
����������
�������

Citation: Fan, C.-I.; Zhuang, E.-S.;

Karati, A.; Su, C.-H. A Multiple

End-Devices Authentication Scheme

for LoRaWAN. Electronics 2022, 11,

797. https://doi.org/10.3390/

electronics11050797

Academic Editor: Rui L. Aguiar

Received: 20 January 2022

Accepted: 1 March 2022

Published: 3 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Multiple End-Devices Authentication Scheme for LoRaWAN
Chun-I Fan , Er-Shuo Zhuang, Arijit Karati * and Chun-Hui Su

Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
cifan@mail.cse.nsysu.edu.tw (C.-I.F.); zhuanges@gmail.com (E.-S.Z.); chunhye85315@gmail.com (C.-H.S.)
* Correspondence: arijit.karati@mail.cse.nsysu.edu.tw

Abstract: With the advancement of the Internet of Things, the LoRa Alliance produced the Long-
Range Wide-Area Network (LoRaWAN) Specification, allowing end-devices to transit through a
gateway and join the LoRa network after completing a join procedure. When an end-device joins
the LoRaWAN network, it must send a join request message to the network server and wait for
the network server to verify such request under the current LoRaWAN join protocol. However, as
the number of end-devices grows exponentially, network server verification messages will grow
linearly with the number of end-devices. This paper proposes an authentication system for multiple
end-devices that complies with the LoRa Alliance’s specifications and decreases the joining latency
imposed by the network server verifying messages. The proposed authentication system is formally
secure against the server and end-device impersonation. In addition, we assess the authentication
overhead and compare it to the standard approach.

Keywords: authentication; Internet of Things (IoT); LoRaWAN; join procedure

1. Introduction

The IoT has enabled various applications in the past few years, including smart
homes, smart cities, industrial automation, and smart healthcare [1,2]. According to
Ericsson’s mobility report [3], the number of IoT devices exceeded the number of mobile
devices in 2018. Furthermore, as illustrated in Figure 1, according to a Statistica report
in 2018 [4], IoT devices will have over 75 billion connections by 2025. Furthermore, since
technology advances and times change swiftly, consumers have exhibited a greater demand
for automated IoT devices and consume less power. This means that previous wireless
communication technologies such as Bluetooth Low Energy (BLE), Zigbee, and Wi-Fi are
no longer capable of meeting the needs of IoT devices for long distances, low energy
consumption, and a high density of nodes. Furthermore, according to the LoRa Alliance [5]
and Sinha et al. [6], the Low-Power Wide-Area Network (LPWAN) industry is on the rise in
the IoT market. In this scenario, low-power wide-area network (LPWAN) communication
technology has recently become a prominent wireless communication technology [7,8].

15.41
17.68

20.35
23.14

26.66
30.73

35.82

42.62

51.11

62.12

75.44

0

20

40

60

80

100

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

+14.73%
+15.10%

+13.71%
+15.21%

+15.27%

+18.98%

+16.56%

+19.92%

+21.51%

+21.45%

+389.55%
compared

to 2015

+X%: X% hike compared to its preceding year

Figure 1. Connected IoT devices (in billions) from 2015 to 2025.

Electronics 2022, 11, 797. https://doi.org/10.3390/electronics11050797 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050797
https://doi.org/10.3390/electronics11050797
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7512-1291
https://orcid.org/0000-0001-5605-7354
https://doi.org/10.3390/electronics11050797
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050797?type=check_update&version=2

Electronics 2022, 11, 797 2 of 15

LoRa [9] is a well-developed technology among these LPWAN technologies. The LoRa
technology was developed by the French company Cycleo and bought by Semtech in 2012.
Following the acquisition, Semtech commenced an aggressive increase in the use of the
technology, including forming the LoRa Alliance to make it easier for other firms to join
the LoRa ecosystem. LoRa technology [10] bridges the technical gap between Wi-Fi/BLE
and cellular-based networks, such as the 5G network [11], and can provide long-distance
data connections with minimal power consumption, as shown in Figure 2. Cisco, one of the
LoRa Alliance’s pioneers, presented the following three LoRa application use cases [12]:

• Smart city management: Connecting all the assets of the city and providing better
services by collecting data and analyzing data, including waste management, parking,
street lighting, and public safety data.

• Asset tracking: Obtaining location information for people and private assets, including
equipment, vehicles, pets, and cattle.

• Gas and water metering: Enabling utility customers to remotely read and control gas
and water meters to reduce technical costs.

Wi-Fi/BLE
Video/voice

consumer IoT

Cellular
Mission critical outdoor use

case requires high power

LoRa
Sensors, actuators and tags

require low cost and low power

Short Long
Range

B
an

d
w
id
th

Low

High

~150KHz

~ 40MHz

~ 50M ~ 10KM

Figure 2. LoRa filling the technology gap.

The LoRa Alliance released the first version of the LoRa communication standard
specifications in 2015, designating the Long Range Wide-Area Network (LoRaWAN) to
enable LoRa to be applied to the abovementioned areas. According to the LoRa Alliance’s
introduction overview document issued in 2015 [13], LoRaWAN has the following benefits:

• Long range: Not only can LoRaWAN serve indoor applications in unlicensed bands
such as Wi-Fi, but it can also support outdoor applications with the same security as a
cellular network [14]. As a result, it can connect to a broader range of networks than
Wi-Fi and cellular networks.

• Max lifetime: Asynchronous communication is the most extensively utilized mode
for end-devices in the LoRaWAN network. End-devices only communicate over the
network when sending event-driven or planned data. As a result, they can conserve
the wake-up monitoring power. End-devices in other synchronous networks must
wake up frequently in order to synchronize with the network and verify messages,
which consumes more power.

• Multi-usage: Depending on the environment, the LoRaWAN network may handle
public networks with a significant capacity of hundreds or even tens of thousands of
nodes. As a result, it can meet the needs of large online communities or markets [15].

• Low cost: Low power consumption in LoRa end devices enhances battery life and
lowers battery replacement expenses. Semtech has also made the hardware and
software designs for the gateway and end-devices public. This can help to save money
on infrastructure and terminal device development.

• Device classes: End-devices are used for a variety of purposes and have varying needs.
LoRaWAN has created three end-device categories, dubbed class A, B, and C, to opti-

Electronics 2022, 11, 797 3 of 15

mize diverse end-application profiles to balance network downlink communication
delays and battery life.

• Security: To ensure end-to-end security, LoRaWAN employs Advanced Encryption
Standards (AES) [13]. Mutual authentication and integrity protection also ensure the
integrity of LoRa networks, devices, and data [14].

Chen et al. [16] developed a key generation strategy for LoRaWAN that meets the
security key randomization criterion. Danish et al. [17] developed a lightweight two-factor
authentication system for the LoRaWAN join procedure based on blockchain technology,
ensuring confidence between network servers. Later, Tsai et al. [18] established a session
key generation mechanism that allows two servers to interact with each other, considerably
improving the LoRaWAN Specification’s undefined application-layer communication secu-
rity securely. For LoRaWAN networks, Jabbari and Mohasefi [19] created a novel secure
user-authenticated key establishment mechanism. It allows participants to verify each
other’s identities. Furthermore, it enables users and end-devices to establish a secure ses-
sion key between themselves without trusting the network server unconditionally. Further,
Kaven et al. [20] proposed a scheme to combat additional Sybil and man-in-the-middle
threats. However, most of the methods do not consider the authentication of multiple
end-devices and thus suffer from high latency during real-life deployment.

1.1. Contributions

When an end-device wants to join a network, it must send a join request to the network
server, which will execute the join verification process [21]. With the growing number
of end-devices, the number of join verification tasks will rise linearly [13]. As a result, if
many end-devices want to join the network, the network server will experience a delay
when processing such large requests. We propose a multi-device authentication technique
based on the LoRaWAN join mechanism to solve this challenge. Within the LoRaWAN
framework, we make the following contributions:

• We offer a comprehensive authentication strategy based on the linked end-device(s)
features that use exclusive-OR operations to achieve batch authentication.

• The suggested technique allows several end-devices of the same gateway to generate
group keys. Supporting group key creation may be helpful for future applications be-
cause end-devices from the same gateway may have specific correlations. Furthermore,
each end-device requires one additional hash operation.

• Under the formal model, the new technique is protected against major threats such as
phoney end-devices, network servers, and the leakage of session keys.

• Considering multi-end-device authentication, the suggested technique saves overall
execution time by around 33% compared to the LoRA Specification.

It may be noted that the security evaluation of the proposed scheme is based on the con-
ventional IND-CCA symmetric encryption assumptions and pseudorandom permutation
indistinguishability (PRP).

1.2. Organization

The rest of this manuscript is organized as follows: Section 2 mentions some back-
ground knowledge relevant to the proposed scheme, including the LoRaWAN standard.
The proposed authentication scheme based on the LoRaWAN standard is described in
Section 3. The security models and proofs of the proposed scheme are provided in Section 4.
Comparisons and concluding remarks are presented in Sections 5 and 6, respectively.

2. Preliminaries

This section provides background information for the proposed work, including the
LoRaWAN architecture with its specifications, and the underlying security games.

Electronics 2022, 11, 797 4 of 15

2.1. The LoRaWAN Architecture

LoRaWAN is a wide-area network that offers a bi-directional communication protocol
for end-devices with long-range, low-power, and low-cost requirements [22]. Figure 3
depicts an overview of the LoRaWAN architecture. The entities defined in the LoRaWAN
architecture are described below [13]:

LoRa
wireless Ethernet

End Device LoRa Gateway Application ServerNetwork Server

Figure 3. The LoRaWAN architecture.

• End-Devices: These could be anything from water meters to smoke alarms to trash
cans and pet trackers. LoRaWAN divides end-devices into classes A, B, and C. Each
type of device fulfills various long-distance communication requirements.

– Class A: This is the most basic communication mode, with minor power consump-
tion. It transmits data in bursts. As a result, network servers and applications
cannot predict the communication time. Class A refers to end-devices that only
require upload link communications.

– Class B: Class B end-devices will open additional receive windows at predeter-
mined times in addition to the random receive windows of class A devices. The
gateway will send a time synchronization signal to the end-devices in order for
them to open the receive windows on a predetermined schedule. As a result, the
network server knows when the end-devices are listening.

– Class C: The receive windows on class C end-devices are almost always open and
only close when transmitting. This end-device consumes the most power, while
having the shortest delay because these receive windows remain open.

• Gateways: A device in the LoRaWAN network is not assigned to a specific gateway.
Instead, data sent by a node are typically received by multiple gateways. Each
gateway will route data packets from the end node to the cloud-based network server
via backhaul cellular or Ethernet networks.

• Network Server: This is in charge of managing the entire network through specific
functions. It deletes redundant packets and runs security checks when it receives them
from gateways. Finally, it sends back an accept message via the best gateway.

• Application Servers: This is in charge of interpreting data from end-devices and solv-
ing problems with advanced technologies such as deep learning or artificial intelligence.

2.2. The LoRaWAN Specifications

When the end-device connects to the LoRaWAN network, the following data are
stored in the end-device [23]:

• Device EUI (DevEUI): The DevEUI is a global unique end-device identification number
that is assigned by the device manufacturer.

Electronics 2022, 11, 797 5 of 15

• Application EUI (AppEUI): The AppEUI is a global unique application identification
number, which is stored in the device in advance by the device manufacturer.

• Application key (AppKey): The AppKey is an AES-128 secret key stored in the end-
device and used to derive two keys, NwkSKey and AppSKey.

• Device address (DevAddr): The DevAddr is a 32-bit hexadecimal number, which can be
divided into two parts: the network identifier and network address.

– Network identifier (NwkID): The NwkID is a 7-bit network identifier used to
distinguish between the addresses of overlapping networks operated by different
network operators.

– Network address (NwkAddr): The NwkAddr is a 25-bit network address assigned
by the network manager.

• Network session key (NwkSKey): The NwkSKey is a network session key which is used
for MAC layer message encryption and authentication.

• Application session key (AppSKey) The AppSKey is an application session key which is
used for application-layer message encryption and authentication.

There are two ways for end-devices to join LoRaWAN, according to current LoRaWAN
standards. The first is known as over-the-air activation (OTAA), and the second is known
as activation by personalization (ABP). We will introduce them briefly.

2.2.1. End-Device Activation

When using OTAA, the end-device must complete the join procedure to connect to
the LoRaWAN network. DevAddr, NwkSKey, and AppSKey, on the other hand, are stored
directly in the end-device when using ABP to join LoRaWAN. Because the end-device
stores the information required for activation, it can join a specific LoRa network when it
boots up. The proposed scheme focuses on the join procedure in OTAA mode.

2.2.2. Join Procedure

The join procedure according to LoRaWAN Specification 1.0.3 is depicted in Figure 4.
A join-request message and a join-accept message are sent during the join procedure. Before
the end-device begins the join procedure, it must be personalized with the following data:
DevEUI, AppEUI, and AppKey. The following is a description of the join procedure. First,
the end-device sends a join-request message to the network server, including the DevEUI,
AppEUI, device nonce (DevNonce), and message integrity code (MIC), which is computed
using the AppKey. After verifying the join-request message, the network server derives the
NwkSKey and AppSKey as follows:

NwkSKey = EAppKey(0x01||AppNonce||NetID||DevNonce||pad16) (1)

AppSKey = EAppKey(0x02||AppNonce||NetID||DevNonce||pad16) (2)

where 0x01 and 0x02 are the port fields for specific applications, AppNonce is an application
nonce, NetID is a network identifier, and pad16 is a function adding zero octets to make
the length of the data a multiple of sixteen. The network server then sends AppSKey to the
application server over a secure channel and a join-accept message to the end-device. The
join-accept message contains AppNonce, NetID, DevAddr, a delay (RxDelay) between TX and
RX, a reserved-for-future-usage field (RFU), and an optional list of channel frequencies for
the network (CFList). AppKey encrypts the join-accept message as follows:

join-accept = EAppKey(AppNonce||NetID||DevAddr||RFU||RxDelay||CFList||MIC) (3)

where MIC is computed using AppKey. On receiving the join-accept message, the end-device
computes NwkSKey and AppSKey as follows:

NwkSKey = EAppKey(0x01||AppNonce||NetID||DevNonce||pad16) (4)

AppSKey = EAppKey(0x02||AppNonce||NetID||DevNonce||pad16) (5)

Electronics 2022, 11, 797 6 of 15

where AppNonce is an application nonce and NetID is a network identifier.

LoRa
Gateway

Application
Server

Join−Request AppEUI, DevEUI, DevNonce,𝑀𝑀𝑀𝑀𝑀𝑀
AppKey AppKey

 MIC = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 AppKey, Join− Request

End-Device Authentication &
Session key generation (NwkSKey, AppSKey)

AppSKey

Session key generation
(NwkSKey, AppSKey)

(Secure Channel)

𝐽𝐽𝑜𝑜𝑖𝑖𝑛𝑛−𝐴𝐴𝑐𝑐𝑐𝑐𝑎𝑎𝑝𝑝𝑡𝑡=
𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 AppNonce NetID DevAddr 𝑅𝑅𝑅𝑅𝑅𝑅 RxDelay CFList MIC

 MIC = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 AppKey, Join− Accept

End-
device

Network
Server

Figure 4. Join procedure in the LoRaWAN specification.

3. The Proposed Scheme

Table 1 displays the useful notations. This section describes an efficient authentication
scheme for massive end-devices in the LoRaWAN join procedure. It is divided into three
stages: setup, personalization, and authentication, as shown in Figure 5.

Table 1. A list of notations.

Notation Meaning

AppEUI Application global unique identifier
DevEUIi Global unique identifier of the end-device i
AppKeyi Secret key for the end-device i
DevNoncei Nonce generated by the end-device i
MIC Message integrity code
aes128_cmac(K, M) MAC function based on the AES-128 for secret key K and message M
MHDR MAC header
ri Random number for the end-device i
c Common random number
NetID Network identifier
RFU Reserved field for the future use
RxDelayi The delay field of the end-device i
CFList Optional list of channel frequencies
pad16 Zero octets for padding such that data length is a multiple of 16
H Hash function H : {0, 1}∗ → {0, 1}λ

AppSKeyi Application session key for the end-device i
NwkSKeyi Network session key for the end-device i
CK Common session key

3.1. Setup

The network server sends an authentication slot to the gateway. Then, the manufac-
turer chooses a one-way hash function and embeds it to end-devices. For each end-device i,
it shares with each network server the identity DevEUIi of the end-device i and a secret key
AppKeyi shared with the end-device i. It then publishes the details of symmetric encryption
and decryption, and one-way hash functions. Moreover, the device manufacturer sets the
parameters according to the LoRaWAN Specifications of the LoRa Alliance.

Electronics 2022, 11, 797 7 of 15

Setup
&

Personalization
Send session

key

Setup

Device
manufacturer

Network Server

Gateway

Application Server

IoT

End-device

IoT…

Setup

Ap
pE

U
I,

De
vE

U
I i,

Ap
pK

ey
i

Figure 5. Communication between various entities in the proposed scheme.

3.2. Personalization

The device manufacturer must personalize an end-device with:

• AppEUI: an application global unique identifier
• DevEUIi: a global unique identifier of the end-devicei
• AppKeyi: a secret key shared between the end-device i and the network server

3.3. Authentication

When this phase is completed successfully, end-devices connected to the same gateway
share a group session key CK. The authentication phase consists of the following:

• Step 1: An end-device sends a join-request message to the network server to join the
LoRaWAN network. The end-devicei

– chooses DevNoncei at random and computes a message integrity code

MIC1i = aes128_cmac(AppKeyi, MHDR||AppEUI||DevEUIi||DevNoncei) (6)

– sends Join-Requesti, which contains AppEUI, DevEUIi, DevNoncei, and MIC1i,
to the network server.

• Step 2: To confirm the join-request, the network server sends a join-confirm message
to the end-device. The network server waits until the authentication slot expires. It

– checks the correctness of MIC1i for each join-request received during the slot.
If MIC1i is invalid, then it aborts.
Otherwise, it selects a random ri and a common random c.

– It computes ai = EAppKeyi (DevNoncei||ri||c) and sends it to end-devicei.

• Step 3: The end-device decrypts the join-confirm message and sends a response
message to the gateway. The end-devicei

– uses AppKeyi to get DevNoncei, ri and c by decrypting ai and
– verifies whether DevNoncei is correct.

If DevNoncei is incorrect, it aborts; otherwise, it stores c and sends ri to the
gateway.

• Step 4: The gateway collects all the response messages at the time slot and sends a
group-response message to the network server for the verification.

– The gateway, on receiving r1, · · · , rn from end-devices at the time slot, sends the
group-response message g = r1 ⊕ ...⊕ rn to the network server.

– The network server computes g′ = r1 ⊕ r2 ⊕ ...⊕ rn and verifies whether g′ ?
= g.

If it does not hold, the gateway will send r1, · · · , rn to the network server and the
network server will verify ri of each end-devicei.

Electronics 2022, 11, 797 8 of 15

• Step 5: The network server sends a join-accept message to the end-devices and sends
the session keys to the application server

– The network server computes MIC2i = aes128_cmac(AppKeyi, MHDR||
NetID||AppNoncei||DevAddri||RFU||RxDelayi||CFList) and

Join-Accepti = EAppKeyi (AppNoncei||NetID||DevAddri||RFU||RxDelayi||CFList||MIC2i) (7)

and sends Join-Accepti to the end-devicei.
– The end-devicei decrypts Join-Accepti with the corresponding AppKeyi. Then,

the end-devicei verifies whether MIC2i is valid. After that, both the network
server and end-devicei compute a shared session key as

NwkSKeyi = EAppKeyi (0x01||AppNoncei||NetID||DevNoncei||pad16) (8)

AppSKeyi = EAppKeyi (0x02||AppNoncei||NetID||DevNoncei||pad16) (9)

CK = H(AppEUI||c) (10)

– Finally, the network server sends the corresponding AppSKeyi and CK to the
application server for each end-devicei.

Although we use AES-128, one may use AES-256 to provide higher security. The
authentication process is further discussed in Figure 6 in detail.

1. Collect all the messages 𝑟𝑟1 … 𝑟𝑟𝑛𝑛
from end-devices at the time slot.

2. Compute 𝑔𝑔 = 𝑟𝑟1 ⊕⋯⊕ 𝑟𝑟𝑛𝑛.

1. Decrypt 𝑎𝑎𝑖𝑖 with 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 to
derive 𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 , 𝑟𝑟𝑖𝑖 ,and 𝐷𝐷.

2. Verify whether DevNonce𝑖𝑖 is
correct.

3. Send 𝑟𝑟𝑖𝑖 to the LoRa Gateway. 1. Compute a message 𝑔𝑔′ = 𝑟𝑟1 ⊕⋯⊕ 𝑟𝑟𝑛𝑛.
2. Verify whether 𝑔𝑔′ = 𝑔𝑔.
3. Choose an 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 and compute
𝐽𝐽𝐷𝐷𝐽𝐽𝐷𝐷−𝐴𝐴𝐷𝐷𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖.

4. Compute 𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ,𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 and 𝐶𝐶𝐴𝐴.

1. Choose a 𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 .
2. Compute Join−Requesti.

1. Wait until authentication time out.

2. For each join-request received between the last
time slot and this time slot, choose a random
number 𝑟𝑟𝑖𝑖 and a common random number 𝐷𝐷.

3. Compute 𝑎𝑎𝑖𝑖 = 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖||𝑟𝑟𝑖𝑖||𝐷𝐷).

1. Verify whether 𝑀𝑀𝑀𝑀𝐶𝐶2𝑖𝑖 is correct.

2. Compute
𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ,𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 and 𝐶𝐶𝐴𝐴.

Join−Request𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝑀𝑀, 𝐷𝐷𝐴𝐴𝐷𝐷𝐸𝐸𝐴𝐴𝑀𝑀𝑖𝑖 ,𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 ,𝑀𝑀𝑀𝑀𝐶𝐶1𝑖𝑖
Join−Accepti = 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 ∥ 𝐷𝐷𝐴𝐴𝐴𝐴𝑀𝑀𝐷𝐷 ∥ 𝐷𝐷𝐴𝐴𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝑟𝑟𝑖𝑖 ∥ 𝑅𝑅𝐹𝐹𝐴𝐴 ∥ 𝑅𝑅𝑅𝑅𝐷𝐷𝐴𝐴𝑅𝑅𝑎𝑎𝐴𝐴𝑖𝑖 ∥ 𝐶𝐶𝐹𝐹𝐶𝐶𝐽𝐽𝐶𝐶𝐴𝐴 ∥ 𝑀𝑀𝑀𝑀𝐶𝐶2𝑖𝑖
𝐷𝐷𝑁𝑁𝑁𝑁S𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 0𝑅𝑅0𝑥 ∥ 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 ∥ 𝐷𝐷𝐴𝐴𝐴𝐴𝑀𝑀𝐷𝐷 ∥ 𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 ∥ 𝐴𝐴𝑎𝑎𝐷𝐷16
𝐴𝐴𝐴𝐴𝐴𝐴S𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 = 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 0𝑅𝑅0𝑥 ∥ 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 ∥ 𝐷𝐷𝐴𝐴𝐴𝐴𝑀𝑀𝐷𝐷 ∥ 𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑖𝑖 ∥ 𝐴𝐴𝑎𝑎𝐷𝐷16
𝐶𝐶𝐴𝐴 = 𝐻𝐻 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝑀𝑀 ∥ 𝐷𝐷

Join−Request𝑖𝑖

𝒂𝒂𝒊𝒊

𝒓𝒓𝒊𝒊

𝒈𝒈

Join−Accept𝑖𝑖

AppSKeyi,𝐶𝐶𝐴𝐴

End-
devicei

LoRa
Gateway

Network
Server

Application
Server

Figure 6. Authentication process.

4. Security Assurance

The proposed scheme achieves certain security features, such as multi-device au-
thentication, resistance against session key disclosure, and strong protection against fake
end-devices and fraudulent servers. Before getting into security proofs, we provide formal
security models.

Electronics 2022, 11, 797 9 of 15

4.1. Security Model

We provide security models for the authentication and session key agreement process.
The model is a game [24] between a simulator S and a polynomial-time adversary A.

1. Secure Authentication: A outputs a target DevEUI∗ before the game starts.

• Setup: S sends A system public parameters and the symmetric functions (EKey,
DKey) and sets the key and other public parameters as in the original scheme.

• Training: A queries the two oracles as follows:

– Personalization: A inputs DevEUIi. If DevEUIi 6= DevEUI∗, then S sends
data transmitted in the personalization phase to A. Otherwise, S aborts.

– Authentication: A inputs DevEUIi and AppEUI. S sends the packages
transmitted in the authentication phase to A.

• Challenge: A picks one of the following two cases and sends DevEUI∗ to S .

– A impersonates a network server in the authentication phase to pass the
verification. The advantage of winning the game for A is AdvSer(A).

– A impersonates an end-device in the authentication phase to pass the verifi-
cation. The advantage of winning the game for A is AdvDev(A).

2. Secure session key exchange: As like earlier, A first outputs a target DevEUI∗.

• Setup: S sends A system public parameters and the symmetric functions (EKey,
DKey) and sets the key and other public parameters as in the original scheme.

• Training 1: A queries the two oracles as follows.

– Personalization: A inputs DevEUIi. If DevEUIi 6= DevEUI∗, then S sends
data transmitted in the personalization phase to A. Otherwise, S aborts.

– Authentication: A inputs DevEUIi and AppEUI and S sends packages trans-
mitted in the authentication phase to A.

• Challenge: A sends DevEUI∗ and two random numbers r0 and r1. Then, S
randomly chooses b ∈ {0, 1}. S sends E(DevNonce∗||c||rb) to A, where c is a
random number chosen by S .

• Training 2: A queries the same queries in Training 1.
• Guess: A guesses whether b = 0 or 1. The advantage of winning the game for A

is defined as AdvIND−CCA−SK(A) = |Pr[b = b′]− 1
2 |.

4.2. Security Proof

Theorem 1. The proposed technique ensures safe mutual authentication and key exchanges between
an end-device and the network server.

Proof. Theorem 1 is established when Lemmas 1, 2, and 3 hold.

Lemma 1. The suggested approach is secure against an adversary impersonating the network server
based on the indistinguishability of pseudorandom permutation (PRP).

Proof. Assume that a polynomial-time adversary A impersonates the network server with
a non-negligible advantage AdvSer(A). Then, we can build a probabilistic polynomial-time
simulator S with a non-negligible advantage AdvPRP(S) to breach the indistinguishability
between a random permutation and a pseudorandom permutation. Before the setup step,
A generates a target identity DevEUI∗. Let SK stand for the PRP game’s secret key.

• Setup: S sets the public parameters and the symmetric functions according to the pseu-
dorandom permutation. After that, it sends the public parameters and the symmetric
functions to A.

• Training: S simulates the following oracles for A.

– Personalization: A sends an end-device identity DevEUIi. If DevEUIi 6= DevEUI∗,
then S returns (AppEUI, AppKeyi) as in the actual scheme. Otherwise, S aborts.

Electronics 2022, 11, 797 10 of 15

– Authentication: A sends DevEUIi and AppEUI. If DevEUIi 6= DevEUI∗, S
executes the authentication phase of the proposed scheme. Otherwise, S selects
DevNoncei, c, and ri, and then queries the encryption oracle of PRP to receive
ciphertext C1 and C2 as

C1 = ESK(AppEUI||DevEUIi||DevNoncei) (11)

C2 = ESK(DevNoncei||c||ri) (12)

Then, S selects AppNoncei and queries the encryption oracle of PRP to encrypt
NetID, DevAddri, RFU, RxDelayi, and CFList as ciphertext C3 and C4, where

C3 = ESK(AppNoncei||NetID||DevAddri||RFU||RxDelayi||CFList) (13)

C4 = ESK(AppNoncei||NetID||DevAddri||RFU||RxDelayi||CFList||C3) (14)

Finally, A receives C1, C2, C3, and C4 from the the simulator S .

• Challenge: For DevEUIi = DevEUI∗, A sends f1 to S , where

f1 = ESK(AppEUI||DevEUIi||DevNoncei)||AppEUI||DevEUIi||DevNoncei (15)

Then, S sends ESK(AppEUI||DevEUIi||DevNoncei) to the PRP and chooses case 2
for the challenge. After that, the PRP randomly chooses b ∈ {0, 1}. If b = 0,
ST is a random string acquired by performing the Ω−1 function. If b = 1, ST is
a pseudorandom string acquired by performing the decryption function f−1 on
ESK(AppEUI||DevEUIi||DevNoncei). As a result, the PRP game returns ST to S .

• Guess: On receiving ST, S checks if ST is equal to AppEUI||DevEUIi||DevNoncei. If
the condition is true, S knows that ST is calculated by the decryption function f−1,
and thus sets b

′
= 1; otherwise, S sets b

′
= 0. Finally, S sends guess b′ to the PRP.

Therefore, we have AdvPRP(S) = AdvSer(A), where AdvPRP(S) denotes the advan-
tage of S to break the indistinguishability between a random permutation and a pseudo-
random permutation. A security proof sketch is further mentioned in Figure 7.

S

𝒜𝒜s

PRP

Authentication

params

training

Setup

𝑓𝑓1

𝑆𝑆𝑆𝑆

 If 𝑆𝑆𝑆𝑆 can be certified by 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗, the simulator can know that 𝑆𝑆𝑆𝑆 is
generated by ℧−1 or Ω−1

 𝑓𝑓1 = 𝑒𝑒𝑆𝑆𝑆𝑆 (AppEUI||DevEUI𝑖𝑖||DevNonce𝑖𝑖)||AppEUI||DevEUIi||DevNonce𝑖𝑖

Impersonating
the network

server

Case 1:
℧
Ω

Case 2:
℧−1
Ω−1

𝑒𝑒𝑆𝑆𝑆𝑆 (AppEUI||DevEUI𝑖𝑖||DevNonce𝑖𝑖)

query

Guesses 𝑏𝑏′

Personalization

Figure 7. The game among A, who impersonates the network server; S ; and PRP oracles.

Lemma 2. The suggested technique is secure against an attacker impersonating a legitimate end-
device based on the IND-CCA security of the symmetric encryption.

Proof. Assume that there exists a polynomial-time adversaryAwho has the non-negligible
advantage AdvDev(A) to impersonate a legal end-device of the proposed scheme. Then,
we can construct a probabilistic polynomial time simulator S that has the non-negligible
advantage AdvIND−CCA(S) to break an IND-CCA symmetric encryption. The adversary

Electronics 2022, 11, 797 11 of 15

A outputs a target identity DevEUI∗ before the setup phase. Let SK denote the secret key
of the underlying IND-CCA symmetric encryption.

• Setup: S sets the the public parameters and the symmetric functions according to the
IND-CCA symmetric encryption process. Then, S sends the public parameters and
the symmetric functions to A.

• Training: S simulates the following oracles for A as follows.

– Personalization: A inputs an end-device identity DevEUIi to S . If DevEUIi 6=
DevEUI∗, then S returns AppEUI and AppKeyi according to the proposed
scheme. Otherwise, S aborts.

– Authentication: A sends an end-device’s identity DevEUIi and AppEUI. If
DevEUIi 6= DevEUI∗, S executes the authentication phase of the proposed
scheme. Otherwise, S selects DevNoncei, c, and ri, and then queries the encryp-
tion oracle of the IND-CCA symmetric encryption to encrypt AppEUI, DevEUIi,
DevNoncei, c and ri into ciphertext C1 and C2 as

C1 = ESK(AppEUI||DevEUIi||DevNoncei) (16)

C2 = ESK(DevNoncei||c||ri) (17)

Then, S selects AppNoncei and queries the encryption oracle of the IND-CCA
symmetric encryption to encrypt system parameters: NetID, DevAddri, RFU,
RxDelayi, and CFList to ciphertext C3 and C4 as

C3 = ESK(AppNoncei||NetID||DevAddri||RFU||RxDelayi||CFList) (18)

C4 = ESK(AppNoncei||NetID||DevAddri||RFU||RxDelayi||CFList||C3) (19)

Finally, A receives C1, C2, C3, and C4 from S .

• Challenge: A sends identity DevEUIi to S , where DevEUIi = DevEUI∗. Then, S
chooses r0 and r1 to compute M0 = (DevNoncei||c||r0) and M1 = (DevNoncei||c||r1).
After that, S sends (M0, M1) to the IND-CCA oracles to start the challenge phase of
the IND-CCA game. Finally, S receives Cb = ESK(Mb) given from the encryption
oracle and sends it to A, where b, chosen by the encryption oracle, is unknown to S .

• Guess: A outputs a bit yb′ to S . If yb′ = 0, S sets b
′
= 0; otherwise, S sets b

′
= 1.

Finally, S sends the guess b
′

to the IND-CCA game.

Therefore, we have AdvIND−CCA(S) = AdvDev(A), where AdvIND−CCA(S) denotes
the advantage of the simulator to break the IND-CCA symmetric encryption. A security
proof sketch is further mentioned in Figure 8.

𝒜𝒜 Encryption

Decryption

Personalization
params

training

Setup

𝑀𝑀0,𝑀𝑀1

𝐶𝐶𝑏𝑏𝐶𝐶𝑏𝑏

𝑦𝑦𝑏𝑏′

𝑀𝑀0 = DevNonce𝑖𝑖 ∥ 𝑐𝑐 ∥ 𝑟𝑟0
𝑀𝑀1 = DevNonce𝑖𝑖 ∥ 𝑐𝑐 ∥ 𝑟𝑟1
𝐶𝐶𝑏𝑏 = 𝐸𝐸𝑆𝑆𝑆𝑆(𝑀𝑀𝑏𝑏), 𝑏𝑏 ∈ {0, 1}

query

Impersonating
end-device

Guesses 𝑏𝑏

IND-CCA

Authentication
DevNonce𝑖𝑖

S

Figure 8. The game among A, impersonating the network server; S ; and IND-CCA oracles.

Lemma 3. The proposed method is resistant to an adversary who recovers the session key.

Electronics 2022, 11, 797 12 of 15

Proof. Assume that a polynomial-time external adversary A has a non-negligible advan-
tage AdvIND-CCA-SK(A) to reveal the session key. Then, we can construct a probabilistic
polynomial time simulator S that has the non-negligible advantage AdvIND-CCA-SK(S) to
break a known symmetric encryption with IND-CCA security.

• Setup: S sets the the public parameters and the symmetric functions according to
the IND-CCA symmetric encryption. Then, S sends the public parameters and the
symmetric functions to A.

• Training 1: S simulates the following oracles for A as follows.

– Personalization: A sends an end-device identity DevEUIi. If DevEUIi 6= DevEUI∗,
then S returns AppEUI and AppKeyi, according to the proposed scheme. Other-
wise, S aborts.

– Authentication: A sends identity DevEUIi and AppEUI to S. If DevEUIi 6=
DevEUI∗, S executes the authentication phase of the proposed scheme. Other-
wise, S selects DevNoncei, c and ri and then queries the encryption oracle of the
IND-CCA symmetric encryption to encrypt AppEUI, DevEUIi and DevNoncei
to ciphertext C1 = ESK(AppEUI||DevEUIi||DevNoncei) and encrypts c and ri
to ciphertext C2 = ESK(DevNoncei||c||ri). Once, S receives (C1, C2), it selects
AppNoncei and queries encryption oracle of the IND-CCA symmetric encryption
for (NetID, DevAddri, RFU, RxDelayi, CFList), and gets ciphertext (C3, C4) as

C3 = ESK(AppNoncei||NetID||DevAddri||RFU||RxDelayi||CFList) (20)

C4 = ESK(AppNoncei||NetID||DevAddri||RFU||RxDelayi||CFList||C3) (21)

Finally, A receives C1, C2, C3 ,and C4 from S .

• Challenge: A sends r0 and r1 of equal-length and DevEUIi, where DevEUIi =
DevEUI∗. Then, S computes M0 = (DevNoncei||c||r0) and M1 = (DevNoncei||c||r1)
and sends (M0, M1) to the IND-CCA oracles to start the challenge phase of the under-
lying IND-CCA game. After that, S receives Cb = ESK(Mb) given from the encryption
oracle and sends it to A, where b ∈R {0, 1} is unknown to S .

• Training 2: A can query the same queries as those in Training 1.
• Guess: The adversary A outputs a bit yb′ to S . If yb′ = 0, S sets b

′
= 0; otherwise, S

sets b
′
= 1. Finally, S sends the guess b

′
to the IND-CCA game.

Therefore, we have AdvIND-CCA-SK(S) = AdvIND-CCA-SK(A), where AdvIND-CCA-SK(S)
denotes the advantage of the simulator to break the IND-CCA symmetric encryption. A
security proof sketch is further mentioned in Figure 9.

𝒜𝒜
Encryption

Decryption

Personalization
params

training

Setup

𝑀𝑀0,𝑀𝑀1

𝐶𝐶𝑏𝑏𝐶𝐶𝑏𝑏

𝑦𝑦𝑏𝑏′

𝑀𝑀0 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∥ 𝐷𝐷 ∥ 𝑟𝑟0
𝑀𝑀1 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∥ 𝐷𝐷 ∥ 𝑟𝑟1
𝐶𝐶𝑏𝑏 = 𝐸𝐸𝑆𝑆𝑆𝑆(𝑀𝑀𝑏𝑏), 𝑏𝑏 ∈ {0, 1}

query

Guesses 𝑏𝑏

IND-CCA

Authentication

Selects
𝑟𝑟0, 𝑟𝑟1

DevNonce𝑖𝑖,

𝑟𝑟0,𝑟𝑟1

S

Figure 9. The security game among A, who can obtain the session key; S ; and IND-CCA oracles.

Electronics 2022, 11, 797 13 of 15

5. Comparison

This section demonstrates the proposed scheme’s characteristics, computation cost,
and performance.

5.1. Security Properties

The proposed scheme’s characteristics are compared to the LoRaWAN specifications
in Table 2. The suggested scheme and the LoRaWAN specifications ensure mutual authen-
tication and data integrity. LoRaWAN only checks one end-device per time slot, whereas
the suggested scheme certifies several end-devices at the same time.

Table 2. Functionality comparison.

Security Properties LoRaWAN Spec. The Proposed Scheme

Mutual Authentication Yes Yes
Data Integrity Protection Yes Yes

Authentication of Multiple
End-Devices No Yes

5.2. Computation Cost

The computation overhead considers the additional cost incurred due to rapid authen-
tication for multiple end-devices in LoRaWAN. We list the hardware information and the
computation cost of each operation in Table 3.

Table 3. Device specification and operation overhead.

(a) The hardware information.

Specification Windows 10 64-bit

CPU Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz
RAM 8.00 GB

Motherboard KBL Strongbow KL

(b) Benchmark time.

Operation Time(s)

AES [25] encryption
/decryption 0.0209808

XOR operation 0.0009536

In Table 4, the computation cost of the LoRaWAN specifications is compared to
the overhead of the proposed method. Although the suggested system involves more
computations in the gateway and network server than the LoRaWAN specifications, it has
the batch authentication property that the LoRaWAN specifications do not have.

Table 4. Computation cost.

Entity LoRaWAN Specification The Proposed Scheme

Each End-device 3TAES ≈ 0.06294 s 4TAES ≈ 0.08392 s
Gateway — nTxor ≈ 0.00095n s

Network Server 3nTAES ≈ 0.06294n s 4nTAES + nTxor ≈ 0.08487n s

It is worth noting that the authentication computation cost does not include the cost
of computing the shared session key.

Electronics 2022, 11, 797 14 of 15

5.3. Performance

Based on the work of Lavric and Popa [26] consideration, we set the maximum number
of end-devices in the LoRaWAN network to be 1000. Furthermore, we chose these scenarios
for comparison since 50 or 100 end-devices are commonly utilized in real-life. Table 5 shows
the overall execution time of the proposed scheme and of the LoRaWAN specifications for
validating 50, 100, and 1000 end-devices, respectively.

Table 5. Performance comparison.

Number of Devices
Overhead

Efficacy
LoRaWAN Spec. The Proposed Scheme

50 ≈ 06.294 s ≈ 04.327 s 31%
100 ≈ 12.588 s ≈ 08.571 s 32%
1000 ≈ 125.880 s ≈ 84.954 s 33%

Because the LoRaWAN specifications check one device attempting to join the network
at a time, the joining method must be repeated 50, 100, or 1000 times in order to verify all
end-devices, correspondingly, as shown in Table 5. On the other hand, since the suggested
scheme provides batch verification for multiple devices, it only has to be run once in each
case to verify all end-devices.

6. Conclusions

Based on the LoRaWAN join procedure, we have presented a secure multi-device
authentication scheme. The suggested system can fit the features of natural LoRaWAN
environments to reduce join latency. Furthermore, the suggested technique employs the
challenge-response and exclusive-OR operations in tandem to obtain batch authentication
benefits. As a result, the suggested scheme may be readily integrated into the existing
LoRaWAN join mechanism. Furthermore, we anticipate that the suggested approach can
be utilized to create a secure and rapid LoRaWAN authentication system that meets the
LoRa Alliance’s specifications. In the future, we will consider various real-world scenarios
and design effective key management and device revocation processes in multi-device
authentication settings.

Author Contributions: Conceptualization, C.-I.F. and C.-H.S.; methodology, C.-I.F., E.-S.Z., A.K.,
C.-H.S.; software, C.-H.S.; validation, C.-I.F., E.-S.Z. and A.K.; formal analysis, E.-S.Z. and A.K.;
investigation, E.-S.Z., A.K. and C.-H.S.; resources, C.-I.F. and C.-H.S.; data curation, C.-H.S.; writing—
original draft preparation, E.-S.Z. and C.-H.S.; writing—review and editing, C.-I.F., E.-S.Z., and A.K.;
visualization, A.K. and C.-H.S.; Supervision, C.-I.F. and A.K.; project administration, C.-I.F.; funding
acquisition, C.-I.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan under
grants 110-2218-E-110-007-MBK and MOST 109-2221-E-110-044-MY2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was partially supported by Taiwan Information Security Center
at National Sun Yat-sen University (TWISC@NSYSU). It was also supported by the Information
Security Research Center at National Sun Yat-sen University in Taiwan and the Intelligent Electronic
Commerce Research Center from The Featured Areas Research Center Program within the Higher
Education Sprout Project framework by the Ministry of Education (MOE) in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 797 15 of 15

References
1. Basford, P.J.; Bulot, F.M.; Apetroaie-Cristea, M.; Cox, S.J.; Ossont, S.J. LoRaWAN for smart city IoT deployments: A long term

evaluation. Sensors 2020, 20, 648. [CrossRef] [PubMed]
2. Lima, E.; Moraes, J.; Oliveira, H.; Cerqueira, E.; Zeadally, S.; Rosário, D. Adaptive priority-aware LoRaWAN resource allocation

for Internet of Things applications. Ad Hoc Netw. 2021, 122, 102598. [CrossRef]
3. Ericsson, S. Internet of Things to Overtake Mobile Phones by 2018. Available online: http://www.satellitemarkets.com/market-

trends/internet-things-overtake-mobile-phones-2018 (accessed on 2 March 2022).
4. Statista, I. Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025 (In Billions). Available online:

https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/ (accessed on 2 March 2022).
5. Alliance, L. LPWA Technologies Unlock New IoT Market Potential; White Paper; LoRa Alliance: Fremont, CA, USA, 2015. Available

online: https://lora-alliance.org/resource_hub/lorawan-security-whitepaper/ (accessed on 2 March 2022) .
6. Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21.
7. Navarro-Ortiz, J.; Sendra, S.; Ameigeiras, P.; Lopez-Soler, J.M. Integration of LoRaWAN and 4G/5G for the Industrial Internet of

Things. IEEE Commun. Mag. 2018, 56, 60–67. [CrossRef]
8. Noura, H.; Hatoum, T.; Salman, O.; Yaacoub, J.P.; Chehab, A. LoRaWAN security survey: Issues, threats and possible mitigation

techniques. Internet Things 2020, 12, 100303. [CrossRef]
9. Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the limits of LoRaWAN.

IEEE Commun. Mag. 2017, 55, 34–40. [CrossRef]
10. Semtech. Why Lora®? Available online: https://www.semtech.com/lora/why-lora (accessed on 2 March 2022).
11. Bocker, S.; Arendt, C.; Jorke, P.; Wietfeld, C. LPWAN in the Context of 5G: Capability of LoRaWAN to Contribute to mMTC. In

Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 737–742.
12. Cisco. Cisco Solution for LoRaWAN. Available online: https://www.cisco.com/c/en/us/solutions/internet-of-things/lorawan-

solution.html (accessed on 2 March 2022).
13. LoRa Alliance. A Technical Overview of LoRa and LoRaWAN; LoRa Alliance: Fremont, CA, USA, 2015. Available online: https:

//www.everythingrf.com/whitepapers/details/2682-a-technical-overview-of-lora-and-lorawan (accessed on 2 March 2022).
14. Butun, I.; Pereira, N.; Gidlund, M. Security risk analysis of LoRaWAN and future directions. Future Internet 2019, 11, 3. [CrossRef]
15. Lombardo, A.; Parrino, S.; Peruzzi, G.; Pozzebon, A. LoRaWAN vs NB-IoT: Transmission Performance Analysis within Critical

Environments. IEEE Internet Things J. 2021, 9, 1068–1081. [CrossRef]
16. Chen, X.; Wang, J.; Wang, L. A fast session key generation scheme for LoRaWAN. In Proceedings of the 2019 Australian & New

Zealand Control Conference (ANZCC), Auckland, New Zealand, 27–29 November 2019; pp. 63–66.
17. Danish, S.M.; Lestas, M.; Asif, W.; Qureshi, H.K.; Rajarajan, M. A lightweight blockchain based two factor authentication

mechanism for LoRaWAN join procedure. In Proceedings of the 2019 IEEE International Conference on Communications
Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6.

18. Tsai, K.L.; Leu, F.Y.; Hung, L.L.; Ko, C.Y. Secure session key generation method for LoRaWAN servers. IEEE Access 2020,
8, 54631–54640. [CrossRef]

19. Jabbari, A.; Mohasefi, J.B. A Secure and LoRaWAN Compatible User Authentication Protocol for Critical Applications in the IoT
Environment. IEEE Trans. Ind. Inform. 2021, 18, 56–65. [CrossRef]

20. Kaven, S.; Bornholdt, L.; Skwarek, V. Authentication by rssi-position based localization in a lora lpwan. In Proceedings of the
2020 6th IEEE Congress on Information Science and Technology (CiSt), Agadir, Morocco, 5–12 June 2021; pp. 448–454.

21. Gu, C.; Jiang, L.; Tan, R.; Li, M.; Huang, J. Attack-aware synchronization-free data timestamping in lorawan. ACM Trans. Sens.
Netw. (TOSN) 2021, 18, 1–31. [CrossRef]

22. Ertürk, M.A.; Aydın, M.A.; Büyükakkaşlar, M.T.; Evirgen, H. A survey on LoRaWAN architecture, protocol and technologies.
Future Internet 2019, 11, 216. [CrossRef]

23. Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. Lorawan Specification; LoRa Alliance: Fremont, CA, USA, 2015. Available
online: https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/ (accessed on 2 March 2022)

24. Eldefrawy, M.; Butun, I.; Pereira, N.; Gidlund, M. Formal security analysis of LoRaWAN. Comput. Netw. 2019, 148, 328–339.
[CrossRef]

25. Draft, F. Advanced Encryption Standard (AES); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001 .
26. Lavric, A.; Popa, V. Performance evaluation of LoRaWAN communication scalability in large-scale wireless sensor networks.

Wirel. Commun. Mob. Comput. 2018, 2018, 1–10. [CrossRef]

http://doi.org/10.3390/s20030648
http://www.ncbi.nlm.nih.gov/pubmed/31979377
http://dx.doi.org/10.1016/j.adhoc.2021.102598
http://www.satellitemarkets.com/market-trends/internet-things-overtake-mobile-phones-2018
http://www.satellitemarkets.com/market-trends/internet-things-overtake-mobile-phones-2018
https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/
https://lora-alliance.org/resource_hub/lorawan-security-whitepaper/
http://dx.doi.org/10.1109/MCOM.2018.1700625
http://dx.doi.org/10.1016/j.iot.2020.100303
http://dx.doi.org/10.1109/MCOM.2017.1600613
https://www.semtech.com/lora/why-lora
https://www.cisco.com/c/en/us/solutions/internet-of-things/lorawan-solution.html
https://www.cisco.com/c/en/us/solutions/internet-of-things/lorawan-solution.html
https://www.everythingrf.com/whitepapers/details/2682-a-technical-overview-of-lora-and-lorawan
https://www.everythingrf.com/whitepapers/details/2682-a-technical-overview-of-lora-and-lorawan
http://dx.doi.org/10.3390/fi11010003
http://dx.doi.org/10.1109/JIOT.2021.3079567
http://dx.doi.org/10.1109/ACCESS.2020.2978100
http://dx.doi.org/10.1109/TII.2021.3075440
http://dx.doi.org/10.1145/3474368
http://dx.doi.org/10.3390/fi11100216
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
http://dx.doi.org/10.1016/j.comnet.2018.11.017
http://dx.doi.org/10.1155/2018/6730719

	Introduction
	Contributions
	Organization

	Preliminaries
	The LoRaWAN Architecture
	The LoRaWAN Specifications
	End-Device Activation
	Join Procedure

	The Proposed Scheme
	Setup
	Personalization
	Authentication

	Security Assurance
	Security Model
	Security Proof

	Comparison
	Security Properties
	Computation Cost
	Performance

	Conclusions
	References

