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Abstract: The paper proposes a simple machine learning solution for hand-gesture classification,
based on processed MM-wave radar signal. It investigates the classification up to 12 different
intuitive and ergonomic gestures, which are intended to serve as a contactless user interface. The
system is based on AWR1642 boost Frequency-Modulated Continuous-Wave (FMCW) radar, which
allows capturing standardized data to support the scalability of the proposed solution. More than
4000 samples were collected from 4 different people, with all signatures extracted from the radar
hardware available in open-access database accompanying the publication. Collected data were
processed and used to train Long short-term memory (LSTM) and artificial recurrent neural network
(RNN) architecture. The work studies the impact of different input parameters, the number of
hidden layers, and the number of neurons in those layers. The proposed LSTM network allows for
classification of different gestures, with the total accuracy ranging from 94.4% to 100% depending
on use-case scenario, with a relatively small architecture of only 2 hidden layers with 32 neurons
in each. The solution is also tested with additional data recorded from subjects not involved in the
original training set, resulting in an accuracy drop of no more than 2.24%. This demonstrates that the
proposed solution is robust and scalable, allowing quick and reliable creation of larger databases of
gestures to expand the use of machine learning with radar technologies.

Keywords: radar; MM-wave radar; FMCW radar; hand-gesture recognition; machine learning;
neural network; recurrent neural network

1. Introduction

Development of gesture recognition technology has found widespread applications,
ranging from virtual reality, gaming, automotive, wearable devices, to smartphones and
medical [1–5]. Recently, the COVID-19 pandemic highlighted further benefits of the con-
tactless interface as a preventive measure against the spread of the virus. Contactless
hand-gesture recognition can be implemented within various devices, i.e., optical cam-
eras [6] or gesture-based controllers and radars [7]. Currently, the optical camera-based
approach is the most widespread. The camera sensor captures the hand gestures and feeds
the classification algorithm through image/video processing [8]. However, optical-based
gesture recognition has many limitations in both hardware and software: The camera sen-
sor is sensitive to lighting conditions, while background noise from dirt, weather, dim and
bright light or scratching of the lens affects the collected data. On top of that, camera-based
machine learning may be subjected to adversary attacks [9], with malicious visual input
being easily injected into the system.

Radar–based gesture recognition is recently gaining popularity, as it is resistant to
light and weather conditions. Moreover, a single sensor allows for seamless collection
of data within 2D and 3D spaces, as well as velocity data from Doppler measurements.
Those additional parameters can create more sophisticated classification and increase the
overall accuracy.
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However, machine learning algorithms used in radar signal processing are still a
nascent field. Current literature reports a classification of up to 10 motion gestures with
>90% accuracy [7,10–19]. In [10], it is discussed that the accuracy of such algorithms may
drop by up to 40% when the classification is executed on samples from a subject not
included in the training set. This emphasizes the need for large-scale open and portable
data-sets, that are compatible with a number of standardized radar hardware. In [20],
a classification within a set of 5 gestures demonstrated a good performance, achieving
97.6% accuracy. The work gathered 300 samples, however, with no information about the
number of subjects involved. Another work [7] successfully demonstrates the classification
of 6 basic hand gestures. The training set also includes some random movements, which
allowed explicit classification of ‘invalid’ gestures.

In most of the reported approaches, the raw data captured by the radar are converted
into spectrogram images and fed into a Convolution Neural Network (CNN) optimized
for the image classification problem. While using CNN for image classification is a well
studied subject, it creates large amounts of stored and processed data, which require feature
extraction in the post-processing step [21].

This publication proposes a classification algorithm of up to 12 basic gestures with
classification accuracy above 94%. The motivation is to create an ergonomic and intuitive
contactless interface for vending machines, ATMs, and similar devices. The work studies
the impact of different parameters on the neural network proposed, as well as a trade-off
between accuracy and the number of gestures involved. Overall accuracies are within
94.4% to 100%, depending on the number of gestures.

Distinguishable to previous contributions, the work uses standardized off-the-shelf
radar hardware, the AWR164 BOOST from Texas Instrument [22]. This allows for machine
learning and data-sets that are transferable across a number of off-the-shelf radar hardware.
This ensures repeatability, easy benchmarking between different solutions, and the possibil-
ity to gradually build large training data-sets from multiple sources. All recorded samples
reported in the study are openly available in [23]. The proposed algorithm is based on Long
short-term memory (LSTM) neural network, which is better tailored for sequential datasets.
The proposed work offers 94.4% accuracy for 12 gestures and 97.3% for 10 gestures.

2. Materials and Methods

The gesture recognition system is outlined in Figure 1. It is based on AWR1642
Booster Pack evaluation board from Texas Instrument [22], which is a Frequency Modulated
Continuous Wave (FMCW) radar operating within 76–81 GHz band. It works in a MIMO
configuration of 2 transmitters and 4 receivers. High resolution (up to 4 cm), compact size,
relatively low cost, ready-to-use software, and USB interface makes it a good candidate for
the proposed system. The onboard digital signal processor (DSP) processes the raw data
from the radar with the Fast Fourier Transform (FFT). Processed data is transferred into a
specific text data format, which contains information about the detected points, eliminating
the need for external algorithm for data processing. Radar hardware classifies targets and
delivers data as frames. Each frame corresponds up to 200 targets collected in a single
sensing epoch. Each target contains a set of parameters: x and y coordinates (m), distance
from the radar (m), velocity (m/s) and power of the reflected signal (in arbitrary units).
Radar collects the data in a preconfigured speed with a maximum speed of 30 frames
per second. Since the radar operates at a close range of 10–40 cm, each detected target
corresponds to some area of the hand (e.g., finger), however, there is no tracking of a
particular targets over multiple frames.
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Figure 1. Pipeline of the proposed system. The hand gesture is captured by the radar and transformed
by the AWR1642 hardware into samples consisting of frames that are eventually used with the LSTM
neural network.

2.1. Experimental Setup

The operation of the proposed system was tested with subjects in a sitting position in
front of the radar. The starting position of the hand before performing the gesture was at a
distance of 10–40 cm from the antenna. AWR1642 was placed vertically with the transmit
and receive antennas pointed towards the human subject (see Figure 2).

Figure 2. Position of the hand against the radar.

To prevent the collection of clutters behind the human hand, the X and Y thresholds
have been established. The range of motion when capturing a gesture may vary from
person to person. Therefore, we set the y-axis cut-off at 60 cm, which allows a sufficient
margin of 20 cm while performing the hand movement. The software cut off all targets
beyond 0.6 m in Y axis and outside the range from −0.3 m to 0.3 m in X axis. As the
interface works in close range, the Best Range Resolution mode of AWR1642 was chosen.
The frame rate was set up to 30 frames per second, which is considered optimal for the
investigated application. A lower value can reduce the accuracy of the neural network, and
a higher value creates too much data to process. Other important parameters are shown
in Table 1.



Electronics 2022, 11, 787 4 of 11

Table 1. AWR1642 parameters.

Parameter Value

Antenna configuration 2TX, 4RX
Azimuth resolution 15
Range resolution 0.039 m
Radial velocity resolution 0.13 m/s
Frame duration 33 ms
Range detection threshold: 30 dB 30 dB
Doppler detection threshold: 30 dB 30 dB

RX—receiver, TX—transmitter.

2.2. Implemented Gestures

The gestures used in the study were selected with an intention for intuitive control of
a contactless interface that can be used by any member of the public. The following list
of 12 gestures was compiled for the study, all illustrated in Figure 3: (G1) arm to left—full
swipe of an arm from right to left, (G2) arm to right—full swipe of an arm from left to right,
(G3) hand away—taking a hand away from radar, (G4) hand closer—taking a hand closer
to the radar, (G5) arm up—an arm movement from bottom to top, (G6) arm down—an
arm movement from top to bottom, (G7) palm up—rotating a palm upwards, (G8) palm
down—rotating a palm downwards, (G9) hand to the left—a hand movement to the left
(without an arm movement), (G10) hand to the right—a hand movement to the right, (G11)
closing a fist horizontally, (G12) closing a fist vertically. All gestures are simple to perform,
easily explainable to subjects without prior training, and can intuitively be assigned to
different actions of the interface.

Figure 3. Gestures: (G1) arm to left, (G2) arm to right, (G3) hand away, (G4) hand closer, (G5) arm
up, (G6) arm down, (G7) palm up, (G8) palm down—rotating palm down, (G9) hand to the left,
(G10) hand to the right, (G11) closing a fist horizontally, (G12) closing a fist vertically.

Four subjects were involved in collection of the data samples: three females and one
male. Overall, 4600 samples were collected, with the detailed distribution between subjects
shown in Table 2.
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Table 2. Distribution of samples per person.

Gesture Type Person1 Person2 Person3 Person4 Sum

Arm to left 100 100 100 100 400
Arm to right 100 100 100 100 400
Closing fist horizontally 100 100 100 100 400
Close fist perpendicularly 150 50 100 100 400
Hand away 200 100 100 0 400
Hand closer 100 100 100 100 400
Hand down 100 100 100 100 400
Hand up 100 100 100 100 400
Hand rotating palm down 300 0 100 0 400
Hand rotating palm up 300 0 100 0 400
Hand to left 100 100 100 0 300
Hand to right 100 100 100 0 300

2.3. Data Processing

Configured, AWR1642 streams the processed data via USB interface to the controlling
PC. Decoded information is a frame filled by targets’ parameters. A single frame is a 3 × N
dimensional matrix, where N stands for the number of detected targets. Three columns
correspond to the respective parameters: Doppler velocity (m/s), X and Y position (m).
For machine learning, those values are considered intermediate parameters, i.e., one is
not concerned about the error of each individual value as long as their cumulative effect
yields the recognition of the correct gesture. Each gesture consists of M frames, creating
a matrix of 3 × N × M size. The examples of the matrix representation of the detected
targets with their respective pixel vs. frame image are shown in Figure 4. The program
automatically transfers a gesture matrix into CSV file, which contains a single gesture
sample per file. Each file stores 20–40 kB of data. It allows training directly on the original
digitized radar-based data, without generating a spectrogram-like image and adopting the
techniques used for visual image recognition. Overall, the above features make the training
process more computationally efficient. The database with all gestures is freely available at
IEEE Data Port [23].

Figure 4. Exemplary gesture samples recorded by the radar with detected targets along X and Y
position for each frame.
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2.4. Gesture Classification Algorithm

The LSTM network was studied with two use-cases: for the ‘simplified’ case only
data about X and Y position of each target and frame were included, while the ‘normal’
case included data about X and Y position, as well as the measured Doppler velocity.
Each gesture sample from the database was converted from a matrix into a vector of
19,200 elements for the ‘normal’ case (i.e., including X position, Y position and Doppler
velocity) or 12,800 for the ‘simplified’ case (i.e., without considering the Doppler effect).
To overcome the varying number of detected targets for different time-slots, zero-padding
was implemented to keep the constant number of 80 frames and 80 targets. Hence, the
extracted gestures have a dimension of 80 × 3 × 80 and, 80 × 2 × 80, respectively.

Long short-term memory (LSTM) network for each element in input sequence, each
layer computes the following function:

it = σ(Wiixt + bii + Whiht−1 + bhi)

ft = σ
(

Wi f xt + bi f + Wh f ht−1 + bh f

)
gt = tanh

(
Wigxt + big + Whght−1 + bhg

)
ot = σ(Wioxt + bio + Whoht−1 + bho)
ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(1)

where ht is the hidden state at time t, xt is the input at time t, ht−1 is the hidden state of the
layer at time t − 1 or the initial hidden state at time o and it, ft, gt, ot are the input, forget,
cell, and output gates respectively. σ is the sigmoid function, and � is the Hadamard
product. In a multilayer LSTM, the input x(l)t of the l-th layer (l >= 2) is the hidden state

h(l−1)
t of the previous layer multiplied by dropout, δ

(l−1)
t where each δ

(l−1)
t is a Bernoulli

random variable which is 0 with probability dropout [24]. Tanh activation function is
defined as:

tanh(x) =
ex − e−x

ex + e−x (2)

The output layer provides the probability of input data against each gesture. It uses
LogSoftmax activation function to normalize output o1. of the network to a probability
distribution over the predicted output classes.

log Softmax(oi) = log

(
exp(oi)

∑j=0 exp(oi)

)
(3)

The largest value of the output indicates the classified gesture, accordingly the number
of nodes of the output layer corresponds to the number of gestures being classified.

2.5. Validation

Each gesture from the validation set was fed into the trained neural network. The
algorithm classifies each input as a gesture with the highest probability, i.e., the highest
value of the respective output. The overall accuracy was calculated as:

Accuracy = 100%
(

Ncorrect

Ntotal

)
(4)

where Ncorrect is the number of correctly recognized gestures and Ntotal is the total number
of tested gestures.

3. Results

The database was divided into a training set and a validation set (90% and 10% of the
database, respectively). The order of gesture samples in both sets was randomized before
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feeding to the neural network, i.e., with random sequence of gesture type and subjects.
Ten epochs for the training set were used. Other training paramaters are shown in the
Table 3. The impact of the Doppler velocity on the LSTM network accuracy was examined
by the two use-cases. To find the optimal number of layers and nodes for each layer, the
network was trained with 12 types of gestures against different number of hidden layers
with different number of neurons. The experiment was repeated for both ’simplified’ and
’normal’ use cases. The summary of this investigation is shown in Figure 5.

Table 3. Training parameters.

Epochs 10
Loss function Cross Entropy Loss
Optimizer algorithm Adam
Optimizer step value 0.001
Machine learning framework PyTorch

Figure 5. Accuracy vs. number of neurons for different sets of hidden layers. (A) ‘Normal’ use case
with Doppler velocity feature included. (B) ‘Simplified’ use case without Doppler velocity.

The highest accuracy of 94.4% was achieved by a LSTM network consisting of 2 layers
of 32 neurons each for ’normal’ case with Doppler velocity. Overall, networks trained with
the Doppler velocity data resulted in higher efficiency: An average accuracy decline of
the ’simplified’ use case in relation to the ’normal’ use case ranged from 1.33% to 11.64%
depending on the setup. The confusion matrix in Figure 6 shows that, for 12 gestures, a
very high accuracy can be obtained for most of the gestures. Gestures G5 (hand down),
G6 (hand up), and G11 (closing fist horizontally) remain below 90%. This is because the
antennas of the AWR1642 device allows for distinction only in a single plane, measuring
targets along X and Y axes. The three gestures in question include significant up and
down movements, i.e., along the Z axis. This problem is expected to be solved by using
FMCW radar with 2-dimensional antenna array. After eliminating gestures G5 and G6, the
experiment was repeated for 10 remaining gestures, which resulted in 97.3% accuracy.
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Figure 6. (A) Normalized to percentage confusion matrix for 12 gestures. (B) Normalized to percent-
age confusion matrix for 10 gestures, without gesture G5 (hand down) and G6 (hand up).

3.1. Performance of Different Network Types

Obtained results were compared with three types of neural networks: Gated Recurrent
Units (GRU), Elman Recurrent Neural Network (RNN), and Feedforward neural network.
An example of differences in training of two hidden layers architecture is shown in the
first plot in Figure 7. RNN obtained the worst results, with declining accuracy as the
network becomes more complex. This is caused by Vanishing Gradient problem: For long
time-series data, RNN tends to lower the gradient to the value where parameter updates
become insignificant and have no real impact on the learning. The solution is to use LSTM
and GRU architectures. LSTM obtained slightly better results than GRU. For GRU, LSTM,
and Feedforward networks the accuracy is almost linear with peaks for different range of
neurons. The second plot in Figure 7 shows how networks behave for a declining number
of gestures. LSTM and GRU exceeds 96% accuracy for 10 gestures. RNN and Feedforward
networks reach a satisfying level (above 94%) for six and eight gestures, respectively.

Figure 7. (A) Comparison of accuracy vs. number of neurons between LSTM, GRU, RNN, and
Feedforward architecture for two hidden layers. (B) Comparison of accuracy vs. number of gestures
between LSTM, GRU, RNN, and Feedforward architecture.
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3.2. Performance with New Subjects

To assess how general the proposed solution is, additional samples were collected
from two new subjects, who were not involved in the previous study. Each new subject
recorded 20 samples per gesture, resulting in 480 new samples to be classified. The new
samples were fed to the existing best resulting classification algorithm (i.e., LSTM with
2 hidden layers and 32 neurons each) without any retraining. The confusion matrices are
shown in Figure 8. It can be seen that the accuracy is 92.16% and 96.09% for the recognition
of 12 and 10 gestures, respectively. This correspond to a respective accuracy drop of 2.24%
and 1.21 %, which is considered insignificant. By comparison, the work [10] reported up to
a 40% drop when the classification is executed on samples from a subject not included in
the training set.

Figure 8. Normalized confusion matrices for the classification of data from subjects not involved in the
network’s training. (A) Normalized to percentage confusion matrix for 12 gestures. (B) Normalized
to percentage confusion matrix for 10 gestures, without gestures G5 (hand down) and G6 (hand up).

4. Conclusions

The proposed work demonstrates the LSTM network classification algorithm for
radar-based signals to correctly classify a number of hand-gestures for use as a contactless
interface in vending machines. The network allows the classification of up to 12 different
gestures observed with a single radar with 94.4% total accuracy, outperforming comparable
radar-based solutions reported in the literature (demonstrated in Table 4). The work also
studies the impact of different inputs and number of hidden layers, as well as comparison
with alternative neural network types. The proposed solution uses single standard off-the-
shelf radar hardware, with neural networks consisting only of two hidden layers. This
allows for scalability and repeatability, as well as the inclusion of additional samples into
the training sets. The database of 4600 gesture samples used in the study is provided
through IEEE Data Port platform [23]. The produced data requires little storage space, with
a single sample CSV file of 20–40 kB.
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Table 4. Comparison between the authors’ method and other methods in the gesture recognition field.

Source Year Gestures Number Accuracy Classification Algorithm Radar Type

This work 2022 12 94.3% LSTM FMCW
This work 2022 10 97.4% LSTM FMCW

[13] 2021 8 98.13% Depthwise2D+CNN2D FMCW
[14] 2021 4 98.91% Spiking LSM FMCW
[17] 2019 4 96% KNN FMCW
[15] 2020 6 94.21% CNN CW
[18] 2018 7 91% LSTM FMCW
[16] 2020 7 98.8% 3D-CNN FMCW
[19] 2019 10 96.17% TS-I3D FMCW

Author Contributions: Conceptualization and methodology, A.N. and P.G.; software, validation,
analysis, investigation, and writing—original draft preparation, P.G.; writing—review and editing,
supervision, and funding acquisition, A.N. All authors have read and agreed to the published version
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