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Abstract: Deep Neural Networks (DNN) have contributed a significant performance improvement
in face detection. However, since most models focus only on the improvement of detection accuracy
with computationally expensive structures, it is still far from real-time applications with a fast face
detector. The goal of this paper is to improve face detection performance from the speed-focusing
point of view. To this end, we propose a novel Fast and Accurate Face Detector (FAFD) to achieve
high performance on both speed and accuracy performance. Specifically, based on the YOLOv5
model, we add one prediction head to increase the detection performance, especially for small faces.
In addition, to increase the detection performance of multi-scale faces, we propose to add a novel
Multi-Scale Image Fusion (MSIF) layer to the backbone network. We also propose an improved
Copy-Paste to augment the training images with face objects in various scales. Experimental results
on the WiderFace dataset show that the proposed FAFD achieves the best performance among
the existing methods in a Speed-Focusing group. On three sub-datasets of WiderFace (i.e., Easy,
Medium, and Hard sub-datasets), our FAFD yields average precisions (AP) of 95.0%, 93.5%, and
87.0%, respectively. Also, the speed performance of the FAFD is fast enough to be included in the
group of speed-focusing methods.

Keywords: face detection; convolution neural network; YOLOv5; image augmentation

1. Introduction

Face detection is an important first step in face image analysis problems such as face
alignment [1,2], face recognition [3,4], and face attribute analysis [5,6]. Applying face
detection to real-world images is a challenging task due to the diverse characteristics of face
images in scale variations, occlusions, illuminations, poses, and expressions [7]. Based on the
recent development of Convolutional Neural Networks (CNN), various approaches [8–17]
have been proposed to improve the face detection performance. In [8–10], they reported
performance improvement in a multi-task manner by combining the facial landmark
localization with the existing object detector. Another group of methods mainly focused
on improving the architecture of CNN-based networks [11–16]. For example, a method
to automatically find an effective network structure based on NAS (Neural Architecture
Search) was proposed in [11]. In RefineFace [12], they adopted its own modules such as
Selective Two-step Regression (STR), Selective Two-step Classification (STC), Scale-aware
Margin Loss (SML), Feature Supervision Module (FSM), and Receptive Field Enhancement
(RFE). The context module to a specific pyramid was used to increase the receptive field
in Euclidean grids [13,14]. An additional layer such as a large size filter [15] for each
prediction head was added to combine context information. An anchor-associated layer [16]
to the C3 stage based on the Single Shot MultiBox Detector (SSD) [18] was also used for
an anchor matching strategy to increase recall performance for small faces. Besides, loss
functions [11,12,17] and data augmentation [13,14] suitable for face detection have been used.

However, the studies mentioned above have focused mainly on improving the de-
tection performance rather than the speed performance. Therefore, they relied heavily on
applying computationally expensive methods with large-scale images. However, since
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there are increasing demands on face detection applications in mobile environments with
low computational resources equipped with CPU and edge-computing devices [19], it
is important to maintain a trade-off between accuracy and speed. To this end, based on
the YOLOv5 object detector [20], we propose a novel Fast and Accurate Face Detector
(FAFD). Our FAFD achieves a high performance both on speed and accuracy for VGA
(Video Graphics Array, 640 × 480) resolution images.

The main contributions of this paper are summarized as follows:

1. We propose an additional module for the YOLOv5 to improve the detection perfor-
mance for small faces. The prediction head is designed to receive a low level (thus, a
high-resolution) feature map.

2. To boost the multi-scale face detection performance, a Multi-Scale Image Fusion
(MSIF) layer is proposed to effectively learn multi-scale faces.

3. To diversify face objects with various scales in training the DNN, a Copy-Paste
technique for the face object is proposed.

4. Within the category of the speed-focusing face detectors, the proposed method has
achieved state-of-the-art (SOTA) performance. Specifically, the proposed FAFD-Small
achieved 95.0%, 93.5%, and 87.0% APs in Easy, Medium, and Hard sub-datasets of
WiderFace [7] dataset, respectively. Also, our FAFD-Nano model achieved 93.0%,
91.1%, and 84.1% APs in Easy, Medium, and Hard sub-datasets, respectively. These
results are the best ones among the speed-focusing methods.

2. Related Work

According to the guideline proposed by [21], we divide the existing face detection
techniques into two groups: Accuracy-Focusing Face Detection and Speed-Focusing Face
Detection. The criterion of this categorization is mainly based on the floating-point opera-
tions (FLOPs) of the model. That is, the Accuracy-Focusing methods have a computational
magnitude of about TFLOPs, whereas the Speed-Focusing ones have a computational
magnitude of about GFLOPs or 10 GFLOPs.

2.1. Accuracy-Focusing Face Detection

Most existing methods [9,10,17,22–24] belong to the Accuracy-Focusing group, which
tries to increase accuracy in average precisions (AP) with high-performance graphic cards.
For example, RetinaFace [9] exploits manually annotated five face landmarks information
based on RetinaNet [25]. Also, for better localization, Cascade regression [26] is applied
with multi-task loss in RetinaFace. YOLO5-Face [10] and Mask-Face [22], which are based
on YOLOv5 [20] and MaskR-CNN [27], respectively, also adopted five landmark informa-
tion as RetinaFace [9]. Based on S3FD [16], DSFD [17] proposed three key contributions
such as Feature Enhance Module (FEM), Progressive Anchor Loss (PAL), and Improved An-
chor Matching (IAM). For these modules, the detection performance of DSFD is improved
by enhancing the feature maps and providing proper initialization for the regression. To
obtain an efficient and accurate face detector, SRN [23] applied focal loss [25] to multi-step
detection [28]. Unlike the previous methods, CSP [24] applies an anchor-free detection
head and obtains the advantages of both global and local feature maps using multi-scale
features extracted from modified ResNet-50 [29].

2.2. Speed-Focusing Face Detection

Although the accuracy-focusing face detectors mentioned in the previous section
can achieve a high detection performance, in practice, they are infeasible for most mobile
applications due to computationally expensive models and large-scale images. To solve
this problem, some modifications [30–34] have been made to achieve high speed while
maintaining detection performance as much as possible. Based on SSD [18], Faceboxes [30]
designed an efficient face detection backbone by applying the multiple scale convolutional
layers (MSCL) and the rapidly digested convolutional layers (RDCL). Also, YuFaceDetect-
Net [31] and ULFG [32] improved the detection performance by adding more convolutional
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layers to each stride. Inspired by FaceBoxes [30], FaceBoxesImproved (FBI) [33] adopted
a knowledge distillation method to boost the performance of a lightweight face detector.
LFFD [34] considered RF (Receptive Fields) as another way of defining anchors as natural
anchors that can cover continuous facial scales.

Note that the upper mentioned methods in the Speed-Focusing group do not consider
the multi-scale faces. In this paper, to improve the detection performance as a Speed-
Focusing method, we propose a scheme of Multi-Scale Image Fusion (MSIF) to treat
multi-scale faces. Our MSIF is based on the standard Path Aggregation Network (PA-
Net) [35], where multi-scale images are merged into a single feature map to provide richer
information on multi-scale faces at a marginal extra cost.

3. Proposed Methods
3.1. Overall Structure of the Proposed Framework

Our FAFD is based on the YOLOv5 network structure. The overall structure of the
FAFD is shown in Figure 1. The backbone of FAFD uses the CSPDarknet53 structure with
SPPF (Spatial Pyramid Pooling Fast) module [20] and the Neck adopts the PA-Net [35].
Since the original YOLOv5 has low detection performance for small faces, one prediction
head is added to the FAFD to improve the performance on small faces. In addition, the first
convolution layer of the backbone was replaced with a Multi-Scale Image Fusion (MSIF)
layer to improve multi-scale face detection.
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the input image, respectively.

3.2. Additional Prediction Head for Small Faces

Since the high-resolution feature map at the bottom of the feature pyramid contains
weak semantic information but strong spatial local features, it is useful to improve the
detection performance for small faces [36]. In the original YOLOv5 structure, feature maps
of P3, P4, and P5 layers in Figure 1 corresponding to {1/8, 1/16, 1/32} of the input image
size are used for the prediction. In this paper, as shown in Figure 1, the feature map of
the P2 layer corresponding to {1/4} of the input image size is added. To utilize the feature
map of the P2 layer, one prediction head is also used, and the neck structure is changed
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according to the additional head. This additional prediction head allows the model to make
a more robust prediction on the small faces.

3.3. Multi-Scale Image Fusion

We propose to include a Multi-Scale Image Fusion (MSIF) layer to the basic YOLOv5.
The goal of the MSIF is to provide multi-scale faces at the input level of the network. That is,
as shown in Figure 1, the MSIF extracts the pixel level features for three different scales of
the input image. The feature maps of the three scales are fused into one feature map through
bottom-up and top-down structures. Then, the combined feature map is transferred to the
next layer of the YOLOv5. The pipeline of the proposed method is as follows:

1. Resize a W × H input image to form an image pyramid with the size of {(W/2)×
(H/2), W × H, (2 × W)× (2 × H)}.

2. Feature maps are extracted by applying the CBS (Convolution + Batch Normalization
+ SiLU) layer as shown in Figure 2a to the three resized images in (i). In the figure,
k, s, and p represent kernel size, stride, and padding, respectively. The size of the
extracted feature map becomes half of each image pyramid.
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3. For the extracted hierarchical feature map in (ii), the down-sampling layer of Figure 2b
is applied to reduce the size. We need two down-sampling processes to reach the
lowest-resolution map (see Figure 1).

4. The feature map of (iii) is up-sampled by a bi-linear interpolation. Then, before
passing it to the next layer, a pixel-wise addition is performed with a medium-level
feature map in (iii).

3.4. Copy-Paste Augmentation for Face

For training our FAFD, a large number of images are required to overcome overfitting
and generalization problems [37]. We need annotated training images with the location
and the size information of the bounding boxes with the faces. Therefore, it is important
to provide annotated face images with different locations in the entire image space and
different face scales as much as possible. To this end, the Copy-Paste method [38–40] can be
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adopted to diversify the face locations in the image space and the face scales. For example,
the copied faces are randomly scaled [38] and pasted in various background images [39].
Note that the Copy-Paste augmentation can be also used to alleviate the class-imbalance
problem by making more copies from the minority classes (e.g., small faces) [40]. To the
best of our knowledge, no study that adopts Copy-Paste method to face detection has
been reported.

Unlike other application domains, in face detection, surrounding areas of the face
region such as the neck and shoulders also provide useful information [13]. However, the
bounding boxes of the ground truth provide the location and the size of the facial region
only. For example, using the source images in Figure 3a with the face bounding boxes and
the destination image in Figure 3b, we have the pasted faces with the bounding boxes as in
Figure 3c. On the other hand, in this paper, we propose a modified Copy-Paste method that
can include the shoulder-face region as well as the face. Then, we have the pasted image as
in Figure 3d.
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On top of the augmentation techniques of the basic YOLOv5 such as geometric trans-
formation, mosaic [41], and mixup [42], our Copy-Paste method is used as shown in
Figure 4. In Figure 4, fs, Sc, and Sr represent the length of the shorter side of the image,
crop-scale factor, and resize-scale factor, respectively. The detailed process of the proposed
Copy-Paste is as follows:

(i) The reference image IR for the original image IO, is chosen at random from the
training dataset.

(ii) Get fs from IR.
(iii) Sc is randomly determined within the experimentally defined range of [0.1, 0.4].
(iv) IC is obtained by randomly cropping an area of size ( fs × Sc, fs × Sc) from the

reference image IR.
(v) Using the bounding box information of the face objects in the reference image, check

if the cropped region contains any face object. Specifically, if the cropped IC contains
a center point of the bounding box for the face, proceed to (vi). Otherwise, return to
(iii) for re-cropping.
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(vi) In this step, we need to check if the cropped IC includes any other body parts such as
the shoulder as well as the face. To this end, we employ a simple method of comparing
the sizes of the face bounding boxes in IC with the size of IC. So, if widths and heights
of all bounding boxes in IC are less than 60% than those of IC, then we proceed to (vii).
Otherwise, we assume that IC consists mainly of the facial region and we return (iii)
for re-cropping. Note that the thresholding value of 60% is determined experimentally.

(vii) Sr is randomly determined in the experimentally defined range of [0.5, 1.5].
(viii) Resize IC by the scale factor Sr.
(ix) Paste IC into IO in the non-overlapping region with the existing face region.
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4. Results
4.1. Dataset

We use WiderFace dataset [7] to train and validate our proposed FAFD. The WiderFace
dataset has 393,703 face objects in 32,203 images, including various situations in terms
of pose, scale, expression, occlusion, and lighting condition. Images in the WiderFace
dataset are grouped into 61 social event classes that are much more diverse and closer to
real-world scenarios.

The WiderFace dataset is split into train (40%), validation (10%), and test (50%) sub-
datasets. Each split sub-dataset has three levels of difficulty: Easy, Medium, and Hard
according to the detection rate of EdgeBox [43]. Compared to other sub-datasets, the Hard
sub-dataset contains a large number of tiny faces that are between 10–50 pixels tall. So, it is
quite challenging for the WiderFace dataset to achieve high detection performance on a
hard sub-dataset.

4.2. Experiments

We implemented the proposed FAFD in Pytorch 1.10.1 environment with NVIDIA RTX
6000 GPU. YOLOv5 consists of five models: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x [44]. Sharing the basic module, these five models have different depths
and sizes. The depth of the layers is determined by the number of repetitions of the
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bottleneck layer and the size is determined by the channel size of the entire layers. In
this paper, although our methods introduced in Section 3 can be used for any type of
YOLOv5, considering the trade-off between speed and accuracy performance, we chose
YOLOv5s and YOLOv5n models for our experiments. Therefore, there are two models of
our proposed FAFD, YOLOv5n-based FAFD-Nano, and YOLOv5s-based FAFD-Small. The
parameter values of k (kernel size), s (stride), and p (padding) of the CBS layer in the MSIF
were set to 6, 2, and 2, respectively.

The hyperparameters used in our experiments for training with the WiderFace were
as follows: the SGD optimizer with 200 epochs, a weight de-cay of 0.0005, and momentum
of 0.937. The first 3 epochs were used for a warm-up. During the warmup period, the
momentum of SGD was set to 0.8, and the learning rate was updated from 0.1 to the initial
learning rate of 0.01 through one-dimensional linear interpolation. After the warmup, the
learning rate was reduced from the initial learning rate of 0.01 to the minimum learning
rate of 0.01 × 0.1 through the cosine annealing function. Finally, since 3 anchor boxes were
allocated per each layer of the prediction head, 9 and 12 anchor boxes were used for the
baseline YOLOv5 and the proposed FAFD, respectively (see Table 1). In the table, the size
of each anchor box was obtained by using the k-means++ [45] algorithm on the distribution
of training data.

Table 1. Anchor boxes (In (w,h) ‘w’ and ‘h’ represent the width and the height of the anchor
box, respectively).

Used Layer Size of Anchor Box

Baseline
First detection layer (72, 94) (130, 170) (229, 304)

Second detection layer (16, 21) (26, 33) (43, 55)
Third detection layer (4, 5) (7, 9) (11, 14)

Proposed FAFD
First detection layer (117, 152) (167, 218) (249, 340)

Second detection layer (32, 40) (46, 63) (69, 97)
Third detection layer (12, 14) (16, 21) (22, 29)

Fourth detection layer (4, 5) (6, 7) (8, 10)

For the testing phase with VGA-resolution images, the speed performance in terms of
latency and the accuracy performance of AP were used for the comparisons. To maintain
the aspect ratio of the original image, we first set the length of the longer side to 640 and
resized the length of the shorter one proportionally. In the non-maximum suppression
(NMS) stage, the IoU threshold and the confidence threshold were set to 0.5 and 0.02,
respectively, as in the YOLO5-Face [10].

4.3. Ablation Study

To verify the effectiveness of each component in the proposed method, an ablation
study was conducted. The validation dataset of WiderFace was used for model evaluation.
As shown in Tables 2 and 3, AP for each sub-dataset calculated with the evaluation toolkit [7]
was used as a performance metric.
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Table 2. Ablation study for the proposed methods with WiderFace validation dataset.

Method WiderFace Validation Set

Baseline MSIF Copy-Paste P2 APEasy APMedium APHard

3 94.9 93.1 84.2

3 3 95.0 93.4 85.5

3 3 95.0 93.3 84.2

3 3 94.9 93.2 85.7

3 3 3 94.8 93.3 86.9

3 3 3 3 95.0 93.5 87.0

Table 3. Ablation study for the proposed P2 and MSIF methods with respect to face sizes. APSmall,
APMedium, and APLarge represent the AP performance for Small, Medium, and Large face sub-
datasets. APAll is the AP performance for all faces in WiderFace Validation dataset without the
size-based categorization.

Method WiderFace Validation Set

Baseline MSIF P2 APSmall APMedium APLarge APAll

3 78.4 94.7 94.9 83.3

3 3 80.4 94.8 95.0 84.8

3 3 80.5 94.7 92.8 85.1

3 3 3 82.3 94.6 92.1 86.4

As shown in Table 2, except for a few cases, the individual or combination of the
proposed schemes has achieved better AP than the baseline YOLOv5s model. Especially,
the proposed Multi-Scale Image Fusion layer (MSIF) has achieved the largest performance
gain among the three proposed schemes of P2, Copy-Paste, and MSIF. Specifically, adopt-
ing MSIF alone, the AP performance has improved by 1.3% in Hard sub-dataset and by
0.1% and 0.3% in Easy and Medium sub-datasets, respectively, compared to the baseline
YOLOv5s. For the Copy-Paste, the AP performance in the Hard sub-dataset is the same as
the baseline YOLOv5s. This is because the original YOLOv5 has low detection performance
for small faces, so it cannot learn the features of the pasted object well. As shown in the last
two rows of Table 2, when MSIF and P2 were applied to increase the detection performance
of small faces, the performance of Copy-Paste was increased in all sub-datasets. Finally,
with the P2 alone, the AP performance was the same in the Easy sub-dataset, but the AP
performance increased significantly to 1.5% in the Hard sub-dataset. This means that the
high-resolution feature map of the P2 layer is effective for detecting small-scale faces, but
on the contrary, it has no effect on large-scale faces. Note that it is quite a challenging task
to improve the detection performance of the Hard sub-dataset.

On top of the performance gain for each individual technique, we have achieved
additional improvements in all combinations of the proposed schemes. Among all com-
binations, when all the three proposed schemes of the additional prediction head (P2),
Copy-Paste, and MSIF are included, we have the highest AP performance.

In order to show the effectiveness of the proposed schemes of P2 and MSIF for small
faces, we first need to categorize the validation dataset of the WiderFace with respect to the
size of the face. To this end, borrowing the size criterion from [7], we divide the faces in the
validation dataset of the WiderFace into three size groups: Small (between 10–50 pixels of
the height), Medium (between 50–300 pixels of the height), and Large (over 300 pixels of
height). Among the three size groups, the Small sub-dataset takes 78.3% of the WiderFace
validation dataset. Now, we conduct the ablation study for the proposed P2 and MSIF
schemes. As shown in Table 3, each of the proposed MSIF and P2 achieved better AP
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than the baseline YOLOv5s model for the Small sub-dataset. Specifically, each of P2 and
MSIF has contributed to the performance improvement for Small sub-dataset by about 2%.
This proves that the proposed P2 and MSIF are effective, especially for small faces. On
the other hand, having the local feature by P2 to the feature fusion pyramid, the detection
performance for the Large sub-dataset may deteriorate.

4.4. Comparative Study

Our FAFD model was compared with some speed-focusing methods [30–32,34] re-
ported in [21]. The results include AP comparisons for Easy, Medium, and Hard sub-
datasets. Also, the speed performance was compared in terms of latency for VGA-resolution
images. For a fair comparison, we export our FAFD-small and FAFD-Nano models from
Pytorch to ONNX and inference using ONNXTUNTIME as [21].

As shown in Table 4, our FAFD-Small obtained 95.0%, 93.5%, and 87.0% AP in Easy,
Medium, and Hard sub-datasets, respectively, for the WiderFace dataset. Here, our FAFD-
Small results for all sub-datasets show the best performance by the increased detection
performance of 4.0%, 5.5%, and 9.2% compared to LFFD-v1 [34]. Also, our FAFD-Small
shows a better speed performance of 207.1 ms than LFFD-v1 of 239.43 ms. Although FAFD-
Nano has lower performance than FAFD-Small, it achieved 93.0%, 91.1%, and 84.1% AP in
Easy, Medium, and Hard sub-datasets, respectively. This is the second-best performance
with performance gains of 2.0%, 3.1%, and 6.3% to the LFFD-v1. In addition, our FAFD-
Nano can run at 94.4 ms.

Table 4. Comparison of our FAFD and the Speed-Focusing face detectors on the WiderFace vali-
dation dataset. AVG GFLOPs and AVG Latency are the average GFLOPs and the average Latency,
respectively, for 100 images with different sizes.

Model
#Params
(×106)

AVG
GFLOPs

WiderFace Validation Set AVG Latency (ms)

APEasy APMedium APHard
AVG Latency

(ms) Device

FaceBoxes [30] 1.013 1.5 84.5 77.7 40.4 23.68

INTEL
i7-5930K

YuFaceDetectNet [31] 0.085 2.5 85.6 84.2 72.7 56.28

ULFG-slim-320 [32]
0.390 2.0

65.2 64.6 52.0
21.4

ULFG-slim-640 [32] 81.0 79.4 63.0

ULFG-RFB-320 [32]
0.401 2.4

68.3 67.8 57.1
23.17

ULFG-RFB-640 [32] 81.6 80.2 66.3

LFFD-v2 [34] 1.520 37.8 87.5 86.3 75.2 185.17

LFFD-v1 [34] 2.282 55.6 91.0 88.0 77.8 239.43

FAFD-Nano
(Ours) 1.808 8.3 93.0 91.1 84.1 94.4

INTEL
i7-7700KFAFD-Small

(Ours) 7.193 29.3 95.0 93.5 87.0 207.1

We note that the latency performance in Table 4 is measured with two different CPUs
(i.e., i7-5930K and i7-7700K). Therefore, for a fair comparison, we also need to check other
computing measures such as GFLOPs and the number of model parameters (see Table 4).
As shown in the table, the proposed FAFD-Nano and FAFD-Small have smaller GFLOPs
than LFFD-v1 and LFFD-v2. In terms of the number of parameters, however, our FAFD-
Small has much more parameters than LFFD-v1 and LFFD-v2. Although the number of
parameters of FAFD-Small is large, its computing speed in terms of the GFLOPs is not that
bad. Recall that, in [21], the criterion for differentiating the Speed-Focusing Face Detector
from the Accuracy-Focusing Face Detector is the GFLOPs. Here, both FAFD-Nano and
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FAFD-Small still satisfy the GFLOPs criterion for the Speed-Focusing Face Detector, having
a computational magnitude of tens of GFLOPs.

Experimental results show that the proposed FAFD achieved the best results in terms
of accuracy–speed performance among the speed-focusing methods.

5. Conclusions

For a high-speed face detector with CPU, we have proposed a Fast and Accurate Face
Detector (FAFD) based on YOLOv5. In our FAFD, we have designed to effectively detect
a wide range of faces. To this end, we have proposed a Multi-Scale Image Fusion (MSIF)
layer for the baseline YOLOv5. It is expected that the proposed MSIF can be adopted
for other domain-specific datasets as a module to provide multiple-scale images at the
input side of the network. To improve the small-scale face detection performance, we have
inserted one more prediction head for the high-resolution feature map into YOLOv5. As an
augmentation technique, a Copy-Paste technique is employed for face objects, which can
provide diversified face images during the training with various scales and locations. The
Copy-Paste technique can also alleviate the class-imbalance problem for the minority class
of the small faces. Experimental results show that the proposed FAFD achieves the best
performance among the speed-focusing methods.
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