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Abstract: Clustering is one of the most significant applications in the big data field. However, using
the clustering technique with big data requires an ample amount of processing power and resources
due to the complexity and resulting increment in the clustering time. Therefore, many techniques
have been implemented to improve the performance of the clustering algorithms, especially for k-
means clustering. In this paper, the neural-processor-based k-means clustering technique is proposed
to cluster big data by accumulating the advantage of dedicated machine learning processors of mobile
devices. The solution was designed to be run with a single-instruction machine processor that exists
in the mobile device’s processor. Running the k-means clustering in a distributed scheme run based
on mobile machine learning efficiently can handle the big data clustering over the network. The
results showed that using a neural engine processor on a mobile smartphone device can maximize the
speed of the clustering algorithm, which shows an improvement in the performance of the cluttering
up to two-times faster compared with traditional laptop/desktop processors. Furthermore, the
number of iterations that are required to obtain (k) clusters was improved up to two-times faster than
parallel and distributed k-means.

Keywords: big data; clustering; neural engine; k-means; parallel computing

1. Introduction

Currently, we are in a data flood era, as proven by the massive amounts of continuously
generated data at unprecedented and ever-increasing scales. In the recent decade, machine
learning techniques have become increasingly popular in a wide range of large and complex
data-intensive applications, such as astronomy, as well as medicine, biology, and other
sciences [1]. These strategies offer potential options for extracting hidden information from
the data. However, as the era of big data approaches, the growth of dataset collection in
such a large and complex way makes it difficult to deal with it using conventional learning
methods, as the learning process for traditional datasets is not designed for and may not
work well with large amounts of data. Most classical machine learning algorithms are
built to process data that are loaded into memory [2], which is no longer true in the big
data context.

The usefulness of the massive volumes of data can be achieved only if the meaning
of those data is guaranteed, and proper information can lead to the right path. The
information-gathering process from huge unstructured or semi-structured data is the so-
called clustering technique. Clustering is a technique of grouping elements based on the
similarity of their characteristics and returns those elements as clusters. Thousands of
clustering algorithms have been published based on this concept, and k-means is one of the
most used. k-means is widely used with a wide range of applications due to its simplicity
of implementation and its effectiveness. In the literature, different modifications have been
proposed for improving the performance and efficiency of the k-means clustering algorithm.

Big data analytics can extract useful information from numerous amounts of data
generated by a variety of sources [3]. Although computer systems and Internet technologies
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have seen the evolution of computing hardware following Moore’s law for several decades,
the issues of processing large-scale data persist as we approach the age of big data [4].
Almost every major company wants to collect massive volumes of data from its customers
or underlying infrastructure, then mine them to provide relevant insights in a timely way.
These data assist firms in providing better customer service and increasing profits. During
each trading session, the New York Exchange collects over 1 TB of trade data [5]. The ability
to analyze data in real-time can help traders make key trading decisions. About 23% of
all digital data are thought to include useful information that may be used by businesses,
government agencies, policymakers, and individual users. Furthermore, many researchers
have been working with IoT technologies to improve and solve the critical issues of the
performance and data analysis of big datasets [6]. The IoT-based solutions for big data open
opportunities to point out the importance and requirements of managing big data in the
IoT environments and highlight the future of big data in real-world applications such as the
IoT [7]. Multi-view data, which have become more common in recent years, represent one
of the applications of utilizing the IoT field with big data in terms of clustering algorithms
as multi-view data require a special handling technique [8].

Clustering, which is considered an unsupervised learning approach, is an important
technique for data mining and retrieving information from big data. However, using the
standard k-means algorithm has some drawbacks, which are: much space and a high pro-
cessing speed are required when the dataset is very large, while obtaining the best number
of (k) requires running the algorithm multiple times to obtain the optimal results. These
necessities require a large amount processing unit power, memory space, and energy. In
general, there are two main techniques to improve the performance of the clustering system
and reduce the energy consumption, which are: powering down the node utilization and
matching the workload specifications with the system hardware [9]. Therefore, researchers
are trying to improve the performance of the k-means algorithm by taking advantage of
parallel computing, distributed computing, and the latest processing technology.

This paper proposes an efficient and high-performance solution to improve the k-
means clustering by:

1. Maximizing the performance of the k-means algorithm by running it on the dedicated
neural engine processor of smart mobile devices by editing the code and steps of the k-
means algorithm to run on the single-instruction-based machine with an ARM-based
processor;

2. Dividing the k-means clustering technique into two parts. The first part, which
contains the main tasks of the k-means algorithm, runs on a neural engine processor,
while the second part, which contains the general tasks of the k-means technique,
runs on the mobile general-purpose processor;

3. Using a distributed Spark server, multiple mobile devices can process the k-means
algorithm many times in a distributed network and give the optimal result to the
server to select the optimal number of (k).

This paper contains seven sections. The Section 1 discusses the importance of big
data and clustering algorithms in real-world applications and especially focuses on the
main characteristics and limitations when working with big data. The big data clustering
algorithms and main techniques are discussed in Section 2. Section 3 presents the main
advantages and problems in the current big data platform. Section 4 presents the recent
research in big data clustering. Section 5 presents the proposed solution. Section 6 dis-
cusses the implementation and results of the proposed solution. Section 7 is dedicated to
the conclusions.

2. Big Data Clustering

Clustering is the technique of splitting data objects into a set of clusters based on the
similarities and differences of the objects within datasets. It is considered as one of the
important methods to recognize the set of objects based on their similarities and generate
a pattern from a dataset that is unlabeled (unsupervised). Typically, the technique of



Electronics 2022, 11, 883 3 of 20

big data clustering can be categorized into two types [10]: single-machine clustering and
multiple-machine clustering techniques, as is illustrated in Figure 1. The single-machine
clustering technique is designed to cluster the data on a single device without the ability
to take advantage of a gridded or distributed high-performance system. However, the
multiple-machine clustering technique is much faster and more adaptable and can handle
the new big data challenges much better [11]. Therefore, in this article, the main focus was
on multi-machine clustering.

Figure 1. Big data clustering techniques.

2.1. Multi-Machine Clustering

Multi-machine clustering is divided into three main types based on the mechanism
of taking advantage of multi-machine performance. The multi-machine term is used for a
single or many devices that have a multi-processing ability. Typically, the multi-machine
technique is divided into two main categories, which are:

1. Parallel clustering: In general, parallel computing is used to handle many tasks
simultaneously, which is typically designed to handle heavy tasks. Therefore, as
clustering is considered a heavy task, parallel computing is used with it. In this
section, some distributed clustering and parallel processing techniques that can deal
with big data are examined. The parallel clustering splits the data partitions that are
distributed on different machines [12]. This improves the scalability and speeds up
the clustering [13];

2. MapReduce-based clustering: This technique works with large volumes of data by
partitioning tasks to be distributed and executed on a large number of servers. Such
a technique decomposes the tasks (Map) into smaller tasks that can be dispatched.
Finally, it collects and consolidates the results (Reduce) [14]. Figure 2 describes the
function of the MapReduce technique.
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Figure 2. MapReduce function.

In this work, special attention was given to partitioned-based clustering algorithms.
This technique family has been proven in terms of efficiency and clustering performance,
and this is due to its ability to detect noisy objects and find clusters of unusual shapes.

2.2. k-Means Clustering

k-means clustering seeks to group n objects into k clusters based on the nearest mean
value group, serving as a prototype of the cluster. The iterative refinement technique is
the most common technique used with the standard k-means algorithm. However, this
technique is the so-called native k-means to differentiate from the much faster alternative
solutions that have already been developed. Each clustered object should be compared
and calculated based on the nearest centroid points, which are random initialized points to
represent the cluster center.

k-means clustering has three main issues that most of the recent solutions have been
trying to tackle, which are [15,16]: (P1) pre-clustering requirements, which represent the
number of clusters and answer the following question “Do the data have clusters? If yes,
how many (k)?”; (P2) finding the k clusters of the data; (P3) post-clustering validation,
which represents the validity and accuracy of the clustering process.

3. Big Data Platform

A summary of the most-used platforms for big data is given in this section. In general,
there are two types of platforms, which are: horizontal scaling and vertical scaling, as
shown in Figure 3.

The horizontal scaling platforms work based on scaling the processing performance
by increasing the number of devices in the clustering system. This technique includes
MapReduce, peer-to-peer networks, and Spark. On the other hand, the vertical scaling
principle is to scale the processing power for clustering of the device itself (vertically). This
technique includes a graphics processing unit, field programmable gate array (FPGA), and
multi-core CPU. Each platform has several specific design clustering algorithms, and some
related techniques are discussed in this paper.



Electronics 2022, 11, 883 5 of 20

Figure 3. Big data platform.

Spark Platform

Apache Spark is a data-intensive application framework that is designed to process
big data and can be executed on commodity clusters [17]. The main difference between the
Spark framework and the competition such as MapReduce is that it loads only the useful
dataset into the memory, which enables iterative jobs to run queries on big datasets. Such a
technique can reduce the execution time significantly.

There are three fundamental aspects presented in Spark, which are [18]: resilient
distributed datasets (RDDs), parallel operations, and shared variables. RDDs are a shared-
machine-based collection of objects that can be restored in the case of loss. They are reusable
in multiple parallel MapReduce jobs, as they can be stored in memory. Secondly, the tasks
can be executed in parallel with RDDs by reducing and collecting for each operation. The
last aspect consists of broadcast variables and accumulators.

Practically, the main advantages of Spark are its flexibility, ease of use, and that
the program does not need any abstraction. The high performance of Spark enables it
to deal with data in a real-time streaming module and by using distributed workers,
which is caching the result partially in memory. Moreover, it is very efficient such that it
outperforms the Hadoop MapReduce framework [19] while preserving the fault tolerance
and scalability of MapReduce, which is up to 10-times faster for interactive machine
learning workloads [12].

4. Related Work

A variety of scalable machine learning algorithms have been developed in recent years
to address various difficulties in big data analytics, with the majority of them designed to
cluster data before processing.

In 2017, Reference [20] used a data science and engineering solution based for fast
k-means clustering of big data. The article addressed the k-means problems with the risks



Electronics 2022, 11, 883 6 of 20

associated with the random selection of the k centroid, the equal circular cluster, and the
complexity of k-means, which is very high. The solution used a heuristic prototype-based
algorithm together with k-means clustering to improve the efficiency and scalability of the
clustering process.

In 2018, Reference [21] studied the performance of the k-nearest neighbor classifier
(KNN) and k-means clustering for predicting diagnostic accuracy. The proposed solu-
tion aimed to improve the performance of the diagnosis and classification process for
the machine learning repository prepared by the University of Wisconsin Hospital. The
performance of KNN was compared with k-means clustering using the same dataset from
the hospital.

In 2018, Reference [22] worked on the improvement of k-means clustering using the
density canopy. The density canopy technique has been used for preprocessing procedures
before running the k-means clustering as canopy results in the initial clustering centers.
The proposed solution was tested and simulated with the well-known dataset from the UCI
machine learning repository and a simulated dataset with noise. The simulation results
showed an improvement in the performance of the k-means algorithm by up to 30.7% in
terms of accuracy on the UCI dataset and up to 44.3% with the simulated data compared
with the traditional k-means algorithm. However, the accuracy improvement went down
to only 6% in some cases.

In 2019, Reference [23] proposed a novel and efficient clustering technique for big data
clustering in Hadoop. The proposed solution tried to solve the efficiency of the k-means
clustering algorithm by using a new hybrid algorithm on the basis of the precision, recall,
F-measure. The performance of the solution was evaluated regarding the execution time
and accuracy using the National Climatic Data Center (NCDC) dataset, which contains
data from over 20,000 stations around the world. However, the analysis of the data result
was not clear, and the execution time was not tested for a multi-k value.

In 2019, Reference [24] worked on the importance of the mixed data approach by ad-
dressing the limitations of most clustering algorithm solutions, which are focused on either
numerical or categorical data only. The authors implemented the clustering technique on a
real-world mixed-type dataset to validate the clustering with such data types. The results
showed that using clustering techniques for mixed data in general via a discretization
procedure may result in the loss of essential information.

In 2020, Reference [25] proposed an improvement of the k-means clustering algorithm
for big data. The proposed solution aimed to improve the efficiency and accuracy of the
data clustering. However, the experiment used a private artificial dataset with up to 50,000
records to measure the clustering performance compared with simple k-means. The results
showed an improvement in the clustering speed of up to 50%.

In 2020, Reference [26] proposed a new solution to improve the k-means clustering for
big data using the Hadoop parallel framework. The improvement was in the clustering
process by dividing and merging clusters according to the distance between them. The
points that did not belong to a cluster were divided to be clustered with the nearest clusters.
Such a method should improve the efficiency of k-means clustering. The KDD99 dataset
was used to evaluate the performance of the solution with shared memory space and a
parallel Hadoop platform. The simulation results showed an improvement in the accuracy
by up to 10%.

In 2021, Reference [27] worked on the improvement of k-means clustering for big data.
The improved version of the k-means algorithm was applied with acceptable precision
rates to big data with lower processing loads. Using this technique, the distance between
points was used along with their variations with the last two iterations. Furthermore, those
points were compared together with the research index cluster radius. The results showed
an improvement in clustering by up to 41.8% in the base case. Many real datasets were used
in the experiment, such as the Concrete, Abalone, Facebook, and CASP datasets. Moreover,
the processing power requirement of the solution was high, which was performed with
12 GB of RAM and a multi-core Core i7 processor.
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In 2021, Reference [28] analyzed the performance of the simple k-means algorithm
and improved it with the parallel k-means technique to optimize the clustering of a dataset.
The solution was designed to take advantage of multi-core machines to improve the
clustering performance. The experiment used an education sector dataset with up to
10 times of evaluation to calculate the time elapsed and the number of iterations for the
clustering. The overall performance was improved up to three-times faster than the simple
k-means algorithm.

Table 1 summarizes the related works that made an improvement of k-means cluster-
ing to work with big datasets.

Table 1. Related works.

Proposed Solution Focus Drawbacks Dataset

Fast k-means
clustering [20]

Efficiency and
scalability

Not tested with a real
dataset Private

KNN and k-means
algorithms for
predicting the

diagnostic
accuracy [21]

Performance and
accuracy

Solution verified with
only one dataset

University of
Wisconsin Hospital

dataset

k-means
improvement with

canopy [22]
Accuracy

Accuracy
improvement not

stable

UCI dataset and
simulated data

Novel hybrid
clustering in
Hadoop [23]

F-measure and
execution time

Experiments not
applied for different k

values

National Climatic
Data Center (NCDC)

dataset
Real mixed-type
application [24]

Performance and
efficiency - Real-world mixed

dataset
Fast k-means

clustering
algorithm [25]

Accuracy and
performance

Using image dataset
only

Artificial and actual
datasets AT&T, Yale,

COIL-20, CMD)
k-means clustering
improvement with

Hadoop [26]

Efficiency and
execution time - KDD99 dataset

k-means
improvement [27] Execution time

Requires a
high-performance

processing machine

Multiple datasets
(Facebook, CASP, etc.)

Parallel k-means
clustering [28]

Number of iterations
and time elapsed - Education sector

dataset

5. Proposed Solution

The rapid growth of the data volume has led to the expansion of the use of clustering
algorithms. However, the effectiveness of the traditional techniques is not always high
because of the high computational load. The basic idea of the proposed algorithm is to take
advantage of the high performance of smart mobile devices in machine learning through
an artificial intelligence processor dedicated to machine learning algorithms. The main goal
is to speed up the performance of the k-means algorithm to work better and give higher
performance by taking advantage of the technology mentioned above. Due to the simplicity,
efficiency, and adaptability of the k-means algorithm, it is considered the most popular
clustering method. The cluster efficiency should be always maintained when involving
a large dataset, while the intercluster and intracluster distances between data objects in a
dataset should be considered. A new distributed clustering based on the k-means algorithm
is suggested.

The proposed algorithm distributes a dataset equally to the smartphone device, which
is connected to a cloud server. Then, it runs the clustering algorithm, taking advantage of
the machine-learning-engine-dedicated processors in modern mobile devices. The goal is
to preserve the dataset characteristics while improving the clustering performance. The
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new solution can handle the three issues in the k-means algorithm, which are: the number
of k, optimal centers, and best clustering performance. The centers are calculated for each
cluster on each device and compared later with the other clustering results that come from
the devices in the network.

Algorithm 1 shows the main steps of the processing on the server’s side. The Spark
framework starts preparing the dataset to be sent to the clients, then begins receiving the
requests from the clients. The server keeps listening to the clients, which request the content
or send the results. The best result from the received results is selected. Each dataset is
marked with the best random centroid points.

Algorithm 1 Proposed k-means distribution.

Require: Big dataset
Input: Prepare dataset for clients
Start: Init database to receive results
while f ile 6= IncomeHTTP− Stopped do

Save: centroidpoints from clients
end while
Spark: select best result
Save: best centroid points
Output: centroid points for the dataset

Figure 4 describes the complete layout for the network of the proposed solution. First,
the big dataset is in the cloud server and managed by the cloud management server, which
is responsible for the data flow, results, and optimal solution selection.

Figure 4. Proposed solution network.

Besides that, the Spark server system also works with the cloud management system to
select the optimal solutions that come from the mobile devices in the network. Finally, the
system requires a mobile device with a dedicated ML engine connected to the cloud server.
The mobile device starts downloading the dataset from the server, then processes the data
with the random centered point of the k-means algorithm. With the high performance of
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dedicated ML processors and taking advantage of the multi-core system of ML processors,
mobile devices can cluster data at a high speed. Each mobile device in the network returns
the random center point and clustering accuracy to the server, as shown in Figure 5.

Figure 5. Proposed solution network.

5.1. Proposed Solution Processing

Parallel neural engine k-means clustering consists of three main steps, which are:

• Partition;
• Computation;
• Compilation.

In the first step, the mobile device’s main processor divides the dataset into sub-
datasets. All neural processors within the mobile device system process these sub-datasets
with an initial centroid and a specific number of clusters. Each processor calculates clusters,
and then, the main processor collects the results to be prepared and sent to the server. This
process continues until there is no change in the clusters. Each partition of the dataset has
its centroid points; therefore:

C = C1 + C2 + C3 + C4 + Cn (1)

Send initial centroids: C1, C2, C3, C4, . . . , Cn and sub-datasets to all connected pro-
cessors receive clusters and centroids from all the processors. The server recalculates the
distance amongst all these centroid points later to detect the best performance from all
results that are collected.

The number of incoming results to the server depends on the number of connected
devices. Therefore and due to the vast amount of modern mobile devices (phones, tablets,
etc.), many results are collected by the server. Such an amount of results requires a selection
algorithm to select the best results of clustering, and as a result, the optimal center points can
be expected in the future without requiring sending the data again to the mobile devices.

As described in Algorithm 2, the mobile device sends a request to the server to retrieve
the dataset, then it initializes the centroid points with a random location.
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Algorithm 2 k-means clustering on mobile devices.

Require: Request dataset file from the server
Input: random centroid points
Start: clustering points
while f ile 6= end do

Calculate: meanvalue
end while
Output: clustered points

The cluster initialization requires partitioning all the dataset into k number of sub-
datasets where the initial clusters can be calculated with the following equation:

initial cluster = f loor(n/k) (2)

where n is the total number of sub-data partitioning and k is the number of clusters. The
mobile device starts clustering the objects with a loop until the end of the dataset file. The
output of the process is the clustered points with the initial centroid points.

The distance between centroid points is calculated on the server’s side to deter-
mine the best result from the collected results, and this is achieved by applying the
following equation:

Euclidean Distance(Ci, Di) = |Ci − Di) (3)

where Ci is the initial centroid points and D is the data item, which should be less than the
(n) value.

Figure 6 summarizes the data processing on the mobile device. The data are requested
from the server by the mobile device, then they are partitioned to be processed by the
neural engine and general-purpose processor. The general-purpose processor is responsible
for the general calculation, such as the initialization of the centroid points and calculating
the variant of each cluster. The neural engine processor calculates the rest of the operations
and tasks with the k-means algorithm. All these tasks run in parallel for both the neural
and general-purpose processors.

The proposed solution does not directly affect the clustering precision because it does
not edit the clustering precision part in the standard k-means clustering. The solution
focuses on improving the performance of the standard k-means clustering by editing the
way that k-means runs and clusters the objects as shown in Figure 6. It splits the clustering
processes for both the neural and general-purpose processors; therefore, the core of the k-
means clustering itself is not affected. However, the precision is improved in different ways.
Running k-means clustering with high performance and very low consumption regarding
both the energy and system resources enables running the clustering process many times
to obtain different results. The results collected from the mobile devices connected to the
server are evaluated to select the best amongst them.
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Figure 6. Proposed solution processing flowchart.

5.2. Complexity Analysis

k-means algorithms are comprised of two phases, which are computing the initial
clusters after dividing the dataset into k equal parts and then calculating the arithmetic
means where the second phase is to assign the item to an appropriate cluster. O(n) is the
time complexity of the first phase, as it requires partitioning and finding a fixed period. On
the other hand, the second phase has O(nkt) complexity, where n is the number of items in
the data, k is the number of clusters, and t is the number of iterations that are performed to
cluster all items.

Thus, the total time complexity of the k-means clustering algorithm is equal to adding
the maximum of O(n) to O(nkt), that is:

Max(O(n)) + O(nkt) = O(nkt) (4)

so the overall time complexity is O(nkt).

6. Analysis of the Experiment Results

The comparison between the proposed solution and the recent k-means algorithm
improvements was based on the following terms:

• Number of iterations, which represents the number of iteration processes that are
required to cluster the dataset into (k), the number of clusters;

• Cluster quality, which represents the performance of the clustering in terms of the
accuracy of the clustering;

• Elapsed time: this term is calculating the time that is required to cluster the dataset
into (k) clusters.
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Each of the above terms was calculated for each algorithm and compared with the
proposed solution to present the quality and validity of the proposed solution.

The main results of the proposed solution are shown with all the above performance
measurements and with two main big datasets, which are: the Google Play Store dataset
and the KDD99 dataset.

The results obtained were compared with the k-means algorithm. The experiments
showed the performance of the proposed algorithm for big data. The proposed solution
was developed with ARM-based code with a dedicated machine learning code for the
smartphone ML engines. For the iOS device, the Swift programming language was used,
whereas the Kotlin programming language was used for the Android smartphone. For
the server’s side, the Python programming language with the Spark server was used with
the Fedora Linux operating system. The k-means algorithm was run on a desktop-based
processor (Intel Core i5 3.5 GHz with four cores) and the Unix-based operating system
without an ML engine, then with mobile devices with ML engines. The mobile devices
that were used in the experiment were the iPhone 11 Pro Max with an ML engine, which
contains 16 cores dedicated to the machine learning process, and the Samsung S22, which
includes a neural processing unit (NPU), as the Android smartphone with a 16 bit floating-
point number (FP16). The experiments were divided into two categories: single-core neural
engine performance and multi-core neural engine performance with mobile ARM cores.

Several datasets were used in the experiments to validate the proposed solution in
many situations and dataset properties. All the dataset characteristics are given in Table 2.

Table 2. Dataset characteristics.

Dataset Size in MB Number of Records

Education Sector Dataset [28] 30 MB 15,000
Google Play Store Dataset 300 MB 11,000,000

KDD99 Dataset [26] 71 MB 9,000,000

6.1. Neural Engine Performance

First, the k-means algorithm was evaluated with a single-core neural engine processor
without using the mobile ARM processor. This means all the operations were examined
with only neural cores. Table 1 shows the result of the experiment, which clearly shows the
high performance of the mobile processors when running a machine learning algorithm
compared with the non-ML processor.

The performance as shown in Table 3 was about twice as fast with a dedicated ML
processor when processing the 11 million records of the Google Play Store dataset. The
next experiment was performed on the education sector dataset, and the mobile processors
showed a performance up to 10-times faster than the desktop processor. The second
experiment ran the k-means algorithm on many devices connected to the server. This part
of the experiment required testing with the real-world server; therefore, a testing cloud
server was built. The result as shown in Figure 3 describes the effects of the number of
mobile devices on the number of results in minutes by taking the time that was required to
send and receive the requests from the devices.

Table 3. Clustering performance.

Dataset Desktop Processor Mobile Processor

Google Play Store Dataset 90 min 46.1 min
Education Sector Dataset 24.3 ms 2.3 ms

6.1.1. Number of Iterations

To validate the proposed solution compared with the recently advanced k-means, the
number of iterations was calculated with different numbers of (k).
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As shown in Table 4, the number of processors used to perform the computations for
each series run was verified. The number of clusters in the k-means algorithm was specified
to generate efficient results for different variations of the clusters. Clustering is an issue that
mainly depends on the data used and the problems considered. The proposed algorithms
showed a significant increment in the efficiency of clustering in terms of execution.

Table 4. Number of results per hour.

Dataset Number of Devices Results Received per Hour

Google Play Store Dataset

5 4
10 9
15 12
25 22

In Table 5, several iterations are fixed in the case of the parallel neural k-means
algorithm using the education sector dataset, i.e., for k = 4, 5, 6, 7, but this kept changing
from one run to another in the case of the parallel k-means clustering algorithm with
multiple running times.

Table 5. Number of iterations for k clustering.

Runs/Executions Number of k Simple k-Means
Clustering

Parallel k-Means
[28] (2021)

Proposed
Solution

1

3

12 3 3
2 9 3 2
3 12 3 2
4 9 3 3
5 7 3 2
6 14 3 3
7 9 3 3
8 12 3 2
9 10 3 3

10 15 3 2

1

4

15 4 3
2 18 4 3
3 18 4 3
4 15 4 3
5 15 4 3
6 15 4 3
7 16 4 3
8 14 4 3
9 13 4 3

10 13 4 3

1

5

14 6 5
2 18 6 5
3 17 6 3
4 22 6 5
5 23 6 3
6 18 6 5
7 26 6 3
8 24 6 5
9 28 6 3

10 26 6 5
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Table 5. Cont.

Runs/Executions Number of k Simple k-Means
Clustering

Parallel k-Means
[28] (2021)

Proposed
Solution

1

6

14 7 3
2 13 7 3
3 17 7 3
4 20 7 3
5 16 7 3
6 18 7 3
7 17 7 3
8 21 7 3
9 19 7 3

10 23 7 3

1

7

10 8 4
2 12 8 4
3 19 8 5
4 20 8 5
5 15 8 4
6 17 8 5
7 17 8 4
8 20 8 4
9 22 8 5

10 21 8 4

Figure 7 shows the overall performance of the proposed solution compared with
simple k-means clustering and parallel k-means clustering using the education sector
dataset. It is noticeable that the proposed solution outperformed the compared algorithms
in terms of the number of iterations. The number of iterations decreased significantly due
to the efficiency and performance of the dedicated neural engine processor. The neural
engine processor was designed with ARM-v8-based technology, and this enabled executing
each task with a single 64 bit instruction with up to 16 cores [29]. Furthermore, with the
minimal energy consumption using the single-instruction technique, it enabled running
all processor cores to execute tasks in parallel at the same time efficiently [30]. Such a
technique lets the tasks in the clustering run on dedicated neural cores and as a result
decreases the iterations number, which is required to run over all objects.

In Table 6, the number of iterations is fixed in the case of the parallel neural k-means
algorithm using the Google Play Store dataset, i.e., for k = 4, 5, 6, 7, but kept changing from
one run to another in the case of the parallel k-means clustering algorithm with multiple
running times.

Figure 8 shows the overall performance of the proposed solution compared with
simple k-means clustering and parallel k-means clustering using the Google Play Store
dataset. It is noticeable that the proposed solution outperformed the compared algorithms
in terms of the number of iterations by up to four-times better and up to ten-times better
than simple k-means clustering.
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Table 6. Number of iterations for k clustering.

Runs/Executions Number of k Simple k-Means
Clustering

Parallel k-Means
[28] (2021)

Proposed
Solution

1

3

33 5 3
2 23 5 2
3 40 5 2
4 35 5 3
5 38 5 2
6 39 5 3
7 32 5 3
8 33 5 2
9 35 5 3

10 23 5 2

1

4

34 7 4
2 44 7 4
3 47 7 4
4 49 7 4
5 34 7 4
6 42 7 4
7 41 7 4
8 42 7 4
9 41 7 4

10 38 7 4

1

5

44 9 5
2 34 9 5
3 44 9 3
4 47 9 5
5 47 9 3
6 49 9 5
7 50 9 3
8 43 9 5
9 42 9 3

10 40 9 5

1

6

45 11 3
2 48 11 3
3 51 11 3
4 52 11 3
5 48 11 3
6 47 11 3
7 49 11 3
8 53 11 3
9 55 11 3

10 54 11 3

1

7

44 12 4
2 43 12 4
3 46 12 5
4 53 12 5
5 52 12 4
6 54 12 5
7 51 12 4
8 50 12 4
9 48 12 5

10 49 12 4
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Figure 7. Number of iterations for the education sector dataset.

Figure 8. Number of iterations for the Google Play Store dataset.

6.1.2. Time Elapsed Performance

Calculating the time elapsed for the proposed solution is an important term as it
presents the overall performance in terms of time. The performance of the solution com-
pared with standard k-means (simple k-means) and parallel k-means was calculated, and
the results are shown in Table 7 for the education sector dataset.
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Table 7. Time elapsed for k clustering in milliseconds.

Runs/Executions Number of k Simple k-Means
Clustering

Parallel k-Means
[28] (2021)

Proposed
Solution

1

3

18.7 7.8 2.3
2 14.1 7.8 2.1
3 20.3 9.3 3.1
4 18.7 9.2 2.3
5 14.6 7.5 2.2

1

4

18.7 7.8 2.1
2 14.1 7.8 1.9
3 20.3 9.3 2.8
4 18.7 9.2 2.1
5 14.6 7.5 2.5

1

5

18.7 10.3 4.2
2 18.8 10.3 4.2
3 21.2 9.3 5.1
4 18.9 9.8 4.8
5 24.1 11.1 3.9

1

6

18.7 11.2 6.1
2 25.7 12.4 6.1
3 24.1 14.1 7.2
4 22.3 14.3 7.2
5 27.6 15.1 6.1

1

7

23.5 10.9 7.3
2 22.5 15.1 7.3
3 21.4 13.7 6.5
4 25.1 14.2 6.8
5 20.3 15.1 7.3

To measure the performance of the solution compared with standard k-means (simple
k-means) and parallel k-means with a big dataset, the elapsed time was calculated, and the
results are shown in Table 8 for the Google Play Store dataset.

Table 8. Time elapsed for k clustering in minutes.

Runs/Executions Number of k Simple k-Means
Clustering

Parallel k-Means
[28] (2021)

Proposed
Solution

1

3

210 150 46
2 220 155 60
3 205 160 55
4 213 157 57
5 216 152 52

1

4

223 150 49
2 230 152 58
3 235 164 62
4 223 153 63
5 228 152 68

1

5

240 160 64
2 245 165 69
3 243 168 72
4 251 170 71
5 246 162 75
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Table 8. Cont.

Runs/Executions Number of k Simple k-Means
Clustering

Parallel k-Means
[28] (2021)

Proposed
Solution

1

6

260 171 71
2 264 177 70
3 280 181 73
4 275 179 75
5 279 179 74

1

7

275 175 75
2 280 178 78
3 281 185 77
4 277 187 79
5 284 188 74

The next experiments were performed over another big dataset and compared with an
advanced k-means clustering algorithm [26]. To achieve a fair comparison, the KDD99 data
that was used in [26] was used in the experiment with the same settings and row count for
clustering. The results are shown in Table 9, giving the comparison amongst the proposed
solution, single-machine clustering, and Hadoop platform clustering. It describes clearly
the efficiency and high performance of the proposed solution compared with the advanced
k-means clustering. The time consumption for the proposed solution was up to four-times
faster than the single-machine and Hadoop platform clustering in the overall comparison.

Table 9. Time elapsed for k clusters in seconds.

Number of Data Number of
Clusters

Single-Machine
Clustering [26]

(2020)

Hadoop
Platform

Clustering [26]
(2020)

Proposed
Solution

15,000
3

10.5 9.2 2.3
30,000 23.4 12.4 4.3
45,000 48.1 27.8 6.1

15,000
4

12.3 11.1 3.1
30,000 25.2 13.2 5.3
45,000 50.1 29.2 7.3

15,000
5

13.1 12.3 3.6
30,000 26.3 14.1 5.6
45,000 51.2 29.9 7.7

15,000
6

13.9 13.1 4.2
30,000 27.5 14.9 6.3
45,000 52.3 30.7 8.1

15,000
7

14.3 15.2 5.8
30,000 29.8 17.1 7.1
45,000 53.8 32.8 9.2

6.2. Multiple Cores and Multiple Processors

In the second part of the experiment, the clustering algorithm was divided into two
sections. First, the normal operations and tasks were run on mobile ARM processors and
cores to take advantage of the high performance of the cores and preserve the energy of the
device at the same time. Second, the k-means algorithm itself was run specifically on the
neural engine cores of the mobile processor.

Figure 9 shows that increasing the number of cores besides the neural engine cores
significantly increased the performance of the overall clustering by up to two-times faster
than using only neural engine cores for the overall system.
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Figure 9. Multi-core performance.

7. Conclusions

Processing big data efficiently requires using mobile-processor-based clustering. Many
related clustering techniques were discussed in this paper to provide an overview of the
clustering technique. k-means, which is a clustering-based algorithm, was used in this
paper to implement the proposed technique. It can work efficiently with numerical data
better than categorical data. Running k-means clustering on a machine-learning-based
processor can significantly improve the performance and efficiency of the clustering. Using
a distributed system can effectively handle the problem of running k-means clustering to
find the optimal centroid points. Moreover, the number of iterations of clustering can be
increased without affecting the speed of the overall system.
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