
����������
�������

Citation: Ma, Y.; Li, Q.; Shi, X.; Guo,

Z. Unsupervised Deep Pairwise

Hashing. Electronics 2022, 11, 744.

https://doi.org/10.3390/

electronics11050744

Academic Editor: George A.

Papakostas

Received: 19 January 2022

Accepted: 21 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Unsupervised Deep Pairwise Hashing
Ye Ma 1, Qin Li 2,*, Xiaoshuang Shi 3 and Zhenhua Guo 1

1 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
my17@tsinghua.org.cn (Y.M.); zhenhua.guo@sz.tsinghua.edu.cn (Z.G.)

2 School of Software Engineering, Shenzhen Institute of Information Technology, Shenzhen 518172, China
3 School of Computer Science and Engineering, Univeristy of Electronic Science and Technology of China,

Chengdu 611731, China; xsshi2013@gmail.com
* Correspondence: liqin@sziit.edu.cn

Abstract: Although unsupervised deep hashing is potentially very useful for tackling many large-
scale tasks, its performance is still far below satisfactory. Additionally, its performance might be
significantly improved by effectively exploiting the pair similarity relationship among training data,
but the attained similarity matrix usually contains noisy information, which often largely decreases
the model performance. To alleviate this issue, in this paper, we propose a novel unsupervised
deep pairwise hashing method to effectively and robustly exploit the similarity information between
training samples and multiple anchors. We first create an ensemble anchor-based pairwise similarity
matrix to enhance the robustness of similarity and dissimilarity relations between training samples
and anchors. Afterwards, we propose a novel loss function to directly and robustly take advantage
of the similarity and dissimilarity information via a weighted cross-entropy loss, and make use of a
square loss to reduce the gap between latent binary vectors and binary codes, and another square
loss to form consensus predictions of latent binary vectors. Extensive experiments on large-scale
benchmark databases demonstrate the effectiveness of the proposed method, which outperforms
recent state-of-the-art unsupervised hashing methods with significantly better ranking performance.

Keywords: deep hashing; anchor based; unsupervised

1. Introduction

Hashing has attracted considerable attention for tackling large-scale tasks because it
can encode originally high-dimensional data into short binary codes while maintaining the
similarity of neighbors, thereby leading to significant gains in computation and storage
costs [1,2]. Hashing can be roughly categorized into two main classes, supervised and
unsupervised, based on whether semantic labels are used. Supervised hashing [3,4] usually
requires a large amount of labels to achieve satisfactory performance; however, label
annotation is usually time-consuming and expensive. By contrast, unsupervised hashing [5]
does not need semantic labels and aims to discover and, meanwhile, encode the significant
intrinsic patterns or structures hidden in data into binary codes. Thus, unsupervised
hashing has the potential for large-scale applications.

Early efforts focus on data-independent hashing methods [1,6], which utilize random
projections or permutations to construct hash functions, and they usually require long bits
to attain high precision per hash table and multiple tables to improve the recall. Data-
dependent hashing usually produces more compact binary codes with higher precision
and recall. Although numerous data-dependent hashing methods have been proposed
and achieved promising performance on various similarity measures, such as Euclidean
distance and `1-norm distance [7], they are still far from being satisfactory for many tasks
via the semantic similarity measure. Most of them [5,8,9] learn hash functions using hand-
crafted features, which might not be able to represent the image content [10] optimally.

Recently, because convolutional neural networks (CNNs) exhibit the powerful capa-
bility of automatically learning feature representations, several unsupervised deep hashing

Electronics 2022, 11, 744. https://doi.org/10.3390/electronics11050744 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050744
https://doi.org/10.3390/electronics11050744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11050744
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050744?type=check_update&version=2


Electronics 2022, 11, 744 2 of 12

methods [11–15] adopt CNNs to learn image representations and hash functions. Most
of these methods [11–13] utilize either the quantization loss or data reconstruction er-
ror to train models without considering the similarity relationship among data, thereby
decreasing their retrieval performance on some applications. To address this problem,
similarity-adaptive deep hashing (SADH) [15] takes into account the pair similarity among
training data and alternately proceeds over three major modules: training deep hash mod-
els, updating a similarity graph, and learning binary codes. Although SADH achieves
better performance than most previous hashing algorithms, its performance might still be
restricted by the noisy information in the similarity graph, i.e., positive values are often
given to some dissimilar pairs. In addition, anchor-based models have made significant
advances in semi-supervised deep hashing [16] and a scalable optimization mechanism
has been proposed [17].

Motivated by the observations mentioned earlier, in this paper, we propose a novel,
robust, yet straightforward method, unsupervised deep pairwise hashing (UDPH), to
effectively and robustly utilize the pair similarity between training data and unlabeled
anchors. The framework of the proposed UDPH is presented in Figure 1. The major
contributions of this paper are listed as follows:

• Different from existing anchor-based methods, we enhance the robustness of similarity
relations between training data and unlabeled anchors by creating an anchor-based
pairwise similarity matrix to preserve their similarity and build a robust ensemble
matrix with weighted average;

• We propose a novel loss function composed of three terms: a weighted cross-entropy
loss to exploit the similarity information between training data and multiple anchors,
a mean square loss to reduce the gap between latent binary vectors and desired codes,
and another mean square loss to form consensus predictions of latent binary vectors;

• Extensive experiments on large-scale benchmark databases illustrate the superior
performance of UDPH over recent state-of-the-art methods. Additionally, ablation
experiments also demonstrate the effectiveness of the three terms in the proposed loss
function.

MSE MSE WCE

Pairwise Similarity Matrix

Data

Anchors

Anchors

Images

Loss
Target Latent

Binary Vectors
Vector of

Ones
Ensemble Pairwise

Similarity Matrix

Figure 1. The framework of the proposed method, UDPH, which utilizes the VGG-16 model as
our backbone network. MSE denotes the mean square error/loss, and WCE means the weighted
cross-entropy loss. WCE utilizes the similarity obtained from the ensemble pairwise similarity matrix
as the weight, MSE with γ1 is to calculate the loss between absolute values of latent binary vectors
and vectors of ones, and MSE with γ2 is to calculate the loss between latent binary vectors and target
latent binary vectors. fθ(·) represents a convolutional neural network and H denotes latent binary
vectors. α1 and α2 are non-negative values to adjust the weight of S and H, respectively.

2. Related Work

In this section, we briefly review some popular unsupervised non-deep and deep
hashing algorithms, and introduce their differences to the proposed method, UDPH.

Unsupervised non-deep hashing usually adopts hand-crafted features to learn hash
functions. The popular hashing algorithms [5,8,18,19] learn binary codes via the strategy of
“relaxation + thresholding”, which might degrade their performance due to the accumulated
quantization error between binary codes and its relaxed matrix. To alleviate this issue,



Electronics 2022, 11, 744 3 of 12

numerous discrete hashing algorithms [9,20–23] have been proposed to directly learn
binary codes.

Unsupervised deep hashing usually utilizes CNNs to learn image features and hash
functions. Deep hashing (DH) [11], DeepBit [13], and unsupervised deep binary descriptors
(UDBD) [24] mainly adopt the quantization loss to learn image representations and hash
functions. Unsupervised hashing with a binary deep neural network (UH-BDNN) [12]
utilizes the reconstruction loss to encourage the similarity among samples. Discriminative
attributes representations (DAR) [25] firstly trains a CNN coupled with unsupervised
discriminative clustering and then utilizes the cluster membership as a soft supervision to
learn hash functions. Unsupervised triplet hashing (UTH) [26] exploits an unsupervised
triplet loss to minimize the distance between an anchor image and its rotated version, while
maximize the distance between the anchor image and a random image. HashGAN [14]
adopts three networks including a generator, a discriminator, and an encoder to learn hash
functions. Similarity-adaptive deep hashing (SADH) [15] constructs a similarity graph
using the pair similarity between real training data and anchors, and learns hash functions
via alternately proceeding over three major modules: training deep hash models, updating
a similarity graph, and learning binary codes. Because of its effectively exploration of
similarity information among training data, SADH has achieved state-of-the-art retrieval
performance on CIFAR-10 [27] and NUS-WIDE [28] databases. However, its performance
might be still restricted by the noisy information in the similarity graph. Compared to
SADH, UDPH takes advantage of more robust similarity information by creating a strong
ensemble anchor-based pairwise similarity matrix. Additionally, unlike SADH, which
approximately solves an NP-hard problem to learn binary codes for model training, the
proposed UDPH directly utilizes a novel loss function to robustly train models for exploring
the semantic similarity information among training data and anchors.

3. Methodology

In this section, we firstly define an anchor-based pairwise similarity matrix and its
ensemble version, and then propose a novel loss function to effectively and robustly exploit
the similarity information between training samples and anchors for model training.

3.1. Anchor-Based Pairwise Similarity Matrix

Given training data X = {xi}n
i=1 and an L-layer deep hashing network fθ(·) (please

see Figure 1), n is the number of samples and θ denotes the network parameters. Note
that we utilize f l

θ(xi) (1 ≤ l ≤ L) to represent the output of the l-th layer for the sample
xi. Because n is usually very large, it is inefficient or even impractical to calculate the pair
similarity of any two training samples. Fortunately, the similarity relationship among
training data can be propagated through multiple anchors [8,29]. We randomly select m
(m << n) samples from X as anchors A =

{
aj
}m

j=1 (A ⊂ X) to construct a scalable anchor-

based pairwise similarity matrix S ∈ Rn×m. Additionally, because samples that are close
in the feature space should be close in the output space (local consistency) [30], we select
the p(t) closest neighbors of each training sample from anchors and then calculate their
similarities, where t is the current number of training epochs and p(t) is a piecewise linear
function dependent on t to gradually exploit more useful information. However, when
only utilizing the similarity information to train models, the features will easily collapse
together. To avoid this issue and, meanwhile, exploit more useful information, we select
the p(t) farthest anchors of each training sample as non-neighbors and then calculate their
dissimilarities.

Specifically, let x f = f (L−1)
θ (x) ∈ Rd and A f = f (L−1)

θ (A) ∈ Rm×d denote feature
representations of one training sample x and anchors A at the (L− 1)-th layer, respectively.
By [9,15], their similarities can be calculated by leveraging a nonlinear data-to-anchor
mapping (Rd → Rm):



Electronics 2022, 11, 744 4 of 12

ss(x) =

[
δs1e−

D2(x f ,a
f
1 )

$s , δs2e−
D2(x f ,a

f
2 )

$s , · · · , δsme−
D2(x f ,a

f
m)

$s

]T

/Ms,

where δsj ∈ {0, 1}, and δsj = 1 if aj is one of the p(t) closest anchors of x based on the
distance function D(·) (e.g., Euclidean distance), $s is a bandwidth parameter for similarity

calculation, and Ms = ∑m
j=1 δsje

−
D2(x,aj)

$s so that ‖ss(x)‖1 = 1. Similarly, we calculate their
dissimilarities by:

sd(x) =

δd1e−
D2(x f ,a

f
1 )

$d , δd2e−
D2(x f ,a

f
2 )

$d , · · · , δdme−
D2(x f ,a

f
m)

$d

T

/Md,

where δdj ∈ {0, 1} and δdj = 1 if aj is one of the p(t) farthest anchors of x according to the
distance function D(·), $d is a bandwidth parameter for dissimilarity calculation, and Md =

∑m
j=1 δdje

−
D2(x,aj)

$d leads to ‖sd(x)‖1 = 1. Then, we can obtain the anchor-based pairwise

similarity matrix S = [s(x1), s(x2), · · · , s(xn)]
T ∈ Rn×m, where s(x) = ss(x)− sd(x). Let

M represent the neighbor set and C denote the non-neighbor set. For clarity, S can be
calculated by:

sij =


e−

D2(x
f
i ,a

f
j )

$s
Ms

(xi, aj) ∈ M

− e
−

D2(x
f
i ,a

f
j )

$d
Md

(xi, aj) ∈ C
0 otherwise.

(1)

To attain a robust relationship between training data and anchors, we create a strong
ensemble anchor-based pairwise similarity matrix S̃ by applying a weight average to S
within multiple previous training epochs, e.g., S̃ = α1S̃ + (1− α1)S, where α1 ∈ (0, 1) is a
momentum term to determine how far the ensemble reaches into the training history.

3.2. Formulation and Procedure

Hashing is to project original data from a high-dimensional space into a low-dimensional
binary space while preserving their similarity relations. Specifically, given the L-layer hash-
ing network fθ(·), for any sample x, suppose f L

θ (x) ∈ Rr to be the output of the L-th
layer in the network, where r is the number of hash bits. Its hash function is defined as:
h(x) = sgn( f L

θ (x)), where sgn(·) is a non-linear function with the definition sgn(z) = 1 for
z > 0, otherwise sgn(z) = −1.

For one training sample xi and one anchor aj, there exists −r ≤ h(xi) ◦ h(aj) ≤ r,
where ◦ denotes the inner product. In order to make h(xi) ◦ h(aj) > 0 if (xi, aj) ∈ M and
h(xi) ◦ h(aj) < 0 when (xi, aj) ∈ C, we define uij = σ(λh(xi) ◦ h(aj)) = 1

1+e−λh(xi)◦h(aj)
to

represent the similarity between xi and aj in the low-dimensional binary space, and uij → 1
if (xi, aj) ∈ M, and uij → 0 when (xi, aj) ∈ C, where σ(·) represents the sigmoid function
and λ > 0 is a positive constant to regularize the value of h(xi) ◦ h(aj).

Because the function sgn(·) is non-differential, it is usually replaced by a relaxed
differential function for model training. There are many choices for relaxed differential
functions; for simplicity, here, we choose a differential hyperbolic tangent function tanh(·)
in the hashing network. Then, we can obtain a latent binary vector h = tanh( f L

θ (x)) ∈
(−1, 1)r of x. Let B and Ba be the index set of mini-batch data randomly selected from
training data X and anchors A, respectively. To exploit the similarity information contained
in the ensemble pairwise similarity matrix S̃, one common strategy is to first learn binary
codes by solving a non-differential optimization problem and to then utilize them for model
training. However, it is usually difficult and time-consuming to solve the non-differential



Electronics 2022, 11, 744 5 of 12

problem. To avoid this issue, we propose a novel strategy by using a weighted cross-entropy
loss function to directly train networks. Because S̃ denotes the similar weight of pairs,
we introduce a matrix W for the cross-entropy loss function in order to directly represent
whether the pair is similar, where wij is dependent on s̃ij to determine whether xi and
aj are similar, i.e., wij = 1 when s̃ij > 0 and wij = 0 when s̃ij < 0. Then, the weighted
cross-entropy loss is:

Jwce =
1

∑i∈B,j∈Ba |s̃ij| ∑i∈B,j∈Ba s̃ij(−wijlog uij + (1− wij)log (1− uij))

s.t. hi = tanh( f L
θ (xi)), hj = tanh( f L

θ (aj)), uij =
1

1+e
−λhihT

j
, (2)

where |·| is an absolute value function. Note that when s̃ij 6= 0 (j ∈ Ba), we do not set
s̃ij = 1 or −1 in order to decrease the effect of noisy similarity information.

However, there exists a gap between the latent binary vector h and desired binary
codes h(x), thereby potentially decreasing the model performance [15]. To reduce this gap,
we utilize a square loss as follows:

Jhmse = ‖|hi| − 1r‖2
2, (3)

where 1r ∈ Rr is a row vector with all entries being ones.
Recent semi-supervised methods [31–33] illustrate that forming consensus predictions

under different configurations (such as training epochs, dropout, and augmentation condi-
tions) for each training sample can improve the model performance when exploring the
semantic information of unlabeled data. Inspired by these methods, we aim to form a
consensus prediction of the latent binary vector for each training sample in order to boost
the model performance. Specifically, similar to [32], we create a target latent binary vector
h̃i for xi by applying exponential moving average (EMA) to hi of multiple previous training
epochs, i.e., we first accumulate hi into an ensemble vector he

i by he
i = α2he

i + (1− α2)hi,
and then calculate h̃i = he

i /(1− αt
2), where α2 ∈ (0, 1) is a momentum term to determine

how much of he
i is affected by previous training epochs, 1− αt

2 is to correct the startup bias,
and t is the current number of training epochs. Then, we minimize the difference between
hi and h̃i with the following square loss:

Jsmse =
∥∥hi − h̃i

∥∥2
2. (4)

To simultaneously exploit the pairwise similarity information, reduce the gap between
h and h(x), and form consensus prediction for each training sample, we integrate the three
terms (Equations (2)–(4)) to learn the model parameters θ as follows:

J(θ) = Jwce +
1

lBr ∑i∈B(γ1 Jhmse + γ2 Jsmse)

= 1
∑i∈B,j∈L|s̃ij| ∑i∈B,j∈L s̃ij(−wijlog uij + (1− wij)log (1− uij))

+ 1
lBr ∑i∈B(γ1‖|hi| − 1r‖2

2 + γ2
∥∥hi − h̃i

∥∥2
2)

s.t. hi = tanh( f L
θ (xi)), hj = tanh( f L

θ (aj)), uij =
1

1+e
−λhihT

j
,

(5)

where lB is the length of B, and γ1 ≥ 0 and γ2 ≥ 0 are to weight the corresponding two
regularization terms, respectively.

Based on Equation (5), we can adopt any optimizer, e.g., Adam [34], to learn the model
parameters θ. For clarity, we present the detailed procedure of solving Equation (5) to learn
θ in Algorithm 1: UDPH. Note that, to boost the model performance, training samples
are usually augmented; we utilize g(·) to denote the augmentation function. Additionally,
fθ(g(xi∈B), g(aj∈Ba)) denotes the output of the L-th layer followed by the function tanh(·)
for the sample xi and anchor aj. After obtaining θ, we can attain binary codes of each
training or query data x by: h(x) = sgn( f L

θ (x)).



Electronics 2022, 11, 744 6 of 12

Algorithm 1: UDPH

Input: Data X = {xi}n
i=1, anchors A =

{
aj
}m

j=1,
bit number r, parameters λ, γ1, and γ2, piecewise linear
function p(t), ensembling momentums α1, and α2, training
epoch number T, network with parameters θ: fθ(·),
stochastic input augmentation function: g(·)
Output: Parameters θ

1: Initialization:
Initialize parameters θ by the pre-trained VGG-16
model on ImageNet;
Construct S by Equation (1);
S̃← S, . ensemble pairwise similarity matrix;
He ← 0n×m, . ensemble latent binary vectors;
H̃← 0n×m, . target latent binary vectors;

2: for t in (1, T) do:
3: for each mini-batch B and Ba do:
4: hi∈B, hj∈Ba ← fθ(g(xi∈B), g(aj∈Ba));
5: loss← Equation (5);
6: updating θ using optimizers,

e.g., Adam [34];
7: end for;
8: Construct S by Equation (1);
9: S̃← α1S̃ + (1− α1)S;

10: He ← α2He + (1− α2)H;
11: H̃← He/(1− αt

2);
12: end for.

4. Experiments

To evaluate the proposed UDPH, we conduct extensive experiments on two large-
scale benchmark databases: CIFAR-10 [27] and NUS-WIDE [28]. CIFAR-10 has 60,000
color 32× 32 images belonging to 10 classes on average. These images are split into one
training set with 50,000 images and one testing set containing 10,000 images. NUS-WIDE
is composed of 269,648 images collected from Flickr [28]. There are, totally, 81 semantic
concepts, with each image containing multiple labels. Similar to [8,15], we select the
21 most frequent labels for evaluation and, in total, obtain around 195,834 color images.
Following [15], for these two databases, we randomly select 100 images from each class to
construct the query set and use the rest as a training/gallery set.

4.1. Experimental Settings

We compare UDPH against six popular non-deep unsupervised hashing algorithms
(LSH [1], SH [5], AGH [8], ITQ [21], SpH [18], and SGH [19]) and eight state-of-the-art
unsupervised deep hashing algorithms (DH [11], UAR [25], UH-BDNN [12], DeepBit
[13], HashGAN [14], UTH [26], UDBD [24], and SADH [15]). For the non-deep hashing
algorithms, we evaluate them by using hand-crafted features. Specifically, each image in
CIFAR-10 is represented by a 512-dimensional GIST vector [35], and each one in NUS-WIDE
is represented as a 500-dimensional bag of words (BoW) feature vector. Additionally, we
also show their performance on deep features extracted from the f c7 layer of the VGG-16
model pre-trained on the ImageNet database. Among the eight deep hashing algorithms,
DeepBit, UTH, UDBD, and SADH utilize the VGG-16 model as their backbone networks.
For the proposed UDPH, we empirically set the function and adopt the parameters γ1 =
0.01, γ2 = 0.1, α1 = 0.9, α2 = 0.6, λ = 0.8 on both CIFAR-10 and NUS-WIDE, except
λ = 1.6 on CIFAR-10 at 16-bit. We randomly select 500 images from the training data of the
two databases as anchors, i.e., m = 500.



Electronics 2022, 11, 744 7 of 12

Following [12,15], we adopt semantic similarity as the ground truth in our experiments.
For NUS-WIDE, two images are neighbors if they share at least one common label. We
evaluate the performance of the aforementioned hashing algorithms by using mean average
precision (MAP), MAP@1000, Precision@5000, and Precision@1000. Here, MAP denotes
the mean of the average precision of query images over all images in the gallery set;
MAP@1000 is the MAP calculated over the top 1000 returned images from the gallery set.
Precision@5000 means the rate of correctly retrieved samples from the top 5000 ranked
images. A similar definition is applied to Precision@1000. We run the experiments five
times and report the average results.

4.2. Experimental Results and Analysis

Table 1 presents retrieval results of the non-deep and deep hashing algorithms at
16-, 32- and 64-bit, selecting 100 query images per class and using the remaining ones
as a training/gallery set from CIFAR-10 and NUS-WIDE databases, respectively. Note
that we do not present the results of DH, DAR, Hash-GAN, UTH, and UDPD on NUS-
WIDE, because there is no publicly reported results. As we can see from Table 1, non-deep
hashing algorithms with deep features extracted from the pre-trained VGG-16 model
achieve better performance than that using hand-crafted features, probably because the
data distribution of ImageNet is similar to that of CIFAR-10 and NUS-WIDE. Additionally,
SADH outperforms the other non-deep and deep hashing algorithms except UDPH, because
it effectively exploits the adaptive pairwise similarity among data. Moreover, UDPH obtains
superior performance over all the non-deep and deep hashing algorithms, especially in
terms of the metric MAP. Specifically, on CIFAR-10, the gain of UDPH in MAP is from a
relative 2.87% to a relative 14.78% over the best competitor, SADH; on NUS-WIDE, the gain
of UDPH in MAP ranges from 1.01% to 12.46%, relatively, over the best competitor; it also
obtains better performance in terms of MAP@1000, Precision@5000, and Precision@1000
on the two databases except the Precision@5000 at 16-bit on NUS-WIDE. These results
demonstrate the effectiveness and strength of the proposed UDPH. Note that SADH usually
achieves its best MAP with short binary codes, e.g., 16-bit, while UDPH obtains better
performance with an increasing number of bits. This might be because SADH can effectively
preserve the similarity information of the low-rank graph matrix by using short binary
codes, but UDPH with longer binary codes can better preserve the similarity relationship
between training data and anchors.



Electronics 2022, 11, 744 8 of 12

Table 1. Retrieval results (%) in terms of MAP, MAP@1000, Precision@5000, and Precision@1000 on CIFAR-10 and NUS-WIDE. † denotes the implemented results
based on the provided codes, ∗means the results copied from Shen et al., 2018 [15], and the other results are directly copied from the corresponding publications.
The best accuracy are in bold and the second-best results of each database are underlined.

Method
MAP MAP@1000 Precision@5000 Precision@1000

16-bit 32-bit 64-bit 16-bit 32-bit 64-bit 16-bit 32-bit 64-bit 16-bit 32-bit 64-bit

CIFAR-10

LSH † 13.18 14.00 14.92 19.05 21.10 23.83 14.30 15.82 17.07 15.82 18.21 20.53
SH † 12.85 12.65 12.51 20.69 21.03 20.52 14.24 14.06 14.12 16.66 16.98 16.97

AGH † 14.31 13.52 13.44 22.74 22.12 23.54 16.11 15.57 15.58 19.02 19.30 20.48
ITQ † 15.52 15.94 16.49 24.13 26.00 27.56 17.41 18.17 18.89 20.06 22.12 23.39
SpH † 14.28 14.53 15.27 21.68 23.31 26.38 15.94 16.80 17.92 18.34 20.02 22.55
SGH † 14.51 15.05 15.37 22.97 24.92 26.38 15.82 17.67 17.86 19.79 21.34 22.34

LSH+VGG † 13.71 15.81 19.54 20.45 26.13 34.03 15.09 18.37 23.09 17.64 22.45 29.54
SH+VGG † 22.14 19.65 18.18 40.26 38.89 38.48 25.84 23.41 22.07 34.05 32.58 31.76
AGH+VGG † 31.43 28.26 26.55 45.05 47.24 48.79 34.02 32.21 30.79 42.77 43.75 44.90
ITQ+VGG † 31.93 32.21 33.76 45.58 50.53 53.86 35.24 35.75 37.17 42.31 45.94 48.93
SpH+VGG † 19.84 24.23 26.00 33.48 41.34 45.02 22.88 28.13 30.09 28.72 36.78 40.26
SGH+VGG † 23.93 24.30 27.15 42.01 44.12 48.48 27.40 28.52 31.48 36.49 38.74 43.14

DH 16.17 16.62 16.96 - - - - - - 23.79 26.00 27.70
DAR 16.82 17.01 17.21 - - - - - - 24.54 26.62 28.06
UH-

BDNN ∗ 30.10 30.89 31.18 - - - 33.97 34.48 35.00 - - -

HashGAN 29.94 31.47 32.53 44.65 46.34 48.12 - - - 41.76 43.62 45.51

DeepBit∗ 15.95 19.16 20.96 - - - 18.02 22.27 24.36 - - -
UTH - - - 28.66 30.66 32.41 - - - - - -

UDBD 21.70 20.64 23.07 26.36 27.92 34.05 - - - - - -
SADH ∗ 38.70 38.49 37.68 - - - 41.80 41.56 41.15 - - -
UDPH 39.81 40.68 43.25 46.11 52.52 58.17 42.08 43.06 44.31 42.95 49.72 54.23



Electronics 2022, 11, 744 9 of 12

Table 1. Cont.

Method
MAP MAP@1000 Precision@5000 Precision@1000

16-bit 32-bit 64-bit 16-bit 32-bit 64-bit 16-bit 32-bit 64-bit 16-bit 32-bit 64-bit

NUS-WIDE

LSH † 36.06 36.19 37.16 39.95 40.98 43.01 39.17 39.63 41.43 39.48 40.32 42.28
SH † 34.47 34.96 34.97 41.78 43.00 41.94 37.80 38.77 38.07 40.22 41.40 40.41

AGH † 35.74 35.87 35.75 42.30 43.26 44.41 40.29 41.44 41.71 41.56 42.36 43.46
ITQ † 38.25 38.64 38.75 45.35 46.36 47.05 42.97 43.85 44.20 44.25 45.23 45.71
SpH † 37.26 37.42 37.83 43.58 44.82 46.30 41.82 42.69 43.77 42.76 43.93 45.25
SGH † 37.39 37.33 37.41 45.66 45.79 45.82 43.11 42.91 43.02 44.60 44.56 44.62

LSH+VGG † 38.95 39.56 44.53 46.55 50.57 62.82 43.42 45.64 55.69 45.28 48.65 60.32
SH+VGG † 44.74 42.59 41.54 67.21 66.40 66.69 58.65 55.52 53.93 64.84 63.01 62.54
AGH+VGG † 49.91 49.77 48.38 70.59 72.67 73.94 66.48 67.79 67.64 69.65 71.49 72.63
ITQ+VGG † 54.76 55.20 55.55 70.21 74.14 76.32 68.92 70.43 71.55 70.22 74.01 74.69
SpH+VGG † 47.40 50.44 51.33 64.28 70.18 72.94 58.97 63.83 66.10 62.64 68.24 70.90
SGH+VGG † 46.98 47.71 50.01 69.43 71.49 74.89 61.81 63.07 66.67 67.30 69.22 72.70

UH-
BDNN ∗ 39.22 40.32 42.06 - - - 45.54 51.34 57.72 - - -

DeepBit ∗ 54.26 51.72 54.74 - - - 70.18 69.60 72.74 - - -
SADH ∗ 60.14 57.99 56.33 - - - 71.45 73.88 75.04 - - -
UDPH 60.75 61.29 63.35 71.89 76.60 77.87 70.49 74.52 75.56 71.31 75.65 76.88



Electronics 2022, 11, 744 10 of 12

On CIFAR-10, some popular methods, including DBD-MQ [36] and GraphBit [37],
utilize 50,000 images as a training/gallery set and 10,000 images as a query set, and they
adopt relatively shallow CNNs. Following the experimental protocols in DBD-MQ and
GraphBit, to better illustrate the strength of the proposed UDPH, we adopt a shallow
network AlexNet [38] as the backbone network, which is pre-trained on the ImageNet
database. Additionally, UDPH with AlexNet adopts the same parameter settings as that
with VGG-16. Table 2 presents their raking performance in terms of MAP@1000. This
further demonstrates the superior performance of UDPH. Specifically, its gain is 17.40%,
18.84%, and 18.35%, relatively, over the best competitor GraphBit at 16-, 32-, and 64-bit,
respectively.

Table 2. Retrieval results (%) in terms of MAP@1000 on CIFAR-10 with AlexNet as the backbone. The
results of DBD-MQ and GraphBit are directly copied from the publications. The best accuracy results
are in bold and the second-best results are underlined.

Method
MAP@1000

16-bit 32-bit 64-bit

DBD-MQ 21.53 26.50 31.85
GraphBit 32.15 36.74 39.90

UDPH 37.81 43.66 47.22

4.3. Ablation Studies

Here, we analyze the influence of the ensemble anchor-based pairwise similarity
matrix S̃ and the two terms, Jhmse and Jsmse, on UDPH using VGG-16 as the backbone
network. We randomly select 100 images per class from the CIFAR-10 database to construct
a query set, and 500 images per class from the remaining ones to construct a set for training
and retrieval. Figure 2a shows the MAP of UDPH using four different settings of S̃.
Specifically, (i) “α1 = 0.9, weight” means using the entries in S̃ as the weight of Jwce; (ii)
“α1 = 0.9, equal” means s̃ij = 1 if s̃ij > 0 and s̃ij = −1 when s̃ij < 0; (iii) “α1 = 0, update
S” denotes S̃ = S with updating S every training epoch; (iv) “α1 = 0, fix S” represents
S̃ = S without updating S during the training process. Figure 2a suggests that S̃ can boost
the model performance and smooth the training process, i.e., the best or sub-best MAP is
achieved at the last several training epochs. Figure 2b presents the MAP of UDPH without
Jhmse, i.e., γ1 = 0. It illustrates the effectiveness Jhmse and the significance of reducing the
gap between latent binary vector and binary codes. Figure 2c displays the result of UDPH
without Jsmse, i.e., γ2 = 0. It demonstrates that forming consensus predictions of latent
binary vectors can also improve model performance.

1 10 20 30 40 50

Epoch #

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
A

P

α
1
=0.9, weight

α
1
=0.9, equal

α
1
=0, update S

α
1
=0, fix S

(a) @S̃

1 10 20 30 40 50

Epoch #

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
A

P

γ
1
=0.01

γ
1
=0

(b) @Jhmse

1 10 20 30 40 50

Epoch #

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
A

P

γ
2
=0.1

γ
2
=0

(c) @Jsmse

Figure 2. Ranking performance in terms of MAP of UDPH with different settings on different
training epochs at 32-bit on CIFAR-10 using VGG-16 as the backbone: (a) different settings of S̃, (b)
with/without the term Jhmse in Equation (5), (c) with/without the term Jsmse in Equation (5).

5. Conclusions

In this paper, we propose a novel unsupervised deep pairwise hashing method, which
effectively and robustly takes advantage of the similarity information between training
samples and anchors. We first construct an anchor-based pairwise similarity matrix, upon



Electronics 2022, 11, 744 11 of 12

which we create a strong and robust ensemble pairwise similarity matrix to preserve their
similarity and dissimilarity relations. Then, we propose a novel loss function consisting
of a weighted cross-entropy loss, which utilizes the similarity and dissimilarity between
training samples and anchors as the weight to explore their semantic similarity relationship,
a square loss to reduce the gap between latent binary vectors and binary codes, and
another square loss to form consensus predictions of latent binary vectors for boosting
model performance. Experiments on benchmark databases demonstrate the strength of the
proposed method and the effectiveness of each term in the proposed loss function. In the
future, it is very promising to apply the robust ensemble pairwise similarity matrix and the
weighted cross-entropy loss on unsupervised or semi-supervised deep methods because
they can effectively explore the semantic similarity information hidden in unlabeled data.
Exploring advanced backbones, such as ResNet, to further improve performance is another
research direction.

Author Contributions: Conceptualization, X.S.; methodology, X.S. and Y.M.; writing—original draft
preparation, Y.M.; writing—review and editing, X.S. and Z.G.; supervision, Q.L. and Z.G.; funding
acquisition, Q.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the Intelligent perception and computing innovation platform
of the Shenzhen Institute of Information Technology (No. PT2019E001), and the Guangdong v2x
data security key technology and the expanded application R&D Industry Education Integration
Innovation Platform (No. PT2021C002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: CIFAR-10, https://www.cs.toronto.edu/~kriz/cifar.html; NUS-WIDE, https:
//lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html (accessed
on 18 January 2022).

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Gionis, A.; Indyk, P.; Motwani, R. Similarity Search in High Dimensions via Hashing. In Proceedings of the VLDB ’99 Proceedings

of the 25th International Conference on Very Large Data Bases, Edinburgh, Scotland, UK, 7–10 September 1999; pp. 518–529.
2. Torralba, A.; Fergus, R.; Weiss, Y. Small codes and large image databases for recognition. In Proceedings of the 2008 IEEE

Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.
3. Liu, W.; Wang, J.; Ji, R.; Jiang, Y.G.; Chang, S.F. Supervised hashing with kernels. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2074–2081.
4. Xia, R.; Pan, Y.; Lai, H.; Liu, C.; Yan, S. Supervised hashing for image retrieval via image representation learning. In Proceedings

of the Twenty-eighth AAAI Conference on Artificial Intelligence, Quebec City, QC, Canada, 27–31 July 2014.
5. Weiss, Y.; Torralba, A.; Fergus, R. Spectral hashing. In Proceedings of the 21st International Conference on Neural Information

Processing Systems, Vancouver, BC, Canada, 8–10 December 2008; pp. 1753–1760.
6. Broder, A.Z.; Charikar, M.; Frieze, A.M.; Mitzenmacher, M. Min-wise independent permutations. J. Comput. Syst. Sci. 2000,

60, 630–659. [CrossRef]
7. Shen, F.; Liu, W.; Zhang, S.; Yang, Y.; Shen, H.T. Learning Binary Codes for Maximum Inner Product Search. In Proceedings of

the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015; pp. 4148–4156.
8. Liu, W.; Wang, J.; Kumar, S.; Chang, S.F. Hashing with Graphs. In Proceedings of the 28th International Conference on Machine

Learning, Washington, DC, USA, 28 June–2 July 2011; pp. 1–8.
9. Liu, W.; Mu, C.; Kumar, S.; Chang, S.F. Discrete Graph Hashing. Adv. Neural Inf. Process. Syst. 2014, 27, 3419–3427.
10. Li, W.J.; Wang, S.; Kang, W.C. Feature learning based deep supervised hashing with pairwise labels. In Proceedings of the

IJCAI’16 Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July
2016; pp. 1711–1717.

11. Liong, V.E.; Lu, J.; Wang, G.; Moulin, P.; Zhou, J. Deep hashing for compact binary codes learning. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 2475–2483.

12. Do, T.T.; Doan, A.D.; Cheung, N.M. Learning to Hash with Binary Deep Neural Network. In European Conference on Computer
Vision 2016; Springer: Cham, Switzerland, 2016; pp. 219–234.

https://www.cs.toronto.edu/~kriz/cifar.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
http://doi.org/10.1006/jcss.1999.1690


Electronics 2022, 11, 744 12 of 12

13. Lin, K.; Lu, J.; Chen, C.S.; Zhou, J. Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 1183–1192.

14. Ghasedi Dizaji, K.; Zheng, F.; Sadoughi, N.; Yang, Y.; Deng, C.; Huang, H. Unsupervised deep generative adversarial hashing
network. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT,
USA, 18–23 June 2018; pp. 3664–3673.

15. Shen, F.; Xu, Y.; Liu, L.; Yang, Y.; Huang, Z.; Shen, H.T. Unsupervised deep hashing with similarity-adaptive and discrete
optimization. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 3034–3044. [CrossRef] [PubMed]

16. Shi, X.; Guo, Z.; Xing, F.; Liang, Y.; Yang, L. Anchor-Based Self-Ensembling for Semi-Supervised Deep Pairwise Hashing. Int. J.
Comput. Vis. 2020, 128, 2307–2324. [CrossRef]

17. Shi, X.; Xing, Z.; Zhang, Z.; Sapkota, M.; Guo, Z.; Yang, L. A Scalable Optimization Mechanism for Pairwise Based Discrete
Hashing. IEEE Trans. Image Process. 2021, 30, 1130–1142. [CrossRef] [PubMed]

18. Heo, J.P.; Lee, Y.; He, J.; Chang, S.F.; Yoon, S.E. Spherical hashing. In Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2957–2964.

19. Jiang, Q.Y.; Li, W.J. Scalable graph hashing with feature transformation. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015.

20. Kulis, B.; Darrell, T. Learning to hash with binary reconstructive embeddings. In Proceedings of the 22nd International Conference
on Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 1042–1050.

21. Gong, Y.; Lazebnik, S.; Gordo, A.; Perronnin, F. Iterative Quantization: A Procrustean Approach to Learning Binary Codes for
Large-Scale Image Retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2916–2929. [CrossRef] [PubMed]

22. Li, X.; Hu, D.; Nie, F. Large graph hashing with spectral rotation. In Proceedings of the AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; Volume 31.

23. Do, T.T.; Le Tan, D.K.; Pham, T.T.; Cheung, N.M. Simultaneous feature aggregating and hashing for large-scale image search.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp.
6618–6627.

24. Lin, K.; Lu, J.; Chen, C.S.; Zhou, J.; Sun, M.T. Unsupervised deep learning of compact binary descriptors. IEEE Trans. Pattern
Anal. Mach. Intell. 2018, 41, 1501–1514. [CrossRef] [PubMed]

25. Huang, C.; Change Loy, C.; Tang, X. Unsupervised learning of discriminative attributes and visual representations. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 5175–5184.

26. Huang, S.; Xiong, Y.; Zhang, Y.; Wang, J. Unsupervised Triplet Hashing for Fast Image Retrieval. In Proceedings of the on
Thematic Workshops of ACM Multimedia 2017, Mountain View, CA, USA, 23–27 October 2017; pp. 84–92.

27. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; Citeseer: Pennsylvania, PA,
USA, 2009.

28. Chua, T.S.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; Zheng, Y. Nus-wide: A real-world web image database from national university of
singapore. In Proceedings of the ACM International Conference on Image and Video Retrieval, Santorini Island, Greece, 8–10
July 2009; pp. 1–9.

29. Shi, X.; Xing, F.; Xu, K.; Sapkota, M.; Yang, L. Asymmetric discrete graph hashing. In Proceedings of the AAAI Conference on
Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

30. Zhou, D.; Bousquet, O.; Lal, T.; Weston, J.; Schölkopf, B. Learning with local and global consistency. Adv. Neural Inf. Process. Syst.
2003, 16, 321–328.

31. Rasmus, A.; Berglund, M.; Honkala, M.; Valpola, H.; Raiko, T. Semi-supervised Learning with Ladder Networks. Adv. Neural Inf.
Process. Syst. 2015, 28, 3546–3554.

32. Laine, S.; Aila, T. Temporal ensembling for semi-supervised learning. arXiv 2016, arXiv:1610.02242.
33. Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised

deep learning results. arXiv 2017, arXiv:1703.01780
34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001,

42, 145–175. [CrossRef]
36. Duan, Y.; Lu, J.; Wang, Z.; Feng, J.; Zhou, J. Learning deep binary descriptor with multi-quantization. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1183–1192.
37. Duan, Y.; Wang, Z.; Lu, J.; Lin, X.; Zhou, J. GraphBit: Bitwise interaction mining via deep reinforcement learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8270–8279.
38. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances

in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105. Available online: https:
//proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (accessed on 22 February 2022).

http://dx.doi.org/10.1109/TPAMI.2018.2789887
http://www.ncbi.nlm.nih.gov/pubmed/29993420
http://dx.doi.org/10.1007/s11263-020-01299-x
http://dx.doi.org/10.1109/TIP.2020.3040536
http://www.ncbi.nlm.nih.gov/pubmed/33270563
http://dx.doi.org/10.1109/TPAMI.2012.193
http://www.ncbi.nlm.nih.gov/pubmed/24136430
http://dx.doi.org/10.1109/TPAMI.2018.2833865
http://www.ncbi.nlm.nih.gov/pubmed/29993880
http://dx.doi.org/10.1023/A:1011139631724
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

	Introduction
	Related Work
	Methodology
	Anchor-Based Pairwise Similarity Matrix
	Formulation and Procedure

	Experiments
	Experimental Settings
	Experimental Results and Analysis
	Ablation Studies

	Conclusions
	References

