
����������
�������

Citation: Tawfiq, K.B.; Ibrahim, M.N.;

Sergeant, P. A Simple Commutation

Method and a Cost-Effective

Clamping Circuit for Three-to-Five-

Phase Indirect-Matrix Converters.

Electronics 2022, 11, 808. https://

doi.org/10.3390/electronics11050808

Academic Editor: Bor-Ren Lin

Received: 8 February 2022

Accepted: 2 March 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Simple Commutation Method and a Cost-Effective Clamping
Circuit for Three-to-Five-Phase Indirect-Matrix Converters
Kotb B. Tawfiq 1,2,3,* , Mohamed N. Ibrahim 1,2,4 and Peter Sergeant 1,2

1 Department of Electromechanical, Systems and Metal Engineering, Ghent University, 9000 Ghent, Belgium;
mohamed.ibrahim@ugent.be (M.N.I.); peter.sergeant@ugent.be (P.S.)

2 FlandersMake@UGent—Corelab EEDT-MP, 3001 Leuven, Belgium
3 Department of Electrical Engineering, Faculty of Engineering, Menoufia University, Menoufia 32511, Egypt
4 Electrical Engineering Department, Kafrelshiekh University, Kafrelshiekh 33511, Egypt
* Correspondence: kotb.basem@ugent.be

Abstract: This article presents and analyzes a three-to-five-phase indirect matrix converter (IMC)
structure for directly supplying a five-phase static R–L load from a three-phase supply. The IMC
topology offers a lower number of switches, a simple commutation procedure and a cost-effective
clamping circuit in comparison to the direct matrix converter (DMC). A simple clamping circuit
with one ultrafast diode and one small capacitor is proposed to protect the switches of the IMC
from overvoltage. The issues of powering up the IMC with the simple clamping circuit is discussed
in detail. The instructions for the safe start-up of the IMC with the proposed clamping circuit is
introduced based on the simulated and the measured analyses. Moreover, a carrier-based pulse-
width-modulation (CBPWM) method is also presented in order to control the switches of the IMC.
The presented CBPWM method creates PWM pulses for both the inverter and the rectifier legs by
using only one symmetric and triangular carrier signal. Finally, experimental and simulation testing
with a five-phase R–L load demonstrate the viability and the efficiency of the introduced CBPWM
algorithm for the suggested IMC.

Keywords: indirect-matrix converter; commutation technique; current-source rectifier; five-phase
inverter; carrier-based PWM; space-vector-modulation

1. Introduction

Multi-phase drive systems are vital in high-reliability applications where a better
fault-tolerant property is a must to ensure operation under exceptional circumstances [1,2].
The combination of the high-power operating requirement and the robustness requirements
are widely represented in aerospace applications and electric vehicles [2–4]. Multi-phase
drive systems also offer characteristics that make them competitive in a variety of different
industries. The number of phases in electric machines can be increased to improve torque-
density, reduce noise and vibrations levels, and develop multi-motor technologies [5–8].

A multi-phase rectifier-inverter converter is generally used to energize a multi-phase
motor drive. However, this converter entails a large reactive DC-link element, which is a
specific scrawny point in a harsh environment [9]. This difficulty is eliminated using the
matrix converter (MC) [10]. A direct AC-to-AC conversion of power without the need for
DC-energy storage is possible with MCs. They have lately received a lot of attention as
an alternative to the traditional rectifier inverter [11,12]. Many benefits can be obtained
from MCs, including sinusoidal input- and output-current waveforms, high power density,
unity-input-power factor and four-quadrant operation [13,14]. Furthermore, because of
the nonexistence of the massive DC-link electrolytic capacitors for energy storage, MCs are
very dependable and robust [15,16].

There are a number of other advantages to using MCs in a practical manner. First,
thanks to the introduction of SiC and GaN technologies, this topology tends to solve
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the problem of thermal management, and it performs significantly better under high-
temperature circumstances than traditional DC-link topologies [17,18]. Second, the switches
in the MCs are exposed to lower voltage stress compared to the switches in traditional
converters. Despite the increased number of IGBTs, the MCs’ success rates are improved
by the lesser stress on their switches. As a result, these converters (MCs) have a better level
of reliability than traditional converters (DC-link rectifier inverters) [16–18]. Manufacturers
such as Yaskawa, Siemens, ABB, and others have expressed their interest in this converter
for the reasons stated above. Consequently, there is a lot of work being done to use this
technology in more electric and quieter aircrafts.

Direct (DMC) and indirect (IMC) MCs are the two different forms of MCs. The three-
to-five-phase DMC is a one-stage AC-to-AC direct converter with 15 bidirectional switches
that directly link the three-phase input voltages to the five-phase output loads as shown
in Figure 1a [17,18]. Nevertheless, this topology necessitates a large number of power
switches, multi-step-commutation techniques, and complex overvoltage-protection circuits.
The IMC structure is built using an AC-to-DC-to-AC power conversion with no massive
intermediary capacitor. The IMC is divided into two stages, the rectifier stage and the
inverter stage, as reported in Figure 1b [19]. The maximum value of the voltage-transfer
ratio and the characteristics of the input/output are all the same between the DMC and
the IMC topologies. The IMC architecture, on the other hand, allows for soft-switching
commutation, which is not possible in the DMC topology. In addition, as compared to
the DMC, the IMC requires a simpler clamping circuit, which is utilized to avoid the
IMC’s switches from breaking down due to overvoltage. Figure 1c shows the conventional
clamping circuit for the three-to-five-phase MC, which consists of 16 ultrafast diodes, a
clamping capacitor, and resistance. Moreover, the IMCs have the capability of reducing the
number of power switches. The IMC has 22 IGBTs compared to 30 IGBTs in the case of the
DMC, as described in Figure 1. In addition, the IMC has the capability of supplying the
electricity to an imbalanced or nonlinear three-phase load. This is accomplished by placing
an extra leg at the inverter stage. The voltage-transfer ratio in the case of the IMC can be
increased by adding a Z-source network between the rectifier and the inverter stages [20,21].
In the IMC, the rectifier-stage switches are commutated at zero current, which minimizes
the rectifier switching losses. Consequently, the rectifier stage achieves safer commutation
and lower switching losses. The IMC has lately received a lot of attention, and several
researchers have created numerous IMC topologies that are suited for certain applications.
The authors of [22,23] focused on using zero-current commutation to enhance the structure
of the rectifier stage in the IMC using reduced-power devices.
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Besides the advancement of MC topologies, pulse-width-modulation (PWM) tech-
niques have lately attracted a lot of attention [24,25]. The space-vector-PWM (SVPWM)
and carrier-based-PWM (CBPWM) techniques are two PWM schemes for IMCs. Some
parts of the SVPWM technique are complicated [16,21,26–28]. In recent years, researchers
have used the CBPWM technique to simplify the SVPWM [14,29–32]. The carrier signal
used in the rectifier stage of the conventional CBPWM method [29–32] differs from that
used in the inverter stage; the rectifier-stage carrier signal is a symmetrical triangular
signal, whereas the inverter-stage carrier signal is an asymmetrical triangular signal with
different slopes of the rising and falling edges. Furthermore, because of the fluctuation in
the DC-link voltage, the slopes of the asymmetrical carrier signal differ at each sampling
interval. To overcome the drawbacks of the conventional CBPWM method, the authors
of [33] proposed an effective alternative method that is suitable for the three-to-five-phase
IMC topology by generating the PWM signals for all of the switches in both the rectifier
and five-phase-inverter stages using only one symmetrical triangular carrier signal.

The majority of the scientific focus on the MC is dedicated to enhancing modula-
tion (SVM [34], CBPWM [33], direct torque control [35], etc.), control techniques (wind
generation [36], distributed generation [37], loss reduction [38], common mode voltage re-
duction [39], sensorless control [40], etc.), waveform quality [41], stability analysis [42], and
semisoft commutation [43], etc. However, there are just a few publications that look into MC
hardware and the issues that come with it. The majority of them focus on novel switches
with reverse-blocking capability (reverse-blocking IGBT) [44] and clamp circuits [45] as
MC-protection circuits. Most of the protection circuits use the conventional clamping circuit
shown in Figure 1c. In [46], a simplified IMC structure with just six diodes in a clamp
circuit is suggested, which has the same functionality as its twelve-diode version. In [47], an
open-circuit analysis for a three-phase-to-three-phase IMC with a simple clamping circuit
was proposed. The clamping circuit in [47] consists of only one diode and one capacitor.
This clamping circuit is used with the introduced three-to-five-phase IMC. However, if
several key considerations are not followed when working with the IMC, then this simple
clamping circuit may cause damage to the matrix’s switches instead of protecting them.
These key considerations are experimentally studied and discussed in this paper.

This paper introduces a three-to-five-phase indirect MC with a cost-effective and
simple clamp circuit that consists of only one diode and one capacitor. A detailed discussion
about the clamping circuit is introduced considering the issues concerned with charging
the clamping capacitor and the start-up of the converter when the PWM of the rectifier
is working. These issues are experimentally tested and analyzed. Moreover, a CBPWM
based on space-vector modulation (SVM) is implemented. In this method, a zero-current
commutation in the rectifier stage is maintained by using the CBPWM to minimize the
switching losses. This is achieved by considering the synchronization between the rectifier
and inverter stages, where the commutation in the rectifier stage occurs at the zero vectors
of the inverter, i.e., at zero DC-link current. Hence, a lower switching loss is obtained.
Finally, the simulated and the measured performances of the indirect MC with the CBPWM
technique at different output frequencies are introduced and discussed.
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2. Five-Phase Indirect-Matrix Converter

The proposed three-to-five-phase IMC’s power-circuit architecture is seen in Figure 1b.
It comprises a rectifier stage and a five-phase inverter stage. Six bidirectional switches are
used in the rectifier stage, whereas the inverter stage uses only ten unidirectional switches.
The purpose of the rectifier stage is to build sinusoidal input currents while also keeping
the DC-link voltage positive. The five-phase inverter stage produces five-phase output
voltages with adjustable magnitude and frequency. The familiar theory of the indirect SVM
is firstly introduced to describe the suggested IMC topology’s working principles.

2.1. Indirect Space Vector Modulation

The indirect SVM approach is a popular method to control the IMC. In this approach,
there are two stages (the rectifier stage and the inverter stage). The required input current,
available input voltages, and required output voltages are used to compute the controlling
pulses for the switches of the rectifier stage and the inverter stage.

2.1.1. Current-Source Rectifier

The rectifier stage comprises 6 bidirectional switches as seen in Figure 1b. Because of
the lack of bidirectional switches on the market, the bidirectional switches in the rectifier
stage are made up of two unidirectional common-emitter switches. The input voltage to the
rectifier stage can be described by Equation (1). In Equation (1), i represents the input-phase
number, e.g., a, b and c. In Equation (1), fi and Vim represent the frequency and the peak of
the phase input voltage, respectively. In Equation (1), ∂ is 0, 1 and 2.

vi = Vim cos
(

2π ∗ fi ∗ t − ∂ ∗ 2π
3

)
(1)

There are only nine switching states allowed for these switches in order to prevent a
virtual DC-connection open circuit. These switching states are six non-zero (active) vectors
(I1 − I6) and three zero vectors (I7 − I9) as represented by the hexagon in Figure 2a. For
both the zero and active vectors, the duty cycles are determined using the yellow-colored
vectors in Figure 2a, as shown in Equations (2)–(4) [34].

dδ = mi sin
(π

6
− θi

)
(2)

dγ = mi sin
(π

6
+ θi

)
(3)

d0c = 1−dγ − dδ (4)

where mi is the input-current-modulation index with a value between 0 and 1. In addition,
θi indicates the measured angle starting from the positive X-axis to the rectifier’s input
reference-current vector (2π× fi × t).

The zero-vectors are ignored during the rectifier-stage modulation with the aim of ob-
taining the greatest DC-link voltage. As a result, the switching sequence simply comprises
the two active vectors, Iγ and Iδ, whose duty cycles are dx and dy, respectively, and can be
defined by Equations (5) and (6) [16]. The average DC-link voltage in the first sector can be
calculated from Equation (7). The switching states and the duty cycles for the other sectors
may be determined using the same method as reported in Table 1.
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dx =
dδ

dδ + dγ
=

mi[sin(
π

6
) cos(θi)− cos(

π

6
) sin(θi)]

mi[sin(
π

6
) cos(θi)− cos(

π

6
) sin(θi) + cos(

π

6
) sin(θi) + sin(

π

6
) cos(θi)]

=
− cos(θi −

2π
3
)

cos(θi)
= −vb

va

(5)

dy =
dγ

dδ + dγ
=

mi[sin(
π

6
) cos(θi) + cos(

π

6
) sin(θi)]

mi[sin(
π

6
) cos(θi)− cos(

π

6
) sin(θi) + cos(

π

6
) sin(θi) + sin(

π

6
) cos(θi)]

=
− cos(θi +

2π
3
)

cos(θi)
= − vc

va

(6)

VDC = dxvab + dyvac =
−va(va − vb)

va
+

−vc(va − vc)

va
=

v2
a + v2

b + v2
c

va
=

3V2
im

2va
(7)
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Table 1. The switching states, the duty cycles, and the DC-link voltage for the rectifier in all sectors.

Sector
Number

ON
Switch

The Duty Cycles and Modulated Switches DC-Link
Voltagedx dy

1 S1 S4 − vb
va

S6 − vc
va

3V2
im

2va

2 S6 S3 − vb
vc

S1 − va
vc − 3V2

im
2vc

3 S3 S6 − vc
vb

S2 − va
vb

3V2
im

2vb

4 S2 S5 − vc
va

S3 − vb
va − 3V2

im
2va

5 S5 S2 − va
vc

S4 − vb
vc

3V2
im

2vc

6 S4 S1 − va
vb

S5 − vc
vb − 3V2

im
2vb
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2.1.2. Five-Phase Voltage-Source Inverter

The switches of the inverter stage have 32 allowed switching states in order to prevent
the short circuit of the virtual DC link and the open circuit of the load terminals. There are
30 active vectors (V1 − V30) in these states and 2 zero vectors (V0) as shown in the decagon
in Figure 2b. There are three groups for the active vectors: small vectors (0.2472 VDC),
medium vectors (0.4 VDC) and large vectors (0.6472 VDC) [48]. As shown in Equation (8)
and Figure 2b, the reference output voltage ( V∗

o ) is obtained using the adjacent vectors
(Vα , Vβ and Vz). The duty cycles of these adjacent vectors are calculated using the yellow-
colored vectors in Figure 2b as in Equations (9)–(11). In Equations (9) and (10), θv indicates
the measured angle starting from the first vector in the associated sector to the reference-
output-voltage vector, and mv is the output-voltage-modulation index for the inverter [48].

V∗
O = dαVα + dβVβ + dzVz (8)

dα = mv sin
(π

5
− θv

)
(9)

dβ = mv sin(θv) (10)

dz = 1−dα − dβ (11)

In this paper, large and medium vectors are only considered in order to obtain the
reference output voltage so as to reduce the amount of switching occurrences. The large-
and medium-voltage-vector duty cycles are determined based on their length relative to
each other. This is clarified in Equations (12)–(15).

dαl = dα
Vl

Vl + Vm
= 0.618dα (12)

dαm = dα
Vm

Vl + Vm
= 0.382dα (13)

dβl = dβ
Vl

Vl + Vm
= 0.618dβ (14)

dβm = dβ
Vm

Vl + Vm
= 0.382dβ (15)

Notice that the times of the medium and the large vector are 38.2% and 61.8% of the
overall active time, respectively. Accordingly, the value of the reference-output-voltage
vector is limited to 0.5257 VDC [34]. For further minimization of switching, the switching
sequence is arranged as in Equation (16) [49,50]. Table 2 describes the switching vectors
that minimize switching losses in various sectors. The switching state V11 (10000) in Table 2
indicates that the inverter switches S7, S10, S12, S14 and S16 are turned on, while switches
S8, S9, S11, S13 and S15 are turned off. Figure 3 depicts the switching pattern for the upper
switches of the five-phase VSI in the first sector. It should be noticed that only one of the
upper switches’ states is changed between two adjacent switching states.

dz1

2
,

dαm

2
,

dβl

2
,

dαl
2

,
dβm

2
,

dz2

1
,

dβm

2
,

dαl
2

,
dβl

2
,

dαm

2
,

dz1

2

dz1 = dz2 =
dz

2

(16)
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Table 2. Inverter’s switching vectors, which minimize switching losses in all sectors.

Sector No. Vαm Vαl Vβm Vβl Vz1 Vz2

1 V11 (10000) V1 (11001) V12 (11101) V2 (11000)

2 V13 (01000) V2 (11000) V3 (11100) V12 (11101)

3 V13 (01000) V4 (01100) V3 (11100) V14 (11110)

4 V15 (00100) V4 (01100) V5 (01110) V14 (11110)

5 V15 (00100) V6 (00110) V5 (01110) V16 (01111) V31 (00000) V32 (11111)

6 V17 (00010) V6 (00110) V7 (00111) V16 (01111)

7 V17 (00010) V8 (00011) V7 (00111) V18 (10111)

8 V19 (00001) V8 (00011) V9 (10011) V18 (10111)

9 V19 (00001) V10 (10001) V9 (10011) V20 (11011)

10 V11 (10000) V10 (10001) V1 (11001) V20 (11011)
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2.2. Carrier-Based Pulse Width Modulation

The previously introduced indirect-SVM study demonstrates that the SVM for the five-
phase indirect MC may be implemented following a complicated procedure. In the rectifier
and the inverter stages, the selection of the operative vectors is carried out independently.
Various and complex equations are employed to compute the duty ratios of the effective
vectors in the rectifier and in the inverter stages. The rectifier and inverter stages’ switching
states are then synchronized to produce balanced output voltages and to ensure a zero-
current commutation in the rectifier stage. The CBPWM technique was created to solve
these issues by making it simple to produce gating pulses for the rectifier and the inverter.
PWM signals are generated in the CBPWM technique when the modulation signals are
compared to a carrier signal with a high frequency (1/Ts). Accordingly, the CBPWM
method begins with identifying the carrier signal and the modulation signals. For both the
rectifier and inverter stages in this study, just one symmetrical and triangular carrier signal
is employed to produce PWM signals.

As illustrated in Figure 4 (a), the carrier signal ( vcarr.(t)) is defined as follows:

vcarr. = Vim

(
4
Ts

t − 1
)

, t = 0 :
Ts

2
(17)
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2.2.1. Current-Source Rectifier

For the rectifier and when the vector of the reference input current is located in
the first sector, the switching pattern and the timing of the modulated switches can be
described as shown in Figure 4 (b). The duration of the gate pulse of the switch S4 (T4) is
defined by Equation (18). The modulated signal of the rectifier switch S4 (V4) is given by
Equation (19). The operating pulse of switch S4 is obtained by comparing the modulated
signal in Equation (19) with the carrier signal as seen in Figure 4 (b). The operating pulse
of switch S6 is the complement of the pulse of switch S4, and switch S1 is constantly on in
the first sector. Switches S2, S3 and S5 are constantly off in the first sector. The switching
states and the duty cycles for other sectors may be determined using the same method as
reported in Table 1.

T4 = dx
Ts

2
(18)

V4 = Vim(2dx − 1) (19)

2.2.2. Five-Phase Inverter

For the inverter, two modulation signals are provided in order to obtain the required
output voltage despite the DC-link-voltage volatility. These signals are generated from
duty ratios dx and dy, respectively. These duty ratios are dependent on the DC-link voltage
as given by Equations (20) and (21). For example, two modulation signals VA1 and VA2 are
required to create the gate signal for the top switch of phase A. Figure 4 (a) depicts the
waveforms of VA1 and VA2, as well as the carrier signal (vcarr.(t)). Then, two pulses SA1 and
SA2 are achieved by individually comparing the two modulation signals VA1 and VA2 with
the carrier signal ( vcarr.(t)). Finally, the logic-XNOR function is used to determine the gate
signal for switch SA (S7 in Figure 1b), as illustrated in Figure 4 (c) and Equation (23). This
is also clearly depicted in the block diagram illustrated in Figure 5. It can be clearly noticed
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from Figure 4 that when commutation occurs in the rectifier stage, the inverter stage works
on the zero vectors to ensure the rectifier’s zero-DC-link-current commutation. As a result,
during commutation, all currents flowing through the switches of the rectifier are zero.
The rectifier stage’s switching loss is reduced, and a complicated multi-step-commutation
procedure is avoided.

VA1 = Vim(−2dy
vA + vo f f set

VDC
+ dx) (20)

VA2 = Vim(2dx
vA + vo f f set

VDC
− dy) (21)

vo f f set = −1
2
(vA + vD) (22)

SA = SA1 � SA2 (23)
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For a generic formulation for the other phases, the modulation signals for switch SM
can be written as in Equations (24) and (25). In Equations (24)–(27), M represents the output
phase number A, B, C, D and E, and vmax and vmin indicate the maximum and minimum
values of the output phase voltages, respectively.

VM1 = Vim(−2dy
vM + vo f f set

VDC
+ dx) (24)

VM2 = Vim(2dx
vM + vo f f set

VDC
− dy) (25)

vo f f set = −1
2
(vmax + vmin) (26)

SM = SM1 � SM2 (27)

3. Clamping Circuit and Input Filter

This section introduces the input filter and the simple clamping circuit that are used
with the three-to-five-phase indirect MC. The start-up issues and difficulties associated with
the proposed clamping circuit are investigated in this section. The experimental validation
for these issues is also presented in this section. The guidelines for the safe start-up of the
proposed IMC with the simple clamping circuit is introduced.

3.1. Analysis of Clamping Circuit

The lack of the DC connection, which is common in other voltage-source-inverter
topologies, is one of the most appealing features of the MC design when used in aviation
applications. As a result, with an MC, no electrolytic capacitors are needed. Therefore, the
removal of the load’s energy in some situations, such as an over-current situation, a failure
in the commutation process, and/or during start-up of the operation of the MC, might
cause overvoltage at the converter’s input because the matrix converter does not have
an energy-storage facility. A diode bridge with ultrafast diodes linked to each input and
output side of the MC, as well as a capacitor, is definitely the most commonly employed
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protection approach [51]. However, this two-bridge clamping circuit can be easily replaced
by the simple clamping circuit shown in Figure 1b. It consists of only one diode and
one capacitor.

The capacitor must store all of the inductive load energy without causing harmful
overvoltages; therefore, it must be properly sized. The capacitor size is determined using the
maximum stored load energy (Wload) in motor inductance (L) and the maximum accessible
clamp voltage, and may be computed as follows:

Wload =
1
2

L(i2A + i2B + i2C + i2D + i2E) (28)

The change in the clamp-capacitor stored energy from its starting voltage to its final
voltage may be utilized to compute the capacitor size, as illustrated in Equation (29). In
Equation (29), Cc represents the capacitance of the clamping capacitor, VMAX represents the
maximum voltage allowable for MC switches and VMIN represents the initial voltage of
the capacitor.

Wload =
1
2

Cc(V2
MAX + V2

MIN) (29)

For high-power multi-phase drives, e.g., with 17.3 A (peak current), 0.05 H inductance,
and 1200 V as the maximum allowable voltage for switches [2], the clamping circuit is
chosen as 110 µF as a safety. When supplying these high-power drive systems with the
proposed three-to-five-phase indirect MC (given in Figure 1b) with the proposed clamped
circuit with a capacitor of 110 µF, there are some issues related to powering up the MC, e.g.,
due to inrush current and start-up with the operation of the PWM of the rectifier. To clarify
these issues and determine their impact, simulation and experimental results have already
been generated for the proposed indirect MC.

Figure 6 displays the simulation results for testing of the clamping circuit at start-up
with the operation of the PWM of the rectifier. It can be noticed from Figure 6b that there is
an extremely high supply current while charging the capacitor up to about 600 A, which
causes current protection to work and a sudden trip of the circuit breaker occurs, and as
a result an extremely high voltage occurs that causes the breakdown of matrix switches.
Hence, the rectifier PWM must be stopped during the start-up of the MC.
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Figure 6. Simulation testing of the clamping circuit at start-up with operation of the PWM of the
rectifier (a) DC-link voltage and (b) input current for MC.

Figure 7 describes the simulation results for the testing of the clamping circuit at start-
up without operation of the PWM of the rectifier, and with the capacitor being charged
using any line voltage, e.g., Vab. It can be noticed from Figure 7c that the maximum input
current during capacitor charging is about 15 A. However, there is a high pulse current at
time zero. This is because the start-up is not at zero voltage, as shown in Figure 7a.
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up without operating the PWM of the rectifier and with the capacitor being charged using 
any line voltage at the instant of zero crossing. The maximum supply current in this case 
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Figure 7. Simulation testing of the clamping circuit at start-up without operating the PWM of the
rectifier and charging using line voltage Vab (a) Line-input voltage Vab, (b) DC-link voltage and
(c) input current for MC.

Figure 8 shows the simulation results for the testing of the clamping circuit at start-up
without operating the PWM of the rectifier and with the capacitor being charged using any
line voltage at the instant of zero crossing. The maximum supply current in this case is
about 10 A.

Figure 9 shows the experimental results of testing the clamping circuit at start-up
without operating the PWM of the rectifier and charging using the ramp-line voltage Vab.
Figure 10 describes the experimental results of testing the clamping circuit at start-up
without operating the PWM of the rectifier and charging using the step-input-line voltage
Vab. Hence, it is concluded from these figures that the start-up of the proposed MC should
consider the following conditions: (1) the PWM of the rectifier stage should be held during
the start-up until the capacitor charging finishes and (2) the capacitor charging should be
done using any line voltage and this input-line voltage must be smoothly increased from
zero up to the operating value.
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Figure 10. Experimental testing of the clamping circuit at start-up without operating the PWM of
the rectifier and charging using step-input-line voltage Vab (a) Line-input voltage Vab, (b) DC-link
voltage, (c) input current for MC and (d) zoom-in view of the input current at start-up.

3.2. Low-Pass Input Filter

The inductive impact of the power grid should be decreased since MC functions as a
current-source-inverter on the input side and a voltage-source-inverter on the output side.
A low-pass input filter is used to remove the high-frequency ripple from the waveform of
the input current to the IMC. Figure 11 shows the input-filter structure [51]. In Figure 11, Rf,
Cf and Lf represent damping resistance, filter capacitance and filter inductance, respectively.
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4. Results and Discussion

This section introduces and analyzes the performance of the indirect MC for both the
experimental and simulation results. The three-to-five-phase indirect MC is supplied from
a three-phase AC supply of 50 Hz and 100 V peak value. The five-phase output terminals
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of the indirect MC are connected to a static five-phase R–L load (R = 82 Ω and L = 10 mH).
An LC input filter is connected between the supply and the input terminals of the indirect
MC. The input-filter parameters are the following: L f = 3 mH, Rf = 50 Ω and C f =10 µF.
The clamping circuit consists of a 110 µF capacitor and one ultrafast diode MUR860. The
CBPWM is applied in order to control the indirect MC with minimal switching losses in the
rectifier stage. The switching frequency is 10 kHz. The sampling times at the simulation
and experimental measurements are 1 µs and 100 µs, respectively. The voltage-transfer
ratio is chosen as 0.78.

Figure 12 shows the test bench used in the experimental measurements. The MC is con-
trolled to give different output frequencies, e.g., 100 Hz, 50 Hz and 25 Hz. Figures 13 and 14
show the simulation and the experimental results for the MC at 50 Hz of output frequency,
respectively. The simulation and experimental results of the DC-link voltage are shown in
Figures 13a and 15b, respectively. The input voltage to the MC during the experimental
measurements is shown in Figure 15a. There is a great agreement between the measured
and the simulated results. Figures 16 and 17 show the simulation and the experimental
results for the MC at 100 Hz of output frequency, respectively. Figures 18 and 19 display
the simulation and the experimental results for the MC at 25 Hz of output frequency,
respectively.
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5. Conclusions

In this article, a three-to-five-phase indirect-matrix converter (IMC) with a simple
clamp circuit was presented. The suggested converter has the same properties as the three-
to-five direct-matrix converter (DMC), despite the fact that the number of semiconductors
(IGBTs) was decreased and the commutation procedure was simplified. The IMC has
22 IGBTs compared to 30 IGBTs in the case of the DMC. In addition, a simple clamping
circuit with one ultrafast diode and one capacitor was used to protect the switches from
overvoltage. A detailed discussion of the issues related to powering up the MC was
introduced. Experimental and simulation tests, which had already been performed in order
to show these issues and their solutions, was suggested. Moreover, a CBPWM technique
appropriate for the introduced three-to-five-phase IMC structure was introduced. The
introduced CBPWM technique generates the required PWM pulses for both the rectifier-
and inverter-stage controllers using just one symmetrical and triangular carrier signal.
Finally, experimental testing with a five-phase static R–L load demonstrated the viability of
the implemented CBPWM algorithm for the suggested indirect MC.
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