
����������
�������

Citation: Bhosale, A.; Barakhshan, P.;

Rosas, M.R.; Eigenmann, R.

Automatic and Interactive Program

Parallelization Using the Cetus

Source to Source Compiler

Infrastructure v2.0. Electronics 2022,

11, 809. https://doi.org/10.3390/

electronics11050809

Academic Editors: Manuel E. Acacio

and George Angelos Papadopoulos

Received: 29 December 2021

Accepted: 1 March 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Automatic and Interactive Program Parallelization Using the
Cetus Source to Source Compiler Infrastructure v2.0
Akshay Bhosale * , Parinaz Barakhshan , Miguel Romero Rosas and Rudolf Eigenmann

Department of Electrical & Computer Engineering, University of Delaware, Newark, DE 19711, USA;
parinazb@udel.edu (P.B.); miguelro@udel.edu (M.R.R.); eigenman@udel.edu (R.E.)
* Correspondence: akshay@udel.edu

Abstract: This paper presents an overview and evaluation of the existing and newly added analysis
and transformation techniques in the Cetus source-to-source compiler infrastructure. Cetus is used
for research on compiler optimizations for multi-cores with an emphasis on automatic parallelization.
The compiler has gone through several iterations of benchmark studies and implementations of
those techniques that could improve the parallel performance of these programs. This work seeks
to measure the impact of the existing Cetus techniques on the newer versions of some of these
benchmarks. In addition, we describe and evaluate the recent advances made in Cetus, which are
the capability of analyzing subscripted subscripts and a feature for interactive parallelization. Cetus
started as a class project in the 1990s and grew with support from Purdue University and from the
National Science Foundation (NSF), as well as through countless volunteer projects by enthusiastic
students. While many Version-1 releases were distributed via the Purdue download site, Version 2 is
being readied for release from the University of Delaware.

Keywords: automatic parallelization; subscripted subscript analysis; interactive parallelization

1. Introduction

Cetus [1] (available online: https://sites.udel.edu/cetus-cid/, accessed on 21 February
2022) is a source-to-source translator for programs written in the C language. The primary
use is as a parallelizing compiler, translating C programs to equivalent C code annotated
with OpenMP parallel directives. Cetus is a research platform to study parallelization
techniques and related program transformations. As such, the design has been kept lean
and easy to learn. Cetus has never been extended to handle other languages, for that reason.
Cetus was created out of a need for a state-of-the-art automatic parallelizer for multi-cores,
written in a modern language and capable of performing analyses and transformations for
today’s architectures. The effect of the various optimization techniques in Cetus on the
performance of prior generations of benchmarks and machines is well documented [2,3].
One of the contributions of the present paper is to determine which of these effects have
remained invariant and where do they differ with the evolution of the benchmarks and
architectures. In addition, we present and evaluate two new Cetus capabilities, namely
subscripted subscript analysis and interactive compilation. The goal of this paper is to
extensively evaluate the current Cetus techniques on current versions of the benchmarks
and summarize the recent advancements in Cetus, some of which were discussed in detail
in our previous contribution [4].

Subscripted subscript analysis:

A long standing challenge for automatic parallelizers is the compile-time paralleliza-
tion of subscripted subscript patterns. A significant number of loops in a class of irregular
applications that we analyzed could not be automatically parallelized, as they exhibited
subscripted subscript patterns. If an algorithm can prove the presence of a property, such

Electronics 2022, 11, 809. https://doi.org/10.3390/electronics11050809 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050809
https://doi.org/10.3390/electronics11050809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1264-5274
https://orcid.org/0000-0001-7232-3923
https://sites.udel.edu/cetus-cid/
https://doi.org/10.3390/electronics11050809
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050809?type=check_update&version=1


Electronics 2022, 11, 809 2 of 22

as monotonicity, for the subscript array, the enclosing loops can be parallelized. The infor-
mation required to prove the existence of these properties is often present in the application
code itself, which makes it feasible to automatically detect the properties. Our work was
motivated by two observations: (i) in a class of programs, such as adaptive mesh refinement
applications and sparse matrix computations, subscripted subscript patterns are the main
impediment to more successful automatic parallelization. (ii) Currently, there are no known
compile-time analysis techniques that can automatically parallelize such loop patterns. In
this paper, we briefly describe a compile-time algorithm, which makes use of symbolic range
aggregation to prove the monotonicity of the subscript array and parallelize important loops
in application codes. We then demonstrate the effectiveness of the algorithm in improving
the performance of benchmark applications. The algorithm is described in detail in [4].

Interactive compilation using iCetus:

While the ability to deal with subscripted subscript patterns significantly advances
the state of the art of optimizing compilers, more is needed. Typical parallelizers are able
to substantially improve about one in two science/engineering applications. This is a
success from a scientific viewpoint, but is still unsatisfactory for the end user. It is especially
aggravating for the engineer of novel applications, which may not exhibit the regular
data structures that the parallelization technology learned to optimize well. What is more,
even where the tools succeed in detecting parallelism, mapping this parallelism to a given
architecture may introduce overheads that offset the gain of automatic optimization. The
result is that users see large performance variations across programs and architectures,
ranging from nearly ideal speedup to slowdown of the original program.

Our aim for the iCetus tool (available at icetus.ece.udel.edu/cetusWeb/, accessed
on 1 November 2021) is to involve the user in the decisions that compilers struggle with.
User feedback is factored into program parallelization. To that end, iCetus provides the
user with information about how the compiler analyzes, transforms, and parallelizes the
program, as well as displaying the speedup gained from applying such optimization to
the code. It offers a user interface for controlling program parallelization, based on this
information. Doing so combines user knowledge and classical compiler capabilities.

This paper briefly describes the underlying system design of iCetus, the functionalities
supported by the first version of the tool, and features that will be added in upcoming
versions. We present the results of an iCetus user survey, assessing the usefulness and
importance of the features in the current tool version as well as anticipated features of the
next version.

In summary, this paper makes the following contributions:

1. We present a brief overview of the analysis and transformation techniques in Cetus
and measure the impact of individual techniques on the overall performance of 7
programs from the latest NAS Parallel benchmark suite [5] v3.3 and 30 programs from
the PolyBench benchmark suite [6] v4.2. Cetus achieved a maximum performance
improvement to the order of 1.22–20 times over the serial execution for the bench-
marks evaluated from the NAS Parallel benchmark suite and about 28–108 times
improvement for the benchmarks evaluated from the PolyBench suite.

2. We briefly describe a compile-time algorithm for detecting monotonic subscript arrays,
which is adequate for automatically parallelizing a class of programs that demonstrate
subscripted subscript patterns. We present the performance results after applying the
algorithm by hand to key loops from two real scientific applications, and discuss the
overall impact on the performance of the applications.

3. We present a new interactive parallelization tool called iCetus (interactive Cetus),
which supports the user in determining performance bottlenecks in application codes
and helps to resolve them in an interactive, menu-driven way. In addition, we
present the results of a user survey, quantifying the importance and usefulness of the
implemented and proposed features of iCetus for optimizing scientific codes.

icetus.ece.udel.edu/cetusWeb/


Electronics 2022, 11, 809 3 of 22

The remainder of the paper is organized as follows. Section 2 provides an overview of
the analysis and transformation passes in Cetus. Section 3 briefly describes the new compile-
time algorithm to automatically parallelize subscripted subscript patterns. Section 4 de-
scribes the interactive Cetus tool. Section 5 evaluates the presented techniques and capabil-
ities. Section 6 presents related work, followed by conclusions in Section 7.

2. Overview of the Analysis and Transformation Passes in Cetus

The Cetus translator is implemented in Java. The internal program representation (IR)
uses a Java class hierarchy and is syntax oriented, allowing the Cetus output to resemble
the source code closely. Internally, the translator is organized into three distinct parts—the
front end (lexer and parser), the IR, and a set of analysis and transformation passes that
enable automatic parallelization. The “base” represents the IR in the form of the said class
hierarchy, which provides and implements the functions needed by pass writers for creating,
analyzing, modifying, and printing programs. The passes build on the base, providing
program analysis and transformation functionality. The Cetus driver invokes the passes
and creates the user interface, such as the Cetus command line and its options. The base
contains 12,000 lines of Java, while the passes for the parallelization functionality contain
some 32,000 lines, with more passes being added. A driver is typically a small function of a
few 10 to 100 lines. The most common driver is that for the parallelization functionality.
Many other drivers have been added by researchers, using the Cetus platform for creating
tools for program instrumentation, OpenMP-to-CUDA translation [7], OpenMP-to-MPI
conversion [8], and more.

We categorize the Cetus passes into program analyses, parallelism-enabling trans-
formations, and architecture-mapping transformations. This is not strict. Some analysis
passes also apply certain transformations to bring the code into a form that is easier to
understand, and many transformation passes perform some analyses as well. However, all
program analyses gather information about the program that will enable the later trans-
formation techniques. Parallelism-enabling transformations remove data dependencies,
bringing loops into a form that can be parallelized. Data privatization and reduction
parallelization are two of the most important parallelism-enabling transformations. Cetus
creates only fully parallel loops. That is, there are currently no techniques that exploit
partial parallelism in the presence of data dependencies that cannot be removed. Cetus
also contains a range of techniques that map the detected parallel loops onto specific ar-
chitectures. The first two categories are generic, enabling the exploitation of parallelism
on all architectures. They are explained briefly below, and their impact is measured in
Section 5. Among the architecture-mapping techniques are loop interchange, tiling, the
conversion to CUDA, and the translation to the MPI form. We briefly describe and evaluate
the impact of the loop interchange pass in Cetus. This paper does not further elaborate on
the rest of the architecture-mapping transformations. A detailed description of the various
aforementioned analysis and transformation passes in Cetus is mentioned in [2,9].

2.1. Program Analysis

• Cetus includes classical data-dependence and pointer/alias analyses. For data-dependence
detection, it makes use of the range test [10] and Banerjee–Wolfe [11] test. Point-
er/alias analysis uses an inter-procedural points-to-analysis technique [12] with some
variations from the original algorithm.

• A key distinguishing technique of the Cetus platform is its symbolic range analysis
capability, which enables other passes to manipulate and reason about symbolic
expressions [13]. Several transformation passes make use of this capability. It also
represents an important basis for the array property analysis described in Section 3.

• Most Cetus techniques work intraprocedurally, that is, they neither gather information
from other subroutines, nor apply transformations across subroutine boundaries. The
compiler relies on subroutine inlining to overcome this limitation. Inlining enables all



Electronics 2022, 11, 809 4 of 22

other techniques to see and operate across subroutine boundaries. Section 5 shows
where subroutine inlining makes a difference.

• Cetus performs several normalization steps that allow its analyses to make simplifying
assumptions. Examples are loop normalization, which converts all loops to a form that
iterates from 0 to an upper bound in steps of 1, and statement normalization, ensuring
that all statements contain only one assignment. We will not further elaborate on
these techniques.

2.2. Parallelism-Enabling and Architecture-Mapping Transformations

Cetus includes four techniques in this category, which were previously evaluated to
be the most important [2]: data privatization, reduction parallelization, induction variable
substitution and loop interchange.

• Data privatization identifies scalar and array variables whose values are produced and
consumed within the same loop iteration. Such variables can be declared loop private ,
using OpenMP’s private clause [14]. Doing so eliminates anti-dependencies that would
otherwise arise [15].

• Reduction parallelization and induction variable substitution deal with mathematical
reduction operations and with induction sequences, respectively. The original form
of both patterns contain data dependencies that would inhibit parallelization. Cetus
marks identified reduction variables, using OpenMP directive clauses (in certain
OpenMP-unsupported cases, Cetus rewrites the reduction directly in a parallel form).
Induction sequences are rewritten as closed-form expressions.

• The loop interchange pass in Cetus is capable of determining the best permutation of
loops in a loop nest for effectively exploiting data locality and parallelism in concert.
In addition to the legality test for interchange, the pass implements a memory model,
described in [16], to determine cache line reuse from multiple accesses to the same
memory location and from consecutive memory accesses.

3. Subscripted Subscript Analysis

This section briefly describes a compile-time algorithm capable of automatically paral-
lelizing loops with subscripted subscript patterns. We also present a brief discussion of the
subscript array properties required to prove independence in loops containing subscript
arrays and to automatically parallelize such loops.

3.1. Motivation

Recall from Section 1 that subscripted subscript patterns are the main impediment
preventing Cetus from matching hand-parallelized performance. Similar experiments
with other optimizers, such as Rose [17] and Intel’s ICC compiler [18], yielded the same
result. In order to parallelize subscripted subscript patterns, a compiler must be able to
determine possible values of the subscript array and formulate subscript array properties.
A key observation was that the information required to do so was often present in the
application code itself, specifically in loops that modify the content of the subscript array.
Figures 1 and 2 illustrate this situation.

Version February 28, 2022 submitted to Electronics 4 of 21

• Most Cetus techniques work intraprocedurally, that is, they neither gather in-140

formation from other subroutines, nor apply transformations across subroutine141

boundaries. The compiler relies on subroutine inlining to overcome this limita-142

tion. Inlining enables all other techniques to see and operate across subroutine143

boundaries. Section 5 will show where subroutine inlining makes a difference.144

• Cetus performs several normalization steps that allow its analyses to make simpli-145

fying assumptions. Examples are loop normalization, which converts all loops to a146

form that iterates from 0 to an upper bound in steps of 1, and statement normaliza-147

tion, ensuring that all statements contain only one assignment. We will not further148

elaborate on these techniques.149

2.2. Parallelism-enabling and Architecture-mapping Transformations150

Cetus includes four techniques in this category, which have been previously eval-151

uated as most important [2]: data privatization, reduction parallelization, induction152

variable substitution and loop interchange.153

• Data privatization identifies scalar and array variables whose values are produced154

and consumed within the same loop iteration. Such variables can be declared loop155

private, using OpenMP’s private clause [10]. Doing so, eliminates anti-dependencies156

that would otherwise arise [16].157

• Reduction parallelization and induction variable substitution deal with mathemati-158

cal reduction operations and with induction sequences, respectively. The original159

form of both patterns contain data dependencies that would inhibit parallelization.160

Cetus marks identified reduction variables using OpenMP directive clauses (in cer-161

tain OpenMP-unsupported cases, Cetus rewrites the reduction directly in a parallel162

form). Induction sequences are rewritten as closed-form expressions.163

• The Loop Interchange pass in Cetus is capable of determining the best permutation164

of loops in a loop nest for effectively exploiting data locality and parallelism in165

concert. In addition to the legality test for interchange, the pass implements a166

memory model, described in [25], to determine cache line reuse from multiple167

accesses to the same memory location and from consecutive memory accesses.168

3. Subscripted Subscript Analysis169

This section briefly describes a compile-time algorithm capable of automatically170

parallelizing loops with subscripted subscript patterns. We also present a brief discussion171

of the subscript array properties required to prove independence in loops containing172

subscript arrays and to automatically parallelize such loops.173

3.1. Motivation174

Recall from Section 1 that subscripted subscript patterns were the main impediment175

preventing Cetus from matching hand-parallelized performance. Similar experiments176

with other optimizers, such as Rose [17] and Intel’s ICC compiler [32] yielded the same177

result. In order to parallelize subscripted subscript patterns, a compiler must be able to178

determine possible values of the subscript array and formulate subscript array properties.179

A key observation was that the information required to do so was often present in the180

application code itself, specifically in loops that modify the content of the subscript array.181

Figures 1 and 2 illustrate this situation.182

1: for (i = 0; i < n; i++) {
2: for(j = pntr[i]; j < pntr[i+1]; j++){
3: x[j] = c[j] * diag[d[j]];
4: }
5: }

Figure 1. Subscripted subscript pattern in an example loop. The subscript expression of array x
that is j, derives it’s values from array pntr.

Figure 1. Subscripted subscript pattern in an example loop. The subscript expression of array x, that
is, j, derives its values from array pntr.



Electronics 2022, 11, 809 5 of 22

In the example code shown in Figure 1, values of array pntr appear at the subscript
of array x on line 3. The loop on line 1 can be parallelized if array pntr is monotonically
increasing. The sequence of loops shown in Figure 2 appears before the loop in Figure 1
and produces monotonic values for array pntr. In general scientific applications, complex
loop patterns are used to define and modify the subscript array. However, in our analysis,
we found that in many such programs, the necessary and sufficient information showing
that the involved loops can, in fact, be parallelized was present in the program code and
was not dependent on the program input data. While investigating this information can
be complex, the opportunity exists to develop compile-time analyses that perform such
detection.

Version February 28, 2022 submitted to Electronics 5 of 21

In the example code shown in Figure 1, values of array pntr appear at the subscript183

of array x on line 3. The loop on line 1 can be parallelized if array pntr is monotonically184

increasing. The sequence of loops shown in Figure 2 appear before the loop in Figure 1185

and produce monotonic values for array pntr. In general scientific applications, complex186

loop patterns are used to define and modify the subscript array. But in our analysis we187

found that, in many such programs, the necessary and sufficient information that the188

involved loops can in fact be parallelized was present in the program code and was not189

dependent on program input data. While investigating this information can be complex,190

the opportunity exists to develop compile-time analyses that perform such detection.191

1: for(i = 0; i < n; i++){
2: pntr[i] = 0;
3: }

(a)

1: for(i = 0; i < n; i++){
2: if(condition) pntr[i]++;
3: }

(b)

1: for(i = 1; i < n; i++){
2: pntr[i] = pntr[i - 1] + pntr[i];
3: }

(c)

Figure 2. Subscript array pntr derives monotonic values in three steps: Loop in (a) initializes pntr
to zero; Loop in (b) conditionally increments pntr; (c) sum recurrence.

3.2. Analyzing Subscript Array Properties192

Benchmark suite
Total

benchmarks
analyzed

Benchmarks with
subscripted
subscripts

NPB3.3 [8] 10 3

SuiteSparse 5.4.0 [20] 10 7

SPEC CPU 2006 [11] 7 2

The Mantevo Project [22] 5 2

Table 1: Benchmarks codes analyzed for the presence of subscripted subscripts.

We analyzed the application codes listed in Table 1 for subscripted subscript pat-193

terns. We looked at all codes from these suites, except in SPEC CPU 2006, where we194

considered the seven most promising of the 17 applications. Subscripted subscript195

patterns were found in 14 of the 32 inspected application codes. In all of these patterns,196

the loops were parallel, and comprising a single or multiple array write references with197

subscript expressions that contain the value of another array, but there is no read refer-198

ence of the written array. Such loops can be parallelized if the compiler can prove that199

there is no self output dependence [13]. In doing so, the array properties described below200

are of interest:201

1. Injectivity: An array is said to be injective if a[i] 6= a[j], ∀i 6= j. The array accesses202

x[a[i]] and x[a[j]] are independent, if i 6= j, in this case.203

2. Monotonically increasing or decreasing: An array is monotonically increasing if204

a[i] ≤ a[j], ∀i < j and monotonically decreasing if a[i] ≥ a[j], ∀i < j. This implies205

non-strict monotonicity.206

3. Strictly monotonically increasing or decreasing: An array is strictly monoton-207

ically increasing if a[i] < a[j], ∀i < j and strictly monotonically decreasing if208

a[i] > a[j], ∀i < j. Strict monotonicity implies injectivity.209

Figure 2. Subscript array pntr derives monotonic values in three steps: loop in (a) initializes pntr to
zero; loop in (b) conditionally increments pntr; (c) sum recurrence.

3.2. Analyzing Subscript Array Properties

We analyzed the application codes listed in Table 1 for subscripted subscript patterns.
We looked at all codes from these suites, except in SPEC CPU 2006, where we considered
the seven most promising of the 17 applications. Subscripted subscript patterns were found
in 14 of the 32 inspected application codes. In all of these patterns, the loops were parallel,
comprising single or multiple array write references with subscript expressions that contain
the value of another array, but there was no read reference of the written array. Such loops
can be parallelized if the compiler can prove that there is no self output dependence [19]. In
doing so, the array properties described below are of interest:

1. Injectivity: An array is said to be injective if a[i] 6= a[j], ∀i 6= j. The array accesses
x[a[i]] and x[a[j]] are independent if i 6= j in this case.

2. Monotonically increasing or decreasing: An array is monotonically increasing if
a[i] ≤ a[j], ∀i < j and monotonically decreasing if a[i] ≥ a[j], ∀i < j. This implies
non-strict monotonicity.

3. Strictly monotonically increasing or decreasing: An array is strictly monotonically
increasing if a[i] < a[j], ∀i < j and strictly monotonically decreasing if a[i] > a[j],
∀i < j. Strict monotonicity implies injectivity.

Table 1. Benchmarks codes analyzed for the presence of subscripted subscripts.

Benchmark Suite Total Benchmarks Analyzed Benchmarks with
Subscripted Subscripts

NPB3.3 [5] 10 3

SuiteSparse 5.4.0 [20] 10 7

SPEC CPU 2006 [21] 7 2

The Mantevo Project [22] 5 2



Electronics 2022, 11, 809 6 of 22

A representative example of the creation of these array properties is shown in Figure 2.
Common intermediate properties that are captured by our algorithm are positive or non-
negative, as shown in Figure 2b.

Our previous work [23] mentions key loops from benchmark applications that can be
parallelized due to each of the above-mentioned properties. Recall again that the above
properties were found to be present in the program code itself and independent of the
program input data. An advanced programmer would be able to determine the properties
and thus parallelize the enclosing loops.

3.3. Compile-Time Algorithm for Subscript Array Analysis

Our algorithm proceeds in program order, analyzing loop nests and determining the
properties described in the previous section. Loops in each nest are analyzed from inside
out. At each loop level, the algorithm analyzes the values of the loop variant variables:
integer scalars and integer arrays with simple subscripts. For the current algorithm, “simple
subscript” refers to a subscript expression of the form i + k, where i is the iteration number
and k is a constant. Loops with a single subscripted-subscript array write reference can
be analyzed by the algorithm. We assume that all eligible loops are normalized, with at
most one assignment per statement. In addition, we assume that induction variables are
replaced with the appropriate closed-form expressions. Normalized loops are characterized
by iteration spaces that begin at 0 and are stride 1. The loop variable represents the
iteration number.

The algorithm follows two key observations:

1. Recurrence relationships generate monotonic arrays by assigning to a current array
element the summation of the immediately preceding element and a positive value
for strict monotonicity or a non-negative value for non-strict monotonicity.

2. Positive values are often created by starting with 0 and conditionally incrementing it
an arbitrary number of times.

Our algorithm proceeds as follows. Phase 1 performs symbolic analysis of the loop
body and captures the effect of one iteration on the value of the variables of interest. Phase 2
then aggregates this expression across all iterations, determining the effect of the entire
loop on the variable, and testing for array properties. After Phase 2, the loop is substituted
by the set of aggregate expressions, which represent the effect of the loop. The algorithm
then proceeds with the next outer loop. We described the algorithm in detail in our most
recent contribution [4].

4. Interactive Cetus (iCetus)

The iCetus tool (available at icetus.ece.udel.edu/cetusWeb/, accessed on 1 November
2021) is a new interactive web interface to Cetus, providing users with a range of capabilities
for the source-to-source transformation of C programs using OpenMP directives on shared
memory machines.

An early version of iCetus is implemented as a web application for easy access, elimi-
nating the need for user installation and updates. The tool supports the user through all
phases of the program transformation process, including program analysis and optimiza-
tion. The program analysis phase includes static and dynamic analyses, pointing out loops
that represent performance bottlenecks and should be improved. The optimization phase
offers diverse options to cater to different levels of user skills. While the tool can parallelize
code fully automatically for non-experts, power users can steer the parallelization process in
a menu-driven way. By interactively displaying compiler analysis results, iCetus supports
the user in pinpointing parallelization impediments and resolving them. The programmer
can apply successive improvements by editing the input program and the parallel version
of the code, evaluating the performance, and comparing it to that obtained by previous
program versions. In addition, iCetus can be used as a learning tool to understand the
usage of parallel constructs and to write higher-quality code.

icetus.ece.udel.edu/cetusWeb/


Electronics 2022, 11, 809 7 of 22

4.1. Automatic Parallelization Challenges and Opportunities for Interactive Tools

Automatic parallelizers face challenges that interactive parallelizers can address. Our
discussion below covers the major challenges of automatic parallelizers and the potential
of interactive parallelizers.

4.1.1. Correctness and Conservative Assumptions

Parallelization techniques are highly complex, and user code may obscure parallelism.
Furthermore, we expect that compilers perform their optimizations correctly on all pro-
grams. The strict demand for correctness makes parallelizers conservative, bypassing many
opportunities for optimization.

For example, two key compiler capabilities for identifying parallelism are data de-
pendence and private variable analysis. If a compiler cannot prove that data accesses are
dependence free or variables are private, it conservatively assumes that they are not. This
is similarly true for other techniques, such as alias analysis, reduction parallelization, and
induction variable recognition.

The opportunity for an interactive tool is to present the results of these analyses and
then let the user decide what is acceptable. In this way, a data dependence that the compiler
cannot disprove or a variable that the compiler cannot privatize can be tagged as such by
the user. This is especially useful in the fairly common case of a loop, where only a few
hard-to-detect data dependence or private variable patterns remain that can be recognized
by the user. Cetus’ optimization report will be of help in this situation. By selectively
showing the remaining dependencies of a loop and allowing the user to drill down into the
analysis details, an interactive tool can help parallelize key loop patterns that batch-oriented
compilers are unable to.

4.1.2. Overheads and Profitability

Program transformations may introduce overhead. Estimating this overhead is highly
complex and depends on the characteristics of both the program and the target architecture.
Performance models usually include parameters that are only known once the program
executes, making it often infeasible for the compiler to decide whether or not an applicable
technique is beneficial. The dilemma is that not applying the technique forgoes the opti-
mization opportunity; applying it may introduce overhead that offsets the gain or, worse,
degrades performance. For instance, a major reason an automatically parallelized loop
may execute more slowly than the sequential version is that the loop is too small, so the
cost of invoking and terminating the parallel activity dominates. Transformations that
add substantial code to the program, such as reduction parallelization and loop tiling, are
especially prone to low profitability.

The opportunity for an interactive tool lies in informing the user about loops where
profitability is borderline or needs run-time information. The tool can also disclose high-
overhead transformations that are applied, allowing the user to be the judge on profitability.

Another tool opportunity is to offer run-time measurements gained through program
execution. The values of critical variables may be evaluated (e.g., the number of iterations
of a loop), the execution time of a loop may be measured, or the performance of a serial and
parallel code version may be compared. An advanced scenario would be to “auto-tune” a
code section or the entire program. That is, the interactive tool would execute applicable
optimization variants and determine the best.



Electronics 2022, 11, 809 8 of 22

4.2. iCetus Features

Besides basic tool functions, such as inputting and uploading programs or program
sections and browsing the serial or parallel code, iCetus offers the following key features:

• The results of compiler analyses and transformations, such as the values of variables,
data dependencies, privatized and reduction variables, can be inspected to understand
the parallelization process and identify potential problems.

• A menu-driven interface for customizing parallelization options is provided along
with help functions.

• User optimizations can be applied by modifying the input code as well as the paral-
lel code.

• Information about speedup and efficiency gained by the optimization is provided.
• A variety of examples are given to illustrate key concepts in parallel programming,

transformations, and the tool’s capabilities, along with the possibility of making
changes to those examples and experimenting with what-if scenarios.

4.3. iCetus Implementation Overview

The iCetus tool is implemented as a dynamic web application generating the pages/-
data in real time, as per the user’s request. The web server, upon receiving a request for a
dynamic page, passes the page to the application server, which processes the contained
code. Our current design connects the application server to a database that stores user
inquiries. Evaluations of the project are based on this information. Database queries create
record sets that are returned to the application server to complete the page. The final result
is in pure HTML format, which the application server passes back to the web server. The
page is then sent to the requesting browser. Figure 3 illustrates this process.

Version February 28, 2022 submitted to Electronics 8 of 21

• A menu-driven interface for customizing parallelization options is provided along313

with help functions.314

• User optimizations can be applied by modifying the input code as well as the315

parallel code.316

• Information about speedup and efficiency gained by the optimization is provided.317

• A variety of examples are given to illustrate key concepts in parallel programming,318

transformations, and the tool’s capabilities, along with the possibility of making319

changes to those examples and experimenting with what-if scenarios.320

4.3. iCetus Implementation Overview321

The iCetus tool is implemented as a dynamic web application generating the322

pages/data in real-time, as per the user’s request. The web server, upon receiving a323

request for a dynamic page, passes the page to the application server, which processes324

the contained code. Our current design connects the application server to a database325

that stores user inquiries. Evaluations of the project will be based on this information.326

Database queries create record sets that are returned to the application server to complete327

the page. The final result is in pure HTML format, which the application server passes328

back to the web server. The page is then sent to the requesting browser. Figure 3329

illustrates this process.330

Figure 3. Processing dynamic web pages
1. Web browser requests a dynamic page.
2. Web server locates the page and passes it to the application server.
3. Application server scans the page for instructions.
4. Application server sends the query to the database driver.
5. Driver executes the query against the database.
6. Recordset is returned to the driver.
7. Driver passes the recordset to the application server.
8. Application server inserts data in page and then passes the page to the web server.
9. Web server sends the finished page to the requesting browser.

5. Evaluation331

This section evaluates the described Cetus techniques and capabilities. Subsection332

5.1 measures the impact of each of the techniques of Section 2 on the performance of333

the benchmark applications. The performance of the subscripted subscript analysis334

algorithm of Section 3 is measured by hand application of the algorithm to key loops335

from two real scientific applications in Subsection 5.2. Subsection 5.3 quantifies the336

importance of the iCetus tool of Section 4 via a user survey.337

Figure 3. Processing dynamic web pages.

1. Web browser requests a dynamic page.
2. Web server locates the page and passes it to the application server.
3. Application server scans the page for instructions.
4. Application server sends the query to the database driver.
5. Driver executes the query against the database.
6. Recordset is returned to the driver.
7. Driver passes the recordset to the application server.
8. Application server inserts data in page and then passes the page to the web server.
9. Web server sends the finished page to the requesting browser.



Electronics 2022, 11, 809 9 of 22

5. Evaluation

This section evaluates the described Cetus techniques and capabilities. Section 5.1
measures the impact of each of the techniques of Section 2 on the performance of the
benchmark applications. The performance of the subscripted subscript analysis algorithm
of Section 3 is measured by hand application of the algorithm to key loops from two real
scientific applications in Section 5.2. Section 5.3 quantifies the importance of the iCetus tool
of Section 4 via a user survey.

5.1. Performance Impact of Individual Cetus Techniques

We discuss the impact of individual optimization techniques on the overall application
performance. We performed our experiments on a set of 7 benchmarks from the NAS
Parallel benchmark suite (NPB) v3.3 [5] and all of the 30 benchmarks from the PolyBench
benchmark suite v4.2 [6]. For each benchmark, we report the reduction in performance of
the Cetus parallel code over the serial execution, after disabling a technique, as a measure
of the technique’s impact.

5.1.1. Experimental Setup

The NAS Parallel Benchmarks were derived from computational fluid dynamics (CFD)
codes [24]. They were designed to compare the performance of parallel computers and are
widely recognized as a standard indicator of computer performance. The benchmark suite
consists of five kernels (IS, EP, MG, FT, and CG); three pseudo applications (BT, SP, and LU);
and two benchmarks for unstructured computation (UA and DC). We used serial versions
of the benchmarks written in C [25] for our experiments and measured the performance of
the applications for input Class B, having a problem size that is neither too small nor too
big. We evaluated the codes EP, MG, CG, BT, SP, LU, and DC, which present opportunities
for the Cetus techniques.

PolyBench v4.2 [6,26] is a benchmark suite of 30 numerical computations extracted
from operations in various application domains (19 linear algebra computations, 3 image-
processing applications, 6 physics simulations, and 2 data-mining applications). We were
able to compile and run the Cetus parallel code for all of the benchmarks from this suite.
We used slightly modified versions of the source code for some of these benchmarks in
order to accommodate language features supported by Cetus [26].

The execution times for each of the benchmarks were recorded on a compute node
with a 20 core Intel Xeon Gold 6230 processors in a dual socket configuration, with a
processor base frequency of 2.1 GHz, 27.5 MB cache and we used up to 1 GB of DDR4
memory. We compiled the application codes using GCC v4.8.5 with the -O3 optimization
flag enabled on CentOS v7.4.1708. We report the median of three application runs. We used
one thread per core.

5.1.2. Results

We discuss the impact of disabling individual optimization techniques on the overall
performance of the applications. We also study the effect of interactions among optimization
techniques on performance. The performance of the application code, compiled using Cetus
under full optimization (all techniques turned ON) serves as the baseline; then we turn off
one technique at a time and measure the impact on performance. Figures 4–6 show the
performance results for each evaluated benchmark from the NAS Parallel Benchmarks and
PolyBench Benchmark suites. We report the performance results for 2 mm, 3 mm, Doitgen
and Gramschmidt benchmarks from the PolyBench suite for the various techniques. These
results are representative of the results obtained for other benchmarks from this suite. We
make the following observations:



Electronics 2022, 11, 809 10 of 22

1. Scalar and array privatization is the most important technique, affecting the per-
formance of five out of the seven benchmark codes tested from the NPB suite. For
CG, SP and MG, the parallel performance drops below the performance of the serial
code if privatization is disabled, as it leads to parallelization of the inner loops in
computationally intensive loop nests. Disabling privatization affects the performance
of every benchmark from the PolyBench suite, but never drops below that of the
serial code.

2. Reduction parallelization affects the performance of four applications in the NPB
suite, whereas the induction variable substitution has little to no impact. We attribute
the latter to the fact that the NAS and PolyBench benchmarks were already prepared
for parallel execution, with most induction variables being substituted [2].

3. Disabling range analysis (both inter and intra-procedural analysis) substantially dete-
riorates the performance of MG and has a slight impact on the performance of SP and
BT from the NPB suite. In the PolyBench suite, disabling range analysis reduces the
performance of the Cetus parallel code in Doitgen as shown in Figure 6. The reason for
this result is that symbolic range analysis leads to the privatization of arrays, which in
turn parallelized the computationally intensive loops in these benchmarks.

4. Alias analysis affects almost all of the benchmarks. Cetus assumes conservative all-
to-all aliases in the presence of complex pointer declarations for arguments within
function calls. We found this to be the case in benchmarks, such as CG and DC, from
the NAS suite and almost every benchmark from the PolyBench suite. We set the
option to assume that no aliases exist, which is correct for these benchmarks.

5. Disabling inlining leads to a reduction in the performance of EP by about 5% as shown
in Figure 4a and about 42% for SP from 2.45–1.42 times as shown in Figure 4c. In our
experiments, performance of automatic inlining was comparable to the performance
of selective inlining (inlining inside selected functions). We did not evaluate the
performance of LU and MG, as automatic inlining led to excessive code growth.

6. The locality enhancement technique, loop interchange, does not show any impact on
the performance of the NAS benchmarks, whereas in the PolyBench suite, disabling
the loop interchange leads to a reduction in performance of codes 2 mm and 3 mm,
as shown in Figure 6a,b, respectively. For these benchmarks, the loop interchange
could determine the best order of loops in the computationally intensive loop nests
for improving locality and cache reuse.



Electronics 2022, 11, 809 11 of 22Version February 28, 2022 submitted to Electronics 9 of 21

Alias
Analysis

Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and
Intra-

Procedural
Range

Analysis

Array
Reduction

Scalar
and Array
Reduction

Automatic
Inlining

0

0.5

1

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(a) EP

Alias
Analysis

Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and
Intra-

Procedural
Range

Analysis

Array
Reduction

Scalar
and Array
Reduction

Automatic
Inlining

0

5

10

15

20

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(b) CG

Alias
Analysis

Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and
Intra-

Procedural
Range

Analysis

Array
Reduction

Scalar
and Array
Reduction

Automatic
Inlining

0

0.5

1

1.5

2

2.5

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(c) SP

Alias
Analysis

Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and
Intra-

Procedural
Range

Analysis

Array
Reduction

Scalar
and Array
Reduction

0

0.2

0.4

0.6

0.8

1

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(d) DC

Figure 4. Performance results for EP, CG, SP and DC benchmarks from the NAS Parallel benchmark suite v3.3 for input class B. The
selected base case is the best tuned version (all on). One technique at a time is turned OFF and the impact on performance is plotted
(Lower bar means a higher impact of the technique).

Figure 4. (a) Performance results for EP, (b) Performance results for CG, (c) Performance results for
SP and (d) Performance results for DC benchmarks from the NAS Parallel benchmark suite v3.3
for input class B. The selected base case is the best tuned version (all on). One technique at a time
is turned off, and the impact on performance is plotted (Lower bar means a higher impact of the
technique).



Electronics 2022, 11, 809 12 of 22Version February 28, 2022 submitted to Electronics 10 of 21

Alias
Analysis

Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and
Intra-

Procedural
Range

Analysis

Array
Reduction

Scalar
and Array
Reduction

0

1

2

3

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(a) MG

Alias
Analysis

Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and
Intra-

Procedural
Range

Analysis

Array
Reduction

Scalar
and Array
Reduction

Automatic
Inlining

0

0.2

0.4

0.6

0.8

1

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(b) BT

Alias
Analysis

Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and
Intra-

Procedural
Range

Analysis

Array
Reduction

Scalar
and Array
Reduction

0

0.2

0.4

0.6

0.8

1

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(c) LU

Figure 5. Performance results for MG, BT and LU benchmarks from the NAS Parallel benchmark suite v3.3 for input class B. The
selected base case is the best tuned version (all on). One technique at a time is turned OFF and the impact on performance is plotted
(Lower bar means a higher impact of the technique).

5.1. Performance Impact of Individual Cetus Techniques338

We discuss the impact of individual optimization techniques on the overall applica-339

tion performance. We performed our experiments on a set of 7 benchmarks from the340

NAS Parallel Benchmark Suite (NPB) v3.3 [8] and all of the 30 benchmarks from the341

PolyBench Benchmark Suite v4.2 [34]. For each benchmark, we report the reduction342

in performance of the Cetus parallel code over the serial execution, after disabling a343

technique, as a measure of the technique’s impact.344

5.1.1. Experimental Setup345

The NAS Parallel Benchmarks were derived from Computational Fluid Dynamics346

(CFD) codes [21]. They were designed to compare the performance of parallel computers347

and are widely recognized as a standard indicator of computer performance. The348

benchmark suite consists of five kernels – IS, EP, MG, FT, CG; three pseudo applications –349

Figure 5. (a) Performance results MG, (b) Performance results for BT and (c) Performance results
for LU benchmarks from the NAS Parallel benchmark suite v3.3 for input class B. The selected base
case is the best tuned version (all on). One technique at a time is turned off, and the impact on
performance is plotted (Lower bar means a higher impact of the technique).



Electronics 2022, 11, 809 13 of 22
Version February 28, 2022 submitted to Electronics 11 of 21

Alias Analysis Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and Intra-
Procedural

Range
Analysis

Array Re-
duction

Scalar and Ar-
ray Reduction

Loop In-
terchange

Automatic
Inlining

0

20

40

60

80

100

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full optimization(a) 2mm

Alias Analysis Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and Intra-
Procedural

Range
Analysis

Array Re-
duction

Scalar and Ar-
ray Reduction

Loop In-
terchange

Automatic
Inlining

0

20

40

60

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(b) 3mm

Alias Analysis Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and Intra-
Procedural

Range
Analysis

Array Re-
duction

Scalar and Ar-
ray Reduction

Loop In-
terchange

Automatic
Inlining

0

10

20

30

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(c) Doitgen

Alias Analysis Array Pri-
vatization

Scalar and
Array Pri-
vatization

Inter-
Procedural

Range
Analysis

Inter and Intra-
Procedural

Range
Analysis

Array Re-
duction

Scalar and Ar-
ray Reduction

Loop In-
terchange

Automatic
Inlining

0

10

20

30

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

Technique Disabled
Full Optimization(d) Gramschmidt

Figure 6. Performance results for 2mm, 3mm, Doitgen and Gramschmidt benchmarks from the PolyBench benchmark suite v4.2. The
selected base case is the best tuned version (all on). One technique at a time is turned OFF and the impact on performance is plotted
(Lower bar means a higher impact of the technique).

BT, SP, LU and two benchmarks for unstructured computation – UA, DC. We used serial350

versions of the benchmarks written in C [33] for our experiments and measured the351

performance of the applications for input Class B, having a problem size that is neither352

Figure 6. (a) Performance results for 2mm, (b) Performance results for 3mm, (c) Performance results
for Doitgen and (d) Performance results for Gramschmidt benchmarks from the PolyBench benchmark
suite v4.2. The selected base case is the best tuned version (all on). One technique at a time is turned
off and the impact on performance is plotted (lower bar means a higher impact of the technique).

5.2. Evaluation of Subscripted Subscript Analysis
5.2.1. Experimental Setup

We applied the array analysis techniques presented in Section 3 to the numerical
supernodal sparse Cholesky factorization and the symmetric sparse matrix scaling codes
from the CHOLMOD package of the latest SuiteSparse benchmark suite v5.4.0 [20] by
hand. The loop shown in Figure 7 is one of two loops exhibiting subscripted subscript
patterns in the Cholesky factorization code. The code also spends time calling BLAS [27]
and LAPACK [28] routines. The loop shown in Figure 8 is integral to the computational
part of the sparse matrix scaling code. This application spends significant time performing
I/O operations. We report the performance of the actual computation.



Electronics 2022, 11, 809 14 of 22

Version March 1, 2022 submitted to Electronics 13 of 21

evaluate the performance of LU and MG, as automatic inlining led to excessive406

code growth.407

6. The locality enhancement technique, loop interchange, does not show any impact408

on the performance of the NAS benchmarks. Whereas, in the PolyBench suite,409

disabling loop interchange leads to a reduction in performance of the codes 2mm410

and 3mm, as shown in Figures 6(a) and 6(b) respectively. For these benchmarks,411

loop interchange could determine the best order of loops in the computationally412

intensive loop nests for improving locality and cache reuse.413

5.2. Evaluation of Subscripted Subscript Analysis414

5.2.1. Experimental Setup415

We have applied the array analysis techniques presented in Section 3 to the Numer-416

ical Supernodal Sparse Cholesky Factorization and the Symmetric Sparse Matrix Scaling417

codes from the CHOLMOD package of the latest SuiteSparse benchmark suite v5.4.0 [20]418

by hand. Loop shown in Figure 7 is one of two loops exhibiting subscripted subscript419

patterns in the Cholesky Factorization code. The code also spends time calling BLAS [15]420

and LAPACK [19] routines. Loop shown in Figure 8 is integral to the computational part421

of the Sparse Matrix Scaling code. This application spends significant time performing422

I/O operations. We report the performance of the actual computation.423

Input Matrix Serial execution
time of the
application

Serial execution time of
the subscripted subscript
loop parallelizable using

aggregation (time/%)

Serial execution time of
the BLAS and LAPACK

routines (time/%)

spal_004 20.26 s 10.1 s/49.85% 10.16 s/50.15%

12month1 28.64 s 11.22 s/39.17% 17.32 s/60.47%

TSOPF_RS_b2052_c1 96.72 s 22.2 s/22.95% 47.85 s/49.47%

TSOPF_RS_b678_c2 287.04 s 45.99 s/16.02% 159.97 s/55.73%

TSOPF_RS_b2383 372.91 s 98.83 s/26.5% 182.57 s/48.95%

Table 2: Serial execution time of the Supernodal Sparse Cholesky factorization applica-
tion, showing overall time and time of the parallelizable parts.

1 #pragma omp parallel for private (p, pf, i, k, q, fjk)
2 for(k=k1; k<k2; k++)
3 {
4 for(pf=Fp[k]; pf<Fp[k+1]; pf++)
5 {
6 fjk [0] = Fx[2*pf];
7 fjk [1] = Fx[2*pf+1];
8 for(p=Ap[Fi[pf]]; p<Ap[Fi[pf]+1]; p++)
9 {

10 i = Ai[p];
11 if(i>=k && Map[i]>=0)
12 {
13 q = (Map[i]+psx+(k-k1)*nsrow);
14 Lx[2*q] += Ax[2*p]*fjk[0]-Ax[2*p+1]* fjk [1];
15 Lx[2*q+1] += Ax[2*p+1]* fjk[0]-Ax[2*p]*fjk [1];
16 }
17 }
18 }
19 }

Figure 7. Loop to parallelize in the subroutine cholmod_super_numeric from the Supernodal
module in CHOLMOD from the SuiteSparse benchmark suite [20]. The outermost k–loop can be
parallelized if array Map has values in the range [0 : nsrow− 1].

Figure 7. Loop to parallelize in the subroutine cholmod_super_numeric from the supernodal module
in CHOLMOD from the SuiteSparse benchmark suite [20]. The outermost k-loop can be parallelized
if array Map has values in the range [0 : nsrow− 1].

We used 10 non-symmetric sparse matrices from the University of Florida Sparse
Matrix collection [29] as inputs for our experiments. The number of non-zero elements in
these matrices ranges between 7.3× 10−6% and 1.4%. Table 2 shows the breakdown of the
serial execution time of the Cholesky factorization application. Matrices which satisfy the
dimensional constraints described in the application code were chosen as inputs. As can be
observed in Table 2, 71.75–100% of the overall application execution time is spent in the
parallel subscripted subscript loop, and the BLAS and LAPACK routines. The remainder
of the execution time is spent in another loop exhibiting subscripted subscript patterns,
but is not yet parallelizable using our technique. We recorded the execution times on the
compute node mentioned in Section 5.1.1 and we used up to 128 GB of DDR4 memory. We
also used the same execution environment as mentioned in Section 5.1.1 to compile and
run the application codes. We report the mean of 10 application runs.

Table 2. Serial execution time of the supernodal sparse Cholesky factorization application, showing
overall time and time of the parallelizable parts.

Input Matrix
Serial Execution

Time of the
Application

Serial Execution
Time of the
Subscripted

Subscript Loop
Parallelizable Using

Aggregation
(time/%)

Serial Execution
Time of the BLAS

and LAPACK
Routines (time/%)

spal_004 20.26 s 10.1 s/49.85% 10.16 s/50.15%

12month1 28.64 s 11.22 s/39.17% 17.32 s/60.47%

TSOPF_RS_b2052_c1 96.72 s 22.2 s/22.95% 47.85 s/49.47%

TSOPF_RS_b678_c2 287.04 s 45.99 s/16.02% 159.97 s/55.73%

TSOPF_RS_b2383 372.91 s 98.83 s/26.5% 182.57 s/48.95%

Version March 1, 2022 submitted to Electronics 14 of 21

We used ten non-symmetric sparse matrices from the University of Florida Sparse424

Matrix collection [14] as inputs for our experiments. The number of non-zero elements425

in these matrices ranges between 7.3e-6% to 1.4%. Table 2 shows the breakdown of the426

serial execution time of the Cholesky factorization application. Matrices which satisfy427

the dimensional constraints described in the application code were chosen as inputs. As428

can be observed in table 2, 71.75 – 100% of the overall application execution time is spent429

in the parallel subscripted subscript loop and the BLAS and LAPACK routines. The430

remainder of the execution time is spent in another loop exhibiting subscripted subscript431

patterns, but is not yet parallelizable using our technique. We recorded the execution432

times on the compute node mentioned in Section 5.1.1 and we used up to 128GB of433

DDR4 memory. We also used the same execution environment as mentioned in Section434

5.1.1 to compile and run the application codes. We report the mean of 10 application435

runs.436

1 #pragma omp parallel for private(j, k)
2 for(j=0; j<ncol; j++)
3 {
4 for(k=Ap[j]; k<Ap[j+1]; k++)
5 {
6 Ax[k]=s[j]*Ax[k]*s[Ai[k]];
7 }
8 }

Figure 8. Example loop to parallelize. This loop performs symmetric scaling of a sparse matrix A
by a scaling factor s, where s is a diagonal vector. The outer loop can be parallelized if array Ap is
monotonically increasing.

5.2.2. Results437

spal_004 12month1 TSOPF_RS_b2052_c1 TSOPF_RS_b678_c2 TSOPF_RS_b2383
0

1

2

3

4

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

4 cores 8 cores 18 cores

(a) Performance improvement obtained for the Cholesky factorization application.

uk-2005 mycielskian19 webbase-2001sk-2005 it-2004
0

2

4

6

8

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

4 cores 8 cores 18 cores

(b) Improvement in performance of the computational part of the Sparse Matrix Scaling
code.

Figure 9. Improvement in performance of the parallel applications after applying Subscripted
Subscript Analysis.

Figure 9(a) shows the performance results for the Supernodal Cholesky factoriza-438

tion code and Figure 9(b) shows the results for the Sparse Matrix Scaling application439

code. Performance improvement is defined as the execution time without versus with440

the key loops of Figure 7 and Figure 8 parallel, the latter being enabled by our technique.441

The performance of the parallel codes on 4, 8 and 18 cores are shown in the aforemen-442

Figure 8. Example loop to parallelize. This loop performs symmetric scaling of a sparse matrix A
by a scaling factor s, where s is a diagonal vector. The outer loop can be parallelized if array Ap is
monotonically increasing.



Electronics 2022, 11, 809 15 of 22

5.2.2. Results

Figure 9a shows the performance results for the supernodal Cholesky factorization
code and Figure 9b shows the results for the sparse matrix scaling application code. Perfor-
mance improvement is defined as the execution time without versus with the key loops of
Figures 7 and 8 parallel, the latter being enabled by our technique. The performance of the
parallel codes on 4, 8 and 18 cores are shown in the aforementioned figures. Our technique
improves the performance of the supernodal Cholesky factorization code by as much as
383% and by about 739% for the computational part of the sparse matrix scaling code.

Version March 1, 2022 submitted to Electronics 14 of 21

We used ten non-symmetric sparse matrices from the University of Florida Sparse424

Matrix collection [14] as inputs for our experiments. The number of non-zero elements425

in these matrices ranges between 7.3e-6% to 1.4%. Table 2 shows the breakdown of the426

serial execution time of the Cholesky factorization application. Matrices which satisfy427

the dimensional constraints described in the application code were chosen as inputs. As428

can be observed in table 2, 71.75 – 100% of the overall application execution time is spent429

in the parallel subscripted subscript loop and the BLAS and LAPACK routines. The430

remainder of the execution time is spent in another loop exhibiting subscripted subscript431

patterns, but is not yet parallelizable using our technique. We recorded the execution432

times on the compute node mentioned in Section 5.1.1 and we used up to 128GB of433

DDR4 memory. We also used the same execution environment as mentioned in Section434

5.1.1 to compile and run the application codes. We report the mean of 10 application435

runs.436

1 #pragma omp parallel for private(j, k)
2 for(j=0; j<ncol; j++)
3 {
4 for(k=Ap[j]; k<Ap[j+1]; k++)
5 {
6 Ax[k]=s[j]*Ax[k]*s[Ai[k]];
7 }
8 }

Figure 8. Example loop to parallelize. This loop performs symmetric scaling of a sparse matrix A
by a scaling factor s, where s is a diagonal vector. The outer loop can be parallelized if array Ap is
monotonically increasing.

5.2.2. Results437

spal_004 12month1 TSOPF_RS_b2052_c1 TSOPF_RS_b678_c2 TSOPF_RS_b2383
0

1

2

3

4

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

4 cores 8 cores 18 cores

(a) Performance improvement obtained for the Cholesky factorization application.

uk-2005 mycielskian19 webbase-2001sk-2005 it-2004
0

2

4

6

8

pe
rf

or
m

an
ce

im
pr

ov
em

en
t

4 cores 8 cores 18 cores

(b) Improvement in performance of the computational part of the Sparse Matrix Scaling
code.

Figure 9. Improvement in performance of the parallel applications after applying Subscripted
Subscript Analysis.

Figure 9(a) shows the performance results for the Supernodal Cholesky factoriza-438

tion code and Figure 9(b) shows the results for the Sparse Matrix Scaling application439

code. Performance improvement is defined as the execution time without versus with440

the key loops of Figure 7 and Figure 8 parallel, the latter being enabled by our technique.441

The performance of the parallel codes on 4, 8 and 18 cores are shown in the aforemen-442

Figure 9. Improvement in the performance of the parallel (a) Cholesky factorization and (b) Sparse
Matrix Scaling applications after applying subscripted subscript analysis.

5.3. Evaluation of iCetus

In order to evaluate the preliminary results of the iCetus project and prioritize what
features should be added to the next version of the tool, we presented the tool to over
20 users. Our goal for the iCetus tool is to cater to all user classes, and hence we deliberately
chose users with different skill levels. By doing so, the features that make this tool useful
for beginners, as well as advanced users, were identified.

Users exhibited varying levels of familiarity with parallelization techniques (38.1%
were beginners, 47.6% intermediate, and 14.3% advanced), with OpenMP (66.7% were
unfamiliar, and 33.3% were knowledgeable), and with the Cetus compiler (61.9% were
unfamiliar, and 38.1% had used it before).

We presented the current iCetus features and also features that we consider implement-
ing in the next version of the tool. Users rated these features on a scale of 1 (unimportant)
to 5 (very important). Section 5.3.1 quantifies the importance of the current features of the
iCetus tool, while Section 5.3.2 evaluates the importance of proposed features for the next
version of the tool.

5.3.1. Importance and Usefulness of Existing iCetus Features

Figure 10, presents the survey results of the importance of the existing iCetus features.
The user scores for all questions are above 4, indicating the importance and usefulness of
all implemented features.



Electronics 2022, 11, 809 16 of 22

Version February 28, 2022 submitted to Electronics 15 of 21

tioned figures. Our technique improves the performance of the Supernodal Cholesky443

factorization code by as much as 383% and by about 739% for the computational part of444

the Sparse Matrix Scaling code.445

5.3. Evaluation of iCetus446

In order to evaluate the preliminary results of the iCetus project and prioritize what447

features should be added to the next version of the tool, we presented the tool to over448

twenty users. Our goal for the iCetus tool is to cater to all user classes, and hence we449

have deliberately chosen users with different skill levels. By doing so, the features that450

make this tool useful for beginners, as well as advanced users, were identified.451

Users exhibited varying levels of familiarity with parallelization techniques (38.1%452

were beginners, 47.6% intermediate, 14.3% advanced), with OpenMP (66.7% were unfa-453

miliar, 33.3% were knowledgeable), and with the Cetus compiler (61.9% were unfamiliar,454

38.1% had used it before).455

We presented the current iCetus features and also features that we consider im-456

plementing in the next version of the tool. Users rated these features on a scale of 1457

(unimportant) to 5 (very important). Subsection 5.3.1 quantifies the importance of the458

current features of the iCetus tool, while Subsection 5.3.2 evaluates the importance of459

proposed features for the next version of the tool.460

5.3.1. Importance and Usefulness of Existing iCetus Features461

Figure 10, presents the survey results of the importance of the existing iCetus462

features. The user scores for all questions are above 4, indicating the importance and463

usefulness of all implemented features.464

Web Ap-
plication

Example
Inputs

Interactive
parallelization

options

OpenMP An-
notated Code

Compiler
Analysis

Performance
and Efficiency

Analysis

0

2

4

4.57 4.76 4.71 4.57 4.48
4.95

A
ve

ra
ge

Sc
or

e

Figure 10. User feedback on existing iCetus features.

• Web Application: This question asked about the usefulness of iCetus being available465

as a web application. Having the tool implemented as a web application eliminates466

the need for download, install, and updates. All processing is done on the server-467

side; hence it also benefits clients with limited computational power. The high score468

of 4.57 indicates strong agreement with these advantages.469

• Example Inputs: iCetus offers many example input programs that the user can choose470

from, illustrating key concepts of parallel programming and transformations, as471

well as the tool functionalities. This feature was especially important to novice472

users. Users scored this feature 4.76 out of 5.473

• Interactive Parallelization Options: Users can choose parallelization options in a menu-474

driven way. This feature enables skilled users to take detailed control of the applied475

analyses and transformation techniques while providing reasonable defaults for476

beginners. This feature was deemed very important by all users, obtaining a score477

of 4.71 out of 5.478

• OpenMP Annotated Code: Building on the Cetus source-to-source restructurer, iCetus479

shows the results of its transformations in the form of OpenMP-annotated source480

code. Users scored this feature 4.57 out of 5. They also offered the following481

Figure 10. User feedback on existing iCetus features.

• Web application: This question asked about the usefulness of iCetus being available
as a web application. Having the tool implemented as a web application eliminates
the need for download, install, and updates. All processing is done on the server side;
hence, it also benefits clients with limited computational power. The high score of
4.57 indicates strong agreement with these advantages.

• Example inputs: iCetus offers many example input programs that the user can choose
from, illustrating key concepts of parallel programming and transformations, as well
as the tool functionalities. This feature was especially important to novice users. Users
scored this feature 4.76 out of 5.

• Interactive parallelization options: Users can choose parallelization options in a menu-
driven way. This feature enables skilled users to take detailed control of the applied
analyses and transformation techniques while providing reasonable defaults for be-
ginners. This feature was deemed very important by all users, obtaining a score of
4.71 out of 5.

• OpenMP annotated code: Building on the Cetus source-to-source restructurer, iCetus
shows the results of its transformations in the form of OpenMP-annotated source code.
Users scored this feature 4.57 out of 5. They also offered the following comments
to explain the relevance of this capability: OpenMP-annotated source code makes
it easy to understand the transformations applied to a code. OpenMP portability
provides for a good abstraction of possible underlying machines, eliminating the
need for understanding many architectural details. Similarly, reasonable performance
portability is appreciated. In addition, users valued the incremental parallelization
process supported by this feature.

• Compiler analysis: This key feature enables users to understand the applied compiler
passes and inspect specific categories of the program analysis results. In this way,
users can query the compiler’s reasoning, drilling down into the specifics of why
certain program optimizations can or cannot be applied, and determining possible
manual program changes to improve performance. Users scored this feature 4.48.

• Performance and efficiency analysis: With the highest score of 4.95, users judged the
availability of the run-time information, such as performance and efficiency, as most
important. This result is consistent with the fact that the lack of run-time information
can be viewed as the Achilles heel of static, batch-oriented automatic parallelization.

Among the aforementioned features, web applications and example inputs were rated
highly by beginner users, whereas advanced users found the OpenMP Annotated Code
feature to be of the utmost importance. Interactive parallelization options, compiler analysis
and performance and efficiency analysis were rated highly by all users.

5.3.2. Importance and Usefulness of Proposed iCetus Features

In preparation for the next version of the tool, we sought user feedback on the proposed
features. Figure 11 reports the obtained scores.



Electronics 2022, 11, 809 17 of 22

Version February 28, 2022 submitted to Electronics 16 of 21

comments to explain the relevance of this capability: OpenMP-annotated source482

code makes it easy to understand the transformations applied to a code. OpenMP483

portability provides for a good abstraction of possible underlying machines, elimi-484

nating the need for understanding many architectural details. Similarly, reasonable485

performance portability is appreciated. In addition, users valued the incremental486

parallelization process supported by this feature.487

• Compiler Analysis: This key feature enables users to understand the applied compiler488

passes and inspect specific categories of program analysis results. In this way, users489

can query the compiler’s reasoning, drilling down into the specifics of why certain490

program optimizations could or could not be applied, and determining possible491

manual program changes to improve performance. Users scored this feature 4.48.492

• Performance & Efficiency Analysis: With the highest score of 4.95, users judged493

the availability of run-time information, such as performance and efficiency, as494

most important. This result is consistent with the fact that the lack of run-time495

information can be viewed as the Achilles heel of static, batch-oriented automatic496

parallelization.497

Among the aforementioned features, Web applications and example inputs were rated498

highly by beginner users whereas, advanced users found the OpenMP Annotated Code499

feature to be of utmost importance. Interactive parallelization options, compiler analysis and500

performance and efficiency analysis were rated highly by all users.501

5.3.2. Importance and Usefulness of Proposed iCetus Features502

In preparation for the next version of the tool, we sought user feedback on the503

proposed features. Figure 11 reports the obtained scores.504

Auto Tuning Profiling Information Code Transfor-
mation Cycle

Approve Trans-
formations

Unsafe Transformations
0

2

4

4.52 4.81 4.52 4.38 4.14

A
ve

ra
ge

Sc
or

e
Figure 11. User feedback on proposed features for the next version of iCetus.

• Auto-Tuning: Having an auto-tuning capability that determines the best combination505

of compiler options obtained a score of 4.52. Some users wanted the tool to find506

the combination that leads to the best performance but wanted some control over507

the techniques being tuned. Having such control is essential, as auto-tuning can508

be a highly time-consuming process. Another reason given was that auto-tuning509

could help users learn and understand program parallelization, how it applies in510

different use cases, and what performance can be expected.511

• Profiling Information: Providing loop-by-loop profiling information for the serial512

and parallel codes and loop speedups and efficiencies are important aids in the513

optimization process, as evidenced by the score of 4.81. The feature helps users514

focus attention on relevant code sections and understand performance bottlenecks.515

• Code Transformation Cycle: Being able to modify the input code and submit it for516

another round of compilation is essential in an interactive optimization scenario.517

Applying such modifications in the presence of the available analyses information518

goes substantially beyond the features offered by a standard program editor. The519

user score for this feature was 4.52.520

Figure 11. User feedback on proposed features for the next version of iCetus.

• Auto-tuning: Having an auto-tuning capability that determines the best combination
of compiler options obtained a score of 4.52. Some users wanted the tool to find the
combination that leads to the best performance but wanted some control over the
techniques being tuned. Having such control is essential, as auto-tuning can be a
highly time-consuming process. Another reason given was that auto-tuning could
help users to learn and understand program parallelization, how it applies in different
use cases, and what performance can be expected.

• Profiling information: Providing loop-by-loop profiling information for the serial and
parallel codes and loop speedups and efficiencies are important aids in the optimiza-
tion process, as evidenced by the score of 4.81. The feature helps users focus attention
on relevant code sections and understand performance bottlenecks.

• Code transformation cycle: Being able to modify the input code and submit it for
another round of compilation is essential in an interactive optimization scenario.
Applying such modifications in the presence of the available analyses information
goes substantially beyond the features offered by a standard program editor. The user
score for this feature was 4.52.

• Approve transformations: Giving the user the ability to approve or reject transformations
suggested by the parallelizer provides fine control over the code optimization process,
especially for judging the profitability of a transformation. The score for this feature
was 4.38.

• Unsafe transformations: A score of 4.14 indicates that users value the ability to choose
from potentially applicable transformations, even if they are unsafe. Some users
requested that this option be made available only to advanced programmers, as
program correctness is no longer guaranteed.

For beginners, auto-tuning was very important. Advanced users scored highly such
features as code transformation cycle, approving transformations and reporting unsafe transfor-
mations. Meanwhile, all users rated profiling information highly.

Since all proposed features scored above 4, they will all be implemented in the next
version of the tool. Nevertheless, the scores are slightly lower than those of the implemented
capabilities. We attribute this in part to the fact that it is easier to understand and judge the
benefit of a tool’s functionality when one can experiment with it. We expect the scores to
increase further once the proposed features are implemented.

As part of the user interviews, one of the questions asked which additional features
would be helpful to users during the optimization process. Overall, a majority of beginner
developers expressed a desire for an automated optimization process that would help
them improve their code performance to the greatest possible extent, along with providing
helpful information about the code transformations applied during this process. In con-
trast, advanced developers requested features that would enable them to customize the
optimization process and allow fine-grained control over the transformations applied to
the code.

6. Related Work
6.1. Evaluation of Optimization Techniques in Cetus

Several contributions have compared the performance of automatic parallelizers (in-
cluding Cetus) on a set of benchmark applications from the NAS and PolyBench benchmark
suites. Harel et al. [30] analyzed the performances and inspected the capabilities of three



Electronics 2022, 11, 809 18 of 22

automatic parallelizers—AutoPar [31], Par4all [32] and Cetus [1]—on the NAS Parallel
benchmarks. Cetus outperformed the other parallelizers in five out of the seven pro-
grams evaluated, with minimal user intervention. Similar experiments were performed
by Mosseri et al. [33] on a set of five benchmarks from the PolyBench benchmark [6] suite.
The Cetus parallel code for each of the benchmarks could achieve substantial speedup over
the serial versions, improving the performance by as much as 754%, on average. Our work
builds on the work by Bae et al. [2], who evaluated the performance of Cetus on an earlier
version of the NAS Parallel benchmarks v2.4. The Cetus parallel code could improve upon
the performance of the serial code, in all but three benchmarks—FT, IS and MG. However,
in our experiments, the performance of the Cetus parallel code for benchmarks, such as BT
and LU, is comparable to that of the serial code, whereas in MG, the Cetus parallel code
achieves substantial speedup over the serial version. We attribute this discrepancy to the
structural and algorithmic changes to the source codes in the newer versions of the NAS
benchmarks, allowing Cetus to extract more parallelism in certain code sections, while
degrading the performance in others.

Blume et al. [34] studied the effect of disabling automatic parallelization and program
restructuring techniques on the performance of Perfect benchmarks. The transformations
examined included recurrence replacement, induction variable substitution, scalar ex-
pansion, forward substitution, reduction recognition, loop interchange and strip-mining.
Scalar expansion proved to be the most effective technique, improving the performance
of 4 out of the 12 benchmarks tested, followed by reduction recognition. Bae et al. [2] also
measured the contributions of individual optimization techniques to the overall perfor-
mance of the NAS Parallel benchmarks. They found that scalar and array privatization,
reduction parallelization, symbolic analysis and inlining had the most impact, whereas
locality enhancement techniques, such as loop interchange, did not show significant effects.
In our experiments, we found that these techniques are still some of the most important
optimization techniques in improving the performance of present-day applications.

6.2. Subscripted Subscript Analysis

McKinley [35] described the importance of monotonicity for analyzing subscript
arrays. Run-time analysis techniques for detecting monotonicity were presented by
Gutierrez et al. [36], primarily in applications containing irregular reductions. Spezialetti
and Gupta [37] presented compile-time techniques for detecting monotonic statements
in loops. Their techniques can only detect monotonicity for scalar variables and are in-
adequate for detecting monotonic subscript arrays. Lin and Padua [38–40] presented a
compile-time technique to analyze the content of index arrays and automatically parallelize
loops. Their techniques made use of interprocedural query propagation to detect various
array properties in a demand-driven manner. Their technique can detect certain properties
in specific types of loops. For example, their technique can determine an injective subscript
array only in loops, wherein the value of the loop index variable is assigned to the subscript
array (index gathering loops). In addition, properties, such as the closed-form distance,
are detected using pattern matching. Their technique is incapable of detecting index array
properties in loops with recurrence relationships presented in Section 3. By contrast, our
technique is capable of analyzing various classes of loop patterns that define and modify
subscript arrays, using symbolic range aggregation and manipulation. In doing so, the
technique derives subscript array properties that are sufficient for eventual parallelization.

A technique that can produce precise information for the forms of loops that compile-
time techniques usually attempt to parallelize is the aggregation of information gathered
in the loop body across the iteration space. This method was applied by Tu and Padua
in array privatization [15] to analyze array sections that are defined and used. We use a
similar method, extended to capture the effect of certain recurrence relationships, which
allow us to gather such array properties, as monotonicity.



Electronics 2022, 11, 809 19 of 22

6.3. Interactive Cetus (iCetus)

There are a variety of tools developed over time for parallelizing sequential codes
with differing degrees of user involvement.

ParTool [41] is a feedback-directed parallelizer, built over the ROSE compiler infrastruc-
ture [17].The tool automatically parallelizes the serial code by inserting OpenMP Pragmas
into the code. It performs data-dependence analysis provided by ROSE to ascertain whether
a loop nest is safe to parallelize. If not, the dependencies that prevent parallelization are
provided as feedback to the user. Command-line flags are the means by which ParTool
offers its functionalities. In contrast, iCetus has a web-based design, facilitating easy user
interaction.

The ParaScope Editor (PED) [42] is an interactive parallel programming tool devel-
oped at Rice University that supports scientific Fortran programmers. PED displays
data-dependence information and offers a variety of source-to-source transformations for
the user to choose from. Data-dependence information was perceived as being too low
level by users, and they require assistance with program transformations. Furthermore,
PED does not integrate dynamic performance data.

HTGviz [43] is an interactive parallelization environment implemented on top of the
Parafrase-2 parallelizing compiler [44]. It provides various views to the user, such as the task
graph view, the serial code view, the directive view to insert OpenMP tags, and the parallel
code view. Interaction between the compiler and user happens via the hierarchical task
graph (HTG) program representation, where task parallelism is represented by precedence
relations (arcs) among task nodes. There is no support for measuring the parallelization
benefits or displaying potential parallelism. In contrast, iCetus shows the performance gain
for the code after optimization.

Parceive [45] is an interactive tool that operates on user applications in binary form.
It supports the parallelization of applications written in C, C++, and C# by dynamic
instrumentation of binaries and providing a visualization environment to detect parallelism
at several levels and not just the loops and instructions. The visualization environment
offers three different views: performance view, calling context tree (CCT) view, and source
view. While the performance view is an interactive representation of a programs profiling
and trace data, the CCT view displays a calling context tree consisting of call nodes, loop
nodes, and memory nodes. The source view shows the source code of the instrumented
application. In contrast, the focus of iCetus is on understanding the transformed, OpenMP-
annotated code.

iCetus distinguishes itself from these previous efforts in three main ways: (i) Building
on one of the most advanced parallelizers, the Cetus compiler, the tool allows the user
to inspect in detail the results of different compiler analyses, such as data-dependence
analysis, variable range analysis, and private variable analysis, in an easy to understand
format. (ii) The tool provides the user with dynamic analysis information of the program,
such as the speedup gained from a transformation, enabling the user to judge when further
optimizations may be beneficial or have a diminishing return. (iii) The tool supports
the user in all phases of the program optimization process by providing feedback while
enabling the user to edit the input code and re-run the optimizer.

7. Conclusions

We presented an overview of the Cetus source-to-source compiler infrastructure. We
evaluated the various analysis and transformation techniques in Cetus using the latest
version of the NAS and PolyBench benchmark suites. We also described and evaluated the
recent key advances of Cetus: subscripted subscript analysis and interactive parallelization.

Cetus could achieve significant performance improvement in 50% of the applica-
tions from the NAS Parallel benchmark suite and about 75% of the applications from
the PolyBench suite. Previous studies also found success in 50% of science/engineering
applications. Through the evaluation of individual optimization techniques, we found that
techniques that were important in previous generations of compilers are also among the key



Electronics 2022, 11, 809 20 of 22

optimizations today. Even though both benchmark codes and architectures have evolved
significantly, existing autoparallelization techniques are still successful in optimizing the
application codes.

We also presented a novel compile-time analysis method for subscripted subscripts,
which can symbolically analyze the content of subscript arrays to successfully parallelize an
important class of programs exhibiting sparse matrix patterns. We applied this technique by
hand to the Supernodal Cholesky factorization and sparse matrix scaling application codes.
Our technique yielded a performance improvement of 383% for the Supernodal Cholesky
factorization application code and 739% for the sparse matrix scaling code, compared to
the best alternative.

State-of-the-art parallelizing compilers are batch-oriented tools, limited to static pro-
gram analyses and transformations. iCetus is a new web application that involves the user
in the code transformation process by providing feedback and enabling the user to edit the
input serial code and the parallel code. It provides static and dynamic analysis information
to guide this process. Users of varying skill sets found the implemented as well as the
proposed features in iCetus to be both interesting and useful. The next release of the tool
will incorporate more features in support of interactivity as well as such capabilities as a
loop-level profiler and an auto-tuner.

Author Contributions: Conceptualization, A.B. and R.E.; methodology, R.E.; validation, A.B., M.R.R.
and P.B.; formal analysis, A.B. and P.B.; investigation, M.R.R.; data curation, M.R.R. and P.B; writing—
original draft preparation, A.B., P.B. and R.E.; writing—review and editing, A.B. and P.B.; supervision,
R.E.; project administration, R.E.; funding acquisition, R.E. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the University of Delaware and by the National Science
Foundation under awards 2112606, 2125703, 1931339, 1919839 and 1833846.

Data Availability Statement: Source codes to reproduce all the results described in this paper can be
found at: (https://github.com/akshay9594/Polybench-4.2, Polybench-4.2) (accessed on 1 December
2021); (https://www.nas.nasa.gov/software/npb.html, NPB-3.3) (accessed on 1 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dave, C.; Bae, H.; Min, S.-J.; Lee, S.; Eigenmann, R.; Midkiff, S. Cetus: A source-to-source compiler infrastructure for multicores.

IEEE Comput. 2009, 42, 36–42. [CrossRef]
2. Bae, H.; Mustafa, D.; Lee, J.; Lin, H.; Dave, C.; Eigenmann, R.; Midkiff, S. The cetus source-to-source compiler infrastructure:

Overview and evaluation. Int. J. Parallel Program. 2013, 41, 753–767. [CrossRef]
3. Mustafa, D.; Eigenmann, R. Performance analysis and tuning of automatically parallelized OpenMP applications. In Proceedings

of the International Workshop on OpenMP, Chicago, IL, USA, 13–15 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp.
151–164

4. Bhosale, A.; Eigenmann, R. On the automatic parallelization of subscripted subscript patterns using array property analysis. In
Proceedings of the ACM International Conference on Supercomputing, New York, NY, USA, 14–17 June 2021; pp. 392–403.

5. Bailey, D.; Barszcz, E.; Barton, J.; Browning, D.; Carter, R.; Dagum, L.; Fatoohi, R.; Frederickson, P.; Lasinski, T.; Schreiber, R.; et al.
The NAS Parallel Benchmarks. Int. J. Supercomput. Appl. 1991, 5, 63–73. [CrossRef]

6. Yuki, T.; Pouchet, L.N. PolyBenchC-4.2.1. Available online: https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1/blob/
master/polybench.pdf (accessed on 5 January 2021).

7. Lee, S.; Min, S.; Eigenmann, R. OpenMP to GPGPU: A compiler framework for automatic translation and optimization. ACM
Sigplan Not. 2009, 44, 101–110. [CrossRef]

8. Basumallik, A.; Eigenmann, R. Towards automatic translation of OpenMP to MPI. In Proceedings of the 19th annual international
conference on Supercomputing, Cambridge, MA, USA, 20–22 June 2005; pp. 189–198.

9. Johnson, T.; Lee, S.; Fei, L.; Basumallik, A.; Upadhyaya, G.; Eigenmann, R.; Midkiff, S.P. Experiences in Using Cetus for Source-to-
Source Transformations; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–14.

10. William, B.; Rudolf, E. The Range Test: A Dependence Test for Symbolic, Non-linear Expressions. In Proceedings of the
ACM/IEEE Conference on Supercomputing, Washington, DC, USA, 14–18 November 1994; pp. 528–537.

11. Wolfe, M.; Banerjee, U. Data dependence and its application to parallel processing. Int. J. Parallel Program. 1987, 16, 137–178.
[CrossRef]

https://github.com/akshay9594/Polybench-4.2
https://www.nas.nasa.gov/software/npb.html
http://doi.org/10.1109/MC.2009.385
http://dx.doi.org/10.1007/s10766-012-0211-z
http://dx.doi.org/10.1177/109434209100500306
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1/blob/master/polybench.pdf
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1/blob/master/polybench.pdf
http://dx.doi.org/10.1145/1594835.1504194
http://dx.doi.org/10.1007/BF01379099


Electronics 2022, 11, 809 21 of 22

12. Emami, M.; Ghiya, R.; Hendren, L.J. Context-sensitive interprocedural points-to analysis in the presence of function pointers.
Acm Sigplan Not. 1994, 29, 242–256. [CrossRef]

13. William, B.; Rudolf, E. Symbolic Range Propagation. In Proceedings of the 9th International Symposium on Parallel Processing,
Santa Barabara, CA, USA, 25–28 April 1995; pp. 357–363.

14. Dagum, L.; Menon, R. OpenMP: An industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 1998, 5,
46–55. [CrossRef]

15. Peng, T.; David, P. Automatic Array Privatization. In Proceedings of the Lecture Notes in Computer Science: Languages and
Compilers for Parallel Computing: 6th International Workshop, Portland, OR, USA, 12–14 August 1993; Volume 768, pp. 500–521.

16. Kennedy, K.; McKinley, K.S. Optimizing for parallelism and data locality. In Proceedings of the 6th international conference on
Supercomputing, Washington, DC, USA, 19–24 July 1992; pp. 323–334.

17. Quinlan, D.; Liao, C.L. Quinlan, D.; Liao, C. The ROSE source-to-source compiler infrastructure. In Proceedings of the Cetus
Users and Compiler Infrastructure Workshop, in Conjunction with PACT, Galveston Island, TX, USA, 10 October 2011; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 1.

18. Automatic Parallelization with Intel Compilers. Available online: https://software.intel.com/en-us/articles/automatic-
parallelization-with-intel-compilers (accessed on 21 October 2019).

19. Utpal, B.; Rudolf, E.; Alexandru, N.; David, P. Automatic Program Parallelization. Proc. IEEE 1993, 81, 211–243.
20. Davis, T.A. Direct Methods for Sparse Linear Systems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006.
21. Henning, J.L. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Archit. News 2006, 34, 1–17. [CrossRef]
22. Heroux, M.A.; Doerfler, D.W.; Crozier, P.S.; Willenbring, J.M.; Edwards, H.C.; Williams, A.; Rajan, M.; Keiter, E.R.; Thornquist,

H.K.; Numrich, R.W. Improving Performance via Mini-Applications; Technical Report; Sandia National Laboratories: Albuquerque,
NM, USA; Livermore, CA, USA, 2009.

23. Bhosale, A.; Eigenmann, R. Compile-time parallelization of subscripted subscript patterns. In Proceedings of the 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), New Orleans, LA, USA, 28 July 2020; pp.
317–325.

24. Jin, H.; Frumkin, M.; Yan, J. The OpenMP Implementation of NAS Parallel Benchmarks and Its Performance; NASA Ames Research
Center: Silicon Valley, CA, USA, 1999.

25. NAS Parallel Benchmarks C Version. Available online: http://aces.snu.ac.kr/software/snu-npb/ (accessed on 3 January 2019).
26. Modified Version of PolyBench-4.2. Available online: https://github.com/akshay9594/Polybench-4.2 (accessed on 23 December 2021).
27. Blackford, L.S.; Petitet, A.; Pozo, R.; Remington, K.; Whaley, R.C.; Demmel, J.; Dongarra, J.; Duff, I.; Hammarling, S.; Henry,

G.; et al. An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 2009, 42, 135–151.
28. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, L.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney,

A.; et al. TLAPACK Users’ Guide; SIAM: Philadelphia, PA, USA, 1999.
29. Davis, T.; Hu, Y. The University of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 2011, 38, 1–25. [CrossRef]
30. Harel, R.; Mosseri, I.; Levin, H.; Alon, L.; Rusanovsky, M.; Oren, G. Source-to-source parallelization compilers for scientific

shared-memory multi-core and accelerated multiprocessing: Analysis, pitfalls, enhancement and potential. Int. J. Parallel Program.
2020, 48, 1–31. [CrossRef]

31. AutoPar. Available online: https://github.com/rose-compiler/rose/wiki/ROSE-based-tools#autopar (accessed on 29 August
2021).

32. Amini, M.; Creusillet, B.; Even, S.; Keryell, R.; Goubier, O.; Guelton, S.; McMahon, J.O.; Pasquier, F.; Péan, G.; Villalon, P.; et
al. Par4all: From Convex Array Regions to Heterogeneous Computing. In Proceedings of the 2nd International Workshop on
Polyhedral Compilation Techniques, Paris, France, 23–25 January 2012.

33. Mosseri, I.; Alon, L.; Harel, R.; Oren, G. ComPar: Optimized Multi-Compiler for Automatic OpenMP S2S Parallelization. International
Workshop on OpenMP; Springer: Berlin/Heidelberg, Germany, 2020; pp. 247–262.

34. Blume, W.; Eigenmann, R. Performance analysis of parallelizing compilers on the Perfect BenchmarksTM Programs. IEEE Trans.
Parallel Distrib. Syst. 1992, 3, 643–656. [CrossRef]

35. McKinley, K. Dependence Analysis of Arrays Subscripted by Index Arrays; Technical Report CRPC-TR91187; Rice Univ.: Houston, TX,
USA, July 1991.

36. Gutiérrez, E.; Asenjo, R.; Plata, O.; Zapata, E.L.L. Automatic parallelization of irregular applications. In Parallel Computing;
Elsevier: Amsterdam, The Netherlands, 2000; Volume 26, pp. 1709–1738.

37. Spezialetti, M.; Gupta, R. Loop monotonic statements.IEEE Trans. Softw. Eng. 1995, 21, 497–505. [CrossRef]
38. Lin, Y.; Padua, D. Compiler Analysis of Irregular Memory Accesses. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation; ACM: New York, NY, USA, 1 May 2000; pp. 157–168.
39. Lin, Y.; Padua, D. Demand-Driven Interprocedural Array Property Analysis. In Proceedings of the International Conference on

Compiler Construction, London, UK, 5–13 April 2014; Springer: Berlin/Heidelberg, Germany, 2000; pp. 202–218.
40. Lin, Y.; Padua, D. Analysis of Irregular Single-Indexed Array Accesses and Its Applications in Compiler Optimizations. International

Workshop on Languages and Compilers for Parallel Computing; Springer: Berlin/Heidelberg, Germany, 1999; pp. 303–317.
41. Varun, M.; Sanjeev, K.; Aggarwal, O.T.; Pen-Chung, Y.; Binyu, Z. ParTool: A Feedback-Directed Parallelizer. In Advanced Parallel

Processing Technologies; Springer: Berlin/Heidelberg, Germany, 2011; pp. 157–171.

http://dx.doi.org/10.1145/773473.178264
http://dx.doi.org/10.1109/99.660313
https://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers
https://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers
http://dx.doi.org/10.1145/1186736.1186737
http://aces.snu.ac.kr/software/snu-npb/
https://github.com/akshay9594/Polybench-4.2
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1007/s10766-019-00640-3
https://github.com/rose-compiler/rose/wiki/ROSE-based-tools#autopar
http://dx.doi.org/10.1109/71.180621
http://dx.doi.org/10.1109/32.391376


Electronics 2022, 11, 809 22 of 22

42. Balasundaram, V.; Kennedy, K.; Kremer, U.; McKinley, K.; Subhlok, J. The Parascope editor: An interactive parallel programming
tool. In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing, Ser. Supercomputing 89, Reno, NV, USA, 12–17
November 1989; ACM: New York, NY, USA, 1989; pp. 540–550.

43. Giordano, M.; Furnari, M.M. HTGviz: A graphic tool for the synthesis of automatic and user-driven program parallelization in
the compilation process. In Proceedings of the Second International Symposium on High Performance Computing, Ser. ISHPC
’99, Kyoto, Japan, 26–28 May 1999; Springer: London, UK, 1999; pp. 312–319.

44. Polychronopoulos, C.; Girkar, M.; Haghighat, M.; Lee, C.; Leung, B.; Schouten, D. PARAFRASE-2: An environment for
parallelizing, partitioning, synchronizing, and scheduling programs on multiprocessors. Int. J. High Speed Comput. 1989, 1, 45–72.
[CrossRef]

45. Wilhelm, A.; Savu, V.; Amadasun, E.; Gerndt, M.; Schuele, T. A Visualization Framework for Parallelization. In Proceedings of the
2016 IEEE Working Conference on Software Visualization (VISSOFT), Raleigh, NC, USA, 3–4 October 2016; pp. 81–85.

http://dx.doi.org/10.1142/S0129053389000044

	Introduction
	Overview of the Analysis and Transformation Passes in Cetus
	Program Analysis
	Parallelism-Enabling and Architecture-Mapping Transformations

	Subscripted Subscript Analysis
	Motivation
	Analyzing Subscript Array Properties
	Compile-Time Algorithm for Subscript Array Analysis

	Interactive Cetus (iCetus)
	Automatic Parallelization Challenges and Opportunities for Interactive Tools
	Correctness and Conservative Assumptions
	Overheads and Profitability

	iCetus Features
	iCetus Implementation Overview

	Evaluation
	Performance Impact of Individual Cetus Techniques
	Experimental Setup
	Results

	Evaluation of Subscripted Subscript Analysis
	Experimental Setup
	Results

	Evaluation of iCetus
	Importance and Usefulness of Existing iCetus Features
	Importance and Usefulness of Proposed iCetus Features


	Related Work
	Evaluation of Optimization Techniques in Cetus
	Subscripted Subscript Analysis
	Interactive Cetus (iCetus)

	Conclusions
	References

