
would show us how our proposed method performs as the size of input data increases 
gradually. Table 8 shows the experimental results. 

Table 8. Incremental Analysis for Computer Resources Utilization. 

Number of 
Videos 

Collection 
Size 

RGB Growth Patterns 

  
Running Time 

(Seconds) 
Memory Alloca-

tion (GB) 
Running Time 

(Seconds) 
Memory Al-
location (GB) 

50 321 MB 4.958 5.41 50 321 MB 
100 670 MB 5.21 5.5 100 670 MB 
150 973 MB 7.51 5.75 150 973 MB 
200 1.23 GB 9.67 7.07 200 1.23 GB 
250 1.58 GH 12.1 8.57 250 1.58 GH 
300 1.98 GB 14.4 10.07 300 1.98 GB 
350 1.89 GB 16.6 8.58 350 1.89 GB 

R² = 0.657

R² = 0.7928

01000
181000
361000
541000
721000
901000

1081000
1261000
1441000
1621000

1 2 3 4 5 6 7 8

Cu
m

ul
at

iv
e 

Nu
m

be
r o

f 
Fe

at
ur

es

Cumulative Datasets

RBG based

Growth based

Figure 6. Trending Analysis of how the number of features grow as the number of datasets increase.

5.3.2. Running Time and Memory Analysis

We performed additional experiments to measure the effect of the proposed method
on the classification task in terms of actual running time and memory requirements. The
experiments have been conducted on Google Colab Pro with GPU RAM limits to (25.46)
GB, and time sessions limit to 24 h. Colab Pro VMs also generally come with double the
disk of standard Colab VMs limits to (147.15) GB Disk space. Colab Pro allows to access
the fastest Colab GPUs such as to NVIDIA P100 or T4. The GPU is operating at a frequency
of (1290) MHz (the speed of the GPU’s chip), whereas memory is running at (876) MHz
(the speed of the VRAM on the GPU).

We conducted these experiments to show such effects as the number of different
input videos increased gradually. First, we ran the classification model on small dataset
of 50 videos and then, increased the number by 50 videos each time. Consequently, this
would show us how our proposed method performs as the size of input data increases
gradually. Table 8 shows the experimental results.

Table 8. Incremental Analysis for Computer Resources Utilization.

Number of
Videos

Collection
Size RGB Growth Patterns

Running Time
(Seconds)

Memory Allocation
(GB)

Running Time
(Seconds)

Memory Allocation
(GB)

50 321 MB 4.958 5.41 50 321 MB
100 670 MB 5.21 5.5 100 670 MB
150 973 MB 7.51 5.75 150 973 MB
200 1.23 GB 9.67 7.07 200 1.23 GB
250 1.58 GH 12.1 8.57 250 1.58 GH
300 1.98 GB 14.4 10.07 300 1.98 GB
350 1.89 GB 16.6 8.58 350 1.89 GB
400 2.51 GB 18.8 8.59 400 2.51 GB

Figure 7 shows the actual GPU running time. During this experiment, we noticed that
at small datasets, the actual running of the proposed method is approaching one second
constantly (at 50, 100, and 150 videos). On the other hand, at small datasets, the actual
GPU time increases by a polynomial fashion. Another interesting outcome is that: as the
number of videos increases, the GPU time increases in a sub-linear time when applying
the proposed method. While it increases in a polynomial shape during the running of the
original RBG. Such data leads us to conclude that the reduction in the number of features,
which has resulted from applying the proposed method, has a positive effect in terms of
actual running time.
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Figure 8 shows how the memory (RAM) is affected by applying the proposed method.
According to the results, the proposed method utilizes an acceptable and nearly constant
amount of memory; especially at large datasets (above 200). On the other hand, there was a
linear increase in the size of required memory during the running of RBG data features.
This clearly shows how the feature-reduction method minimizes the amount of required
memory.
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6. Conclusions and Future Work

This paper presented a novel feature-selection approach for activity recognition. The
proposed technique (Growth Function) extracts the shape of movement from two con-
secutive frames; generating a new video representation containing the spatiotemporal
information needed for a classification task called activity pattern images. The pattern
images are representative enough to be applied to vision tasks involving activity recogni-
tion, similarity analysis of video sequences, and other video applications. Moreover, the
pattern images hold the least amount of data that distinguish each activity from other ones.
Consequently, experiments showed promising results for video activity recognition of a
stable camera.
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We compared the results of two classification experiments in terms of recognition
accuracy. The results proved that the proposed technique increased the accuracy of the
activity recognition system compared to the baseline accuracy. In addition, the experimental
results showed significant and promising enhancements as compared to other existing
approaches that followed Single Stream and Two Stream networks for video activity
recognition. Additional experiments were conducted to measure the efficiency of the
research technique in terms of GPU running time and memory allocation, when performing
classification for input data size that increased gradually. According to the results, the
proposed method of feature reduction utilizes an acceptable amount of memory and has a
positive effect in terms of classification time.
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