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Abstract: In this paper, circuit implementation of a leaky integrate-and-fire neuron model with a
volatile memristor was proposed and simulated in the SPICE simulation environment. We demon-
strate that simple leaky integrate-and-fire (LIF) neuron models composed of: volatile memristor,
membrane capacitance and neuron resistance can mimic spatial and temporal integration, firing
function and signal decay. The existing leaky term originates from the recovery of the initial resistive
state in the memristor in the spontaneous reset cycle, which is essential for emulating the forgetting
process in all-memristive neural networks (MNNs). Furthermore, a diffusive perovskite memristor
was used to validate the model where intrinsic memristors’ capacitance acts as neuron membrane
capacitance. Good agreement with experimental and simulation results was observed. Volatility, as
an inherent property of specific memristors, eliminates the need for usage of an additional peripheral
circuit which will reinitialize device state, thus allowing the development of energy-efficient, large
scale complex memristive neural networks. The presented circuit level model of LIF neurons can
facilitate the design of MNNs.

Keywords: memristor; volatility; leaky integrate-and-fire; SPICE model

1. Introduction

The application of memristors as part of artificial neural networks (ANN), especially
spiking neural networks (SNN) has been extensively studied in recent years [1–4] due to
their unique performances such as: adjustable conductance, multilevel resistance states,
fast operation speed, low dissipation, and prominent scaling potential [2,5]. Memristive
synapse, for instance, allows implementation of Spike Time Dependent Plasticity (STDP)
learning rule [6] as a result of existing ability to memorize state and process information.
Furthermore, memristors can be implemented in neural networks in the form of various
memristive synapse circuits: single memristor (1M), two memristors (2M), one memristor-
one transistor (1M-1T), four memristor synapse circuit (4M), etc. [1,2]. Nowadays, various
memristive neuron models are available in the literature: Hodgkin–Huxley [7], FitzHugh–
Nagumo [8], Hindmarsh–Rose [9], integrate-and-fire model [6], and leaky integrate-and-
fire model [10]. Although the well-known Hodgkin–Huxley model [11] presents the most
accurate biologically plausible neuron model, the memristive interpretation of this model
requires the existence of rare local-activity behaviour reported only in a few physically
realized devices [12,13].

On the other hand, the leaky integrate-and-fire model (LIF), is the most commonly
used neuron model in spiking neural networks, [4,14], due to its simple realization, with the
ability to perform the following essential neuron functionalities: signal integration, firing
function and decay of local gradient potential (LGP). Memristive LIF neurons may require
additional peripheral circuits: Schmitt trigger-based amplifier-STBA [15], comparator,
and pulse generator [16] depending on the properties of memristor itself, which should
discharge the capacitor, the element that mimics neural membrane capacitance, and reset
the memristor state.
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Recently, an all-memristive neural network was presented with a simple memristive
LIF neuron circuit and additional membrane capacitance and axon resistance, where leaky
functionality was realized using volatility in diffusive memristor, while drift memristor
was used in a synaptic circuit composed of one memristor and one transistor (1M-1T) [17].

Although the volatile characteristics of memristors’ response were considered origi-
nally as unwanted, they have become more interesting recently due to the valuable feature,
specifically useful in advanced neuromorphic architectures [17–19], selectors [20], in secu-
rity applications as random generators [21], etc. Volatile memristors can be included either
as part of a neuron cell circuit of a memristive neural network [17] or in combination with
a non-volatile drift memristor for emulation of synaptic activity [18].

Aiming to standardize the characterization techniques, novel experimental protocols
have been proposed recently [22], revealing some of the following effects: number of
programming pulses, programming amplitude, polarity, overall input energy on resis-
tive RAM (ReRAM) relaxation response. Available literature reports on the existence of
both metastable-volatile and stable-non-volatile states within the same memristive device,
dependent on the electrical potential gradient and device history [22,23].

Furthermore, a modelling methodology that accounts for bidirectional volatility was
presented in [24], predicting a transient change of memristance through the data-driven
analytical approach. In a recent study [25], physical models of the filamentary type of
volatile resistive switching devices were presented accounting for Ag nanoparticles motion,
which defines disruption and formation of the filament. This model is numerical and
based on Monte Carlo simulations and molecular dynamics, whereas the same group of
authors presented the analytical model [26], also for volatile memristors confirmed through
measurement of ac characteristics and filament disruption dynamics. Application of this
physical-based model as ReRAM synapse is demonstrated consisting of a single volatile
and non-volatile memristor, mimicking short-term memory effect. Other physical models
of volatile/diffusive memristors are also available and based on: electrical, mechanical,
thermal effects and electrochemical reaction on filament dynamics [17,18].

Starting from the circuit-level SPICE model, which incorporates both non-volatile
and volatile effects in memristor [23], in this paper we included our new window func-
tion [27,28] in the memristor’s model. The memristor’s model was then used in the SPICE
simulation of a simple LIF artificial neuron circuit for all-memristive neural networks. Nu-
merical results show that the model can mimic spatial-temporal integration, firing function
and leaky functionality of a biological neuron. Results of conducted simulations were
verified through carried out experiment on perovskite Pt/BaTiO3/Pt diffusive thin film
memristor due to the fact that perovskite materials have already proven as good candidates
for an active material in diffusive memristors [16]. For the realization of the LIF circuit,
internal capacitance of memristor was used to mimic membrane capacitance in a biological
neuron and shunt resistor was used as neuron resistance. A good agreement between
numerical and experimental findings was observed. As far as our knowledge, this is the
first circuit-based SPICE model of simple LIF neuron with volatile memristor which can be
used in all-memristive neural networks. Validation of the proposed model was performed
by comparison of simulated and experimental results obtained as a response of perovskite
volatile memristor in the LIF neuron circuit. This circuit model of LIF neuron allows de-
coupling of memristive and capacitive influence of neuron response, without the usage of
additional optimization tools, such as genetic algorithm [15], and can be potentially used
for simulation of complex large memristive neural networks.

2. Materials and Methods

Simulations of volatile memristor and leaky integrate-and-fire artificial neuron circuits
were performed in the SPICE simulating environment (LTspice version). Pt/BaTiO3/Pt
(BTO) diffusive/volatile memristors were fabricated by spin-coating deposition technique
of stable precursor solutions [29], on silicon substrate coated with platinum Pt(~150 nm)/
TiO2(~40 nm)/SiO2(500 nm) (Vin Karola Instruments, Norcross, GA, USA). Top Pt electrode
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(~100 nm) was deposited by sputtering (LeyboldHeraeusL560Q) on BTO (~100 nm) film.
The dynamical response of the LIF circuit was experimentally studied with a measurement
setup consisting of NI USB 6351 data acquisition card (National instruments, Austin, TX,
USA) and SDG1025 arbitrary waveform generator (Siglent Technologies). SDG1025 is
used to supply predefined waveforms to the LIF circuit, while NI USB 6351 is used for the
measurement of memristor current and voltage. Memristor current was calculated based on
the voltage drop measured across the series resistor (resistor is utilized as a shunt or current
sensing resistor). The LabVIEW virtual instrument is designed for simultaneous control of
the waveform generator and data acquisition card. Timing characteristic and relaxation time
were estimated using Keithley 2410 High-Voltage Source Meter (Tektronix) also controlled
with LabVIEW, while frequency analysis of capacitance was performed using Hioki IM3590
impedance analysed (HiokiE.E. Corporation, Nagano, Japan) in frequency range from 1 Hz–
100 Hz using the equivalent circuit of parallel connection between capacitor and resistor.
Electrical measurements were performed at room temperature in laboratory conditions.

3. Simulation of LIF Neuron with Volatile Memristor

Starting from the reported SPICE model which can incorporate memristor volatil-
ity [23], we included our new window function

fN(x) =
1− (2x− 1)2

1− (2x− 1)2 + (2x− 1)2N , (1)

where parameter N corresponds to parameter p of original Joglekar [30] and Prodro-
makis [31] window functions. The properties of novel window functions compared to other
window functions most often used in literature are listed in Table 1.

Table 1. Comparison between different window functions.

Different Window
Functions Joglekar [30] Prodromakis [31] Biolek [32] Kvatinsky [33] Singh [34] This Paper

Symmetric Yes Yes Yes Not necessarily Yes Yes

Resolve boundary
conditions No Practically Yes Yes Practically Yes Yes Practically Yes

Accounts for
non-linear effects Partially Partially Partially Yes Partially Partially

Scalability 0 ≤ fmax
(x) ≤ 1 No Yes No No Yes Partially *

Fits memristive
device model L/N/TEAM L/N/TEAM L/N/TEAM TEAM L/N/TEAM L/N/TEAM

Note: L—Linear ion drift, N—Non-linear ion drift, TEAM—Threshold adaptive memristor. * Easily extended to
Yes using multiplicative constant.

In addition to the properties listed in Table 1, the novel window function fN(x) has
the first 2N − 1 consecutive derivatives equal to zero at x = 1/2. Since fN(1/2) = 1 and
fN(x) ≤ 1, it follows that fN(x) has flattened maximum at x = 1/2. The function fN(x) is
shown in Figure 1a for N = 1 ∼ 10. Based on the results from [27], the specific advantage
of the proposed novel window function is the possibility to determine exact closed-form
analytical solutions, expressing the dependence of the charge q (flux ϕ) on the state variable
x, in the case of the used model of memristor:

q(x) =
1
4k

[
ln

x
1− x

− 2
N−1

∑
n=1

(2x− 1)2n+1

2n + 1

]
, (2)

ϕ(x) =
1
4k

[
Ro f f ln(2x)− Ron ln(2− 2x) + Ro f f

2N

∑
n=3

(1− 2x)n

n
− Ron

2N

∑
n=3

(2x− 1)n

n

]
. (3)
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Figure 1. (a) Proposed novel window function in the used model of memristor; (b) Current–voltage
characteristics of model with novel window function for N = 1, 2 and 3. Simulation parameters:
i(t) = Imcos(ωt), Im = 1 mA, ω = 2π rad/s, ROFF = 1 kΩ, RON = 100 Ω, k = 104 C−1.

In this way, when our model is used in numerical simulations, we do not have
to numerically solve the state equation dx/dt = k f (x)i. Instead, for current-controlled
(voltage-controlled) memristor, from i(t) (u(t)) we obtain q(t) (ϕ(t)), and for each value
of the charge q (flux ϕ) we can numerically solve nonlinear algebraic equation q(x) (ϕ(x))
by x, and substitute this x in the state-dependent Ohm’s law of memristor vM(t) =
RM(x)iM(t) (iM(t) = GM(x)vM(t)). With respect to the monotonicity of the functions
q(x) and ϕ(x), there exists only one solution x ∈ (0, 1) in both cases. The influence of the
window function on current–voltage characteristics is presented in Figure 1b.

The model of the volatile memristor is composed of four cells: terminal cell, x-module,
y-module and z-module, which realize coupled differential equations [23]. Terminal cell of
the model as originally proposed by Biolek [32], brings the well-known current –voltage
relation of memristors:

vM(t) = RM(x)iM(t), (4)

where vM(t) and iM(t) represent memristor voltage and current, respectively. Resistance
RM(x) depends on state variable x and values of High Resistance State, HRS, ROFF and
Low Resistance State RON :

RM(x) = RON x + ROFF(1− x) (5)

Additional module cells: x, y and z are composed of controlled current and voltage
sources, used to implement coupling between differential equations, resistors and capaci-
tors (Rx, Cx, Cy, Rz, Cz), which determine the rate of volatile and non-volatile switching,
time constant and leaky function. For more details see [23]. It is important to note that
parameters of module cell x, y and z as well as the cell circuit itself, do not have physical
interpretation and are only used to implement corresponding differential equations [23,35].
In this paper, we modified the equation for the current of controlled sources using a new
window function fN(x), therefore obtaining the following form for the x-cell controlled
current source:

IC(x) =
iMµV RON

D2
1− (2x− 1)2

1− (2x− 1)2 + (2x− 1)2N , (6)

where µV stands for dopant mobility, and D represents the thickness of the active layer.
The controlled current source in y-cell is obtained by analogy.

As recently demonstrated, volatile memristors are suitable candidates for realizing
Leaky integrate-and-fire artificial neuron circuit [16,17], as besides integration they could
implement the “leaky” function of biological neurons after the actuation signal (input
stimulus) is turned off. Here, we incorporated the volatile memristor SPICE model of
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a memristive artificial neuron, proposed in the recent paper presenting neurons in an
all-memristive neural network [17]. The LIF neuron circuit, see Figure 2, is composed
of neuron resistance R, neuron capacitance C and memristor M. Voltage source, VS, as
stimulus generator, generates input signals (pulses) on voltage divider circuit formed of a
neuron resistance and parallelly connected memristor and capacitor. Memristor models the
variable ion channel conductivity, while the capacitor is used to implement cell membrane
capacitance [17]. For a large on-to-off resistance ratio of memristor, a capacitor is charged
through input resistance R, and the capacitor voltage value is increased. Eventually,
capacitor voltage reaches the memristors threshold voltage value, switching it to LRS (on-
state), which presents the onset of a capacitor discharging through the memristor. Abrupt
changes of memristance are detected as the “firing” event in the artificial neuron. After
the pulse train voltage is turned off, the volatile memristor turns to HRS (off-state), which
eliminates the need for additional reset circuits.
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Figure 2. Memristive leaky integrate–and–fire artificial neuron and biological neuron counterpart.

Results of the SPICE simulations of LIF neuron with volatile memristor are given in
Figure 3, parameters values were implemented from [23], while external components equal
to: neuron resistance is R = 10 Ωk and membrane capacitance is initially set to C = 50 nF
and later variated demonstrating their influence on neuron dynamics. SPICE code (LTspice
version) used for simulation of the volatile memristor is included in Appendix A. Values
of memristor’s subcircuit model parameters are given in Table 2, while independent and
controlled source values follow from the model’s equation [23].

The neuron circuit is stimulated with multiple subsequent voltage pulses of the follow-
ing characteristics: pulse duration 1 ms, pulse period 2 ms and amplitude 0.5·V (subthresh-
old value). Results, given in Figure 3 are shown for two pulse trains with five consecutive
pulses and a resting period of 180 ms. Firing occurs at the t f ∼ 5 ms detected as memris-
tor’s current increase, Figure 3 (middle graph, Ix-memristor current in referent direction)
and discharging of the capacitor (bottom graph), i.e., decay of voltage across parallel circuit
formed from memristor and capacitor (vM). This behaviour is classified as memristors’
threshold switching initiated by the pulse input stimulus, where the required time to reach
the threshold corresponds to integration time in neuron dynamics [17]. Resting period tr
between the pulses is chosen to demonstrate the volatility effect in the LIF neuron circuit.
Namely, following the increase rate of memristance RM after the switching, Figure 3 (top
graph), turns back to the initial resistive state value during the resting period tr, simulating
decay of local graded potential (LGP), i.e., “leaky” or forgetting function in the biological
neuron. This initial value of memristance is a biological counterpart to the resting state
of LGP. Relaxation or decay time allows the implementation of STM in artificial neural
networks [17]. Following, second pulse train in the simulations, starting from tr, induces
same effect: charging of membrane capacitance, and transition of memristor’s state.
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Figure 3. Simulated response of LIF circuit with volatile memristor on voltage pulse actuation:
Memristance RM (upper graph), memristor’s current iM (middle graph) and the voltage across
memristor vM (bottom graph).

Table 2. Memristor’s subcircuit model parameters.

Rx Cx Cy Rz Cz

1 Ω 0.5 F 1 F 0.1 Ω 1 F

It is worth noticing that memristance transient response highly depends on input
stimulus energy, device history, switching threshold values [22] and on-to-off ratio. Respec-
tively, volatile phenomenon, yet not entirely revealed can be considered as spontaneous
reset process and returning the device in an initial state.

It is known in the literature [16], that the spatial integration function of an artificial
neuron can be validated as a circuit response under external stimulation with different am-
plitudes, presenting summed spatial stimulus signals. Namely, biological action potential
has uniform amplitude, thus the sum of multiple input signals arriving at the same cell can
be modelled with the alteration of signal amplitudes. LIF model of a neuron implemented
in SPICE environment can also demonstrate spatial integration functionality, e.g., after
increasing amplitude of pulse train input signals from 0.5 V to 1 V (see Figure 4a), a rise
of spike current is observed, from ~90 µA (Figure 3) to ~320 µA (Figure 4a), respectively.
For larger stimulus amplitude, firing event occurs faster as fewer pulses are required for
memristor to reach the threshold value.

The temporal integration function of a biological neuron allows summation of signals
with different frequencies, which will consequently generate a different spike response [16].
This process is also possible to emulate using the proposed LIF model in the SPICE environ-
ment, as higher values of input frequencies induce larger response current, i.e., increased
stimulus frequency from 500 Hz to 2 kHz, see Figure 4b,c for comparison, induces 60% cur-
rent response increase. This behaviour is recognized as temporal signal high pass filtering
and originates from diffusion processes in volatile memristor, as dynamical modulation of
memristance [16].
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Figure 4. Simulation of firing dynamics of memristive LIF artificial neuron under different stimulus
and variable membrane capacitance and neuron resistance. (a) Va = 1 V, Ton = 1 ms, Tp = 2 ms,
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Imax = 1 mA; (d) Va = 1 V, Ton = 1 ms, Tp = 2 ms, C = 500 nF, R = 5 kΩ, Imax = 2.68 mA.

Neuron resistance and membrane capacitance values also have an immense impact on
firing dynamics [17], which could be observable using the proposed SPICE model.

Starting from membrane capacitance, larger values result in extra pulses required to
generate the spike, see Figure 4a,b for comparison for the same stimulus signal due to
higher time constant of capacitance charging. Spike current is increased due to the larger
amount of stored charge in the capacitor. On the other hand, neuron resistance value
in the model influences on the time constant of the capacitor charging (required time to
turn on the memristor), i.e., spike time occurrence (integration time) and spike amplitude
(Figure 4b vs. Figure 4d). Neuron resistance can be used to model synaptic weight, larger
values correspond to lower weight and vice versa [17].

4. Experimental Results and Discussion

In the following section, we report experimental results performed on perovskite
BTO thin film memristor, by analysing device response on consecutive multiple reading
pulses, and single writing pulse in order to test volatility behaviour. We also examined the
dynamic response of LIF artificial neurons composed of physical memristor with intrinsic
capacitance value and external shunt resistance. Experimental results are compared with
numerical results from LIF memristive SPICE model.

Firstly, a typical volatility test [17,18], was performed on a BTO memristor composed of
a train of reading pulses and a single writing pulse, as is shown in Figure 5, where red circles
correspond to measured resistance values. Initial resistance R0 of this device is ~1.43 kΩ
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estimated by application of low-voltage reading pulses of 0.1 V, prior to writing event. BTO
memristor was further stimulated using a single above-threshold pulse with the amplitude
of 5 V, which switches the memristors in LRS state (~1.2 kΩ). Afterwards, a sequence of
low-voltage reading pulses was applied, revealing finite characteristic relaxation time τr
~60 s. After this time, the device returns to the initial state R0. This behaviour is typical for
volatile memristors, indicating that after the stimulus is turned off, the device returns to
the HRS state in a finite time period. In realized Pt/BTO/Pt device, diffusion of oxygen
vacancies could lead to changes of electrical properties within the material [36], which
resembles the ionic diffusion process controlling neuron channel conductance [37]. Both
analogue-type switching [16] and threshold switching [38,39] was observed in volatile
memristors [40]. Due to the low off-to-on resistance ratio (~1.5) and moderately steep
transition between the resistance states (Figure 5 inset), realized device could be classified
as an analogue switching volatile device [40].
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In Figure 6 we included both simulated and experimental values of normalized
resistance response upon the previously explained shown pulse train cycles. Simulation
was performed in LTspice simulator on volatile memristor model, presented in Section 3,
with the following parameters: RON = 1.5 kΩ, ROFF = 2 kΩ, uV = 10−10 cm2/Vs, D = 100 nm
corresponding to sample properties. As fitting parameters, we used electrical parameters
of x-module Cx, Rx, i.e., components of the volatile cell, which determines the amount of
volatile switching and relaxing period [23], respectively. Results, illustrated in Figure 6,
show good agreement between experimental and simulated data. Existing discrepancies
in the decay rate may originate from intrinsic device capacitance as well as the parasitic
capacitance induced through measurement setup.

For a simple LIF circuit, an additional capacitor and resistor are included in the neuron
model. Recent studies show that external capacitance can lead to a prominent delay in
integration time [17], thus we use the intrinsic memristor’s capacitance, whose value is
estimated to ~1 nF, using an impedance analyzer for the frequency range of interest. The
extracted simulation parameters and frequency-dependent capacitance value were used as
input parameters for SPICE simulation of LIF neuron, Figure 7.
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The firing dynamic of the artificial neuron circuit could be analyzed using pulse train
stimulation as proposed in [16,17]. In this experimental study, we applied multi-pulse
voltage stimulation, Vs (frequency 10 Hz, amplitude 6 V, pulse duration 50 ms), Figure 8.
Actuation voltage is divided between shunt resistor R and memristor-capacitor parallel
connection. In the experimental setup as described in the materials and method section,
current response is estimated according to values of voltage across constant resistor R, Vr,
see Figure 8b. During the fourth pulse (see Figure 8a), the voltage across the memristor
(including intrinsic capacitance), Vm drops down from ~3.8 V to ~3.5 V which occurs as a
consequence of memristor switching to LRS state (RON ≈ 1.5 kΩ). Namely, pulse actuation
induces conduction modulation within diffusive memristor, which will eventually turn
the device to on state and change the Vm value. At the same time, ~0.33 s, the current
through the circuit increases starting from 2 mA to 2.36 mA, which is determined according
to values of voltage Vr across constant resistor od 1 kΩ (see Figure 8b). An increase in
current during pulse stimulation is interpreted as a firing event [16,17], yet due to the
limited performance of BTO physical devices, specifically low off-to-on resistance ratio, this
is not a very pronounced effect. It is worth noting that the amplitude of actuation voltage
in our experimental studies was chosen in order to more easily reveal switching time, as for
lower voltage values, the off-to-on resistance ratio of the diffusive memristor is decreased.
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The additional peripheral circuit could be placed after the artificial neuron, in order
to distinguish a spike event from an integration period. Solutions using comparator and
pulse generator [16] or Schmitt trigger-based amplifier [15], already presented in literature,
allow spike events to occur only when the input signal reaches the predefined threshold
value. Certainly, improved performances of volatile memristor eliminate the need for a
peripheral circuit in LIF neuron as presented in [17].

In Figure 8c,d SPICE simulation results of the LIF circuit are illustrated with the
parameters extracted from normalized resistance timing characteristics (Figure 6) and
properties of the BTO memristor. Regarding memristor voltage value transition, the initial
voltage value is 3.69 V, while the final state amounts to 3.49 V, reached at 0.32 s (Figure 8c).
Moreover, SPICE simulation results allow extraction of memristor current, without the
need for usage of optimization tools for separation of memristive and capacitive effect
which is required in the circuit design process [15]. Figure 8d illustrates memristors’
current (Ix(Memristor:plus)) increases at ~0.32 s from 2.11 mA to 2.49 mA, which is in good
agreement with the experimental analysis (see Figure 8b for comparison). Gradual changes
of simulated memristors voltage and current values (Figure 8c,d) before reaching the stable
state can not be detected through experimental results due to limitations of measuring
equipment. After the pulse train is turned off the device returns to its initial state in finite
relaxation time.

5. Conclusions

In summary, we have implemented our new window function in the existing model
of the volatile memristor in the SPICE simulation environment and included it in a simple
leaky integrate-and-fire neuron circuit applicable in all-memristive neural networks. Simple
LIF circuit uses inherent volatility of resistive switching element to provide decay of local
gradient potential, as a leaky term in short term memory, therefore no additional blocks are
required. Performed simulations demonstrate that the model can capture biological neuron
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dynamic: spatiotemporal integration task, firing function and leakage, i.e., forgetting func-
tionality. The neuron model can also illustrate the influence of neuron resistance (synaptic
weight) and membrane capacitance on firing behaviour and integration time. Verification
was performed through comparison with an experimental study using Pt/BaTiO3/Pt diffu-
sive/volatile memristor. In a physical LIF circuit, the intrinsic capacitance of the diffusive
memristor is utilized as an integration element. Results show good agreement between
model and experimental study for both resistance decay rate of volatile memristor itself and
firing behaviour of LIF circuit. Demonstrated SPICE simulation of LIF allows decoupling of
individual component influence of spiking behaviour and contributes to the enhancement
of design of complex memristive neuromorphic architectures.
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Appendix A

SPICE CODE for volatile memristor
*Volatile Memristor Model
*Copyright 2021 FTS UNS MEMR Research Group
.param Ron=1 Roff=100k uv=1e-10 D=10n qp=300e-9 qn=-300e-9 Rint=15k
+ k={uv*Ron/D**2} deltaR={Roff-Ron} p=10
.param x0={(Roff-Rint)/(Roff-Ron)} y0={(Roff-Rint)/(Roff-Ron)} z0=0
*New window functions
.func fours(x)={(1-(2*x-1)**2)/(1-(2*x-1)**2+(2*x-1)**(2*p))}
.func
iy(y,v,z)={if(v>0,if(z>qp,I(Emem)*uv*Ron*fours(y)/D**2,0),if(z<qn,I(Emem)*uv*Ron*four
s(y)/D**2,0))}
.subckt memristor_vol 1 2 x y z
*terminal cell
Roff 1 aux {Roff}
Emem aux 2 value={-deltaR*v(x)*I(Emem)}
*end of terminal cell
*x-module
Gx 0 x value={I(Emem)*uv*Ron*fours(v(x))/D**2}
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Cx x 0 0.5 IC={x0}
Rx x 3 1
Enov 3 0 value={v(y)}
*end of x-module
*y-module
Gy 0 y value={iy(v(y),v(x),v(z))}
Cy y 0 1 IC={y0}
*end of y-module
*z-module
Gch 0 z value={I(Emem)}
Cz z 0 1 IC={0}
Rz z 0 0.1
*end of z-module
.ends memristor_vol
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