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Abstract: In the years since its initiation, the software-defined network paradigm has evolved into
a distinguished networking technology by causing a revolution in separating the control logic from
physical devices and centralizing software-based controllers. Despite its indisputable benefits compared
with the traditional network, the SDN raises the challenge of scalability with its physically centralized
control. The only potential solution is to transform it into physically distributed SDN control. However,
this solution requires the interoperability between SDN controllers, and the consistency of network
state being distributed across these controllers. Although some east–west interfaces that help SDN
controllers exchange network information have been released, they reveal several drawbacks. First,
they cannot support a heterogeneous SDN system where SDN controllers are developed by different
providers. Secondly, their consistency solution is simple in disregarding the tradeoff between the
consistency level and the performance of SDN networks. This paper proposes an east–west interface,
called SINA, to provide the interoperability of a heterogeneous and distributed SDN network. In
addition, a novel reinforcement-learning-based consistency algorithm is introduced for an adaptive,
quorum-based replication mechanism. The experimental results showed that SINA successfully connects
heterogeneous and distributed SDN domains and balances the consistency and network performance.

Keywords: SDN; heterogeneous and distributed SDN control; scalability; interoperability; quorum
consistency; adaptive consistency; reinforcement learning; Q-Learning; ONOS controller; Faucet
controller; OpenDaylight controller

1. Introduction

The inception of software-defined network (SDN) is considered an auspicious rev-
olution in network technology by dividing the control plane from the data plane of the
classical network [1]. It leverages the logically centralized controller provided by a world-
wide network view to manage the system. SDN allows technological breakthroughs by
relocating the burden of network management to software-based networks. Besides its
numerous advantages, such as centralized network management, operating costs savings,
complete enterprise administration, hardware savings, coarse security, and lower capital
expenditures, the SDN architecture is facing a challenge of scalability and reliability because
of its physically centralized controller [2,3]. A single physical SDN controller encounters
the bottleneck problem due to many physical devices in the data plane. Additionally,
the physically centralized SDN control cannot support different demands of enormous
network implementation (e.g., service provider networks or data centers). In other words,
the SDN architecture is recommended to be implemented with the physically distributed
and logically centralized control [4–9]. When required, a physically distributed SDN control
can scale physical controllers up by adding more controllers. In addition, the system relia-
bility is also enhanced because the network is now fault-tolerant with backup controllers
whenever controller failures occur. Consequently, the physically distributed SDN control is
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indispensable to address the scalability and reliability problem. Such control plane needs
the interoperability between distributed controllers and the consistency of network state.

The interoperability of a distributed SDN network is the ability of participant domains
controllers to exchange information and coordinate seamless operation. In a general SDN
architecture, besides the northbound interface and southbound interface for exchanging
information with the application plane and the data plane, respectively, the east–westbound
interface is needed for interoperability between distributed controllers. However, contrary
to the widespread popularity of the standardization of southbound interface OpenFlow,
the east–westbound interface has not received the necessary attention from the research
community to offer interoperability between SDN controllers. This is explained by the fact
that, today, when the upgrade from the legacy network to SDN is still relatively small, the
need for interoperability of SDN networks is not yet necessary. However, this interoperabil-
ity is the survival of the internet for the foreseeable future as SDN increasingly proves its
advantages [10]. It is undeniable that the efforts of some research groups have yielded some
results, see [11–13]. However, they have just resolved the interoperability problem for a
homogeneous SDN network with the same controller type provided by a vendor. Recently,
two east–west interfaces [14,15] were proposed for heterogeneous SDN networks with
different types of controllers. Nevertheless, they applied the active replication mechanism
in broadcasting every new update information to all other controllers. As a consequence,
the broadcasting method degrades network performance.

Consistency for the network state of a distributed SDN network is to ensure that each
domain’s information about the global system is consistent. The centralized consistency
mechanism is deployed in many studies [16,17], with a centralized server to collect all
the updated information from the whole system. However, this method has a few dis-
advantages, including the following: (1) scalability—it is difficult to scale the number of
SDN clusters due to the limitation of the centralized server’s performance; (2) single point
of failure—if that centralized server crashed, it would lead to the collapse of the entire
system. In our paper, we choose a completely different approach in using a distributed
SDN system without using any centralized server. The distributed SDN controllers apply
two replication methods to ensure the consistency of network topology information of the
whole system. Our approach can address both mentioned problems. With the physically
distributed SDN design, some significant consistency challenges have been raised in recent
years [18,19]. As proven in [20] with the CAP theorem, an SDN network cannot satisfy all
the three factors: partition tolerance (P), high availability (A), and consistency (C). Con-
cretely, a network consisting of many partitions with high availability (A and P) causes a
weak level of consistency. Consequently, this state of staleness affects the correctness of
applications. On the contrary, a system with a strong consistency (C and P) results in a
lack of network availability. Unfortunately, the majority of research on the network state
consistency for the distributed SDN network has only focused on the guarantee of the
strong consistency model [21–23]. The latter ensures that all SDN controller surrogates
always have the most updated network state. Unfortunately, that leads to significant degra-
dation of network performance. The problems mentioned above motivated us to address
the two issues: (1) interoperability of a distributed and heterogeneous SDN network, and
(2) network state consistency in considering the tradeoff between the consistency level and
the network performance. This paper proposed an east–west interface called SINA, which
helps heterogeneous SDN controllers update network states. Moreover, we also introduced
in SINA an adaptive, quorum-based replication mechanism for an eventual consistency
model that ensures an acceptable consistency level, while keeping some network metrics
below some predefined thresholds. The choice of replication method depends on the nature
and needs of the system. For example, the active replication method is appropriate if the
system needs to ensure strong consistency without worrying about performance waste
with the broadcasting mechanism. On the contrary, if strong consistency is not essential
and the system needs to save performance for message broadcasting, then it has to choose
the quorum-based replication method. The experiments are divided into two phases:
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SINA east–west interface validation and SINA with adaptive consistency model. The former
demonstrates the correctness of the SINA framework in applying the most straightforward
consistency policy, the active replication, based on the broadcasting mechanism. The latter
is performed to evaluate SINA in applying the quorum-based replication mechanism using
the Q-Learning algorithm. The experimental results obtained in both phases showed that
SINA could guarantee an acceptable consistency level while maintaining good network
performance metrics, such as read delay, write delay, and overhead. The organization of
this paper is described as follows. Section 2 presents a brief overview of distributed SDN
networks and a short survey on existing east–west interfaces and consistency mechanisms
for a distributed SDN network. Section 3 describes in detail the proposed east–west inter-
face SINA. The proposed adaptive consistency algorithm is illustrated in Section 4. The
experiments are analyzed in Section 5. Section 6 gives the conclusion and perspectives.

2. Overview of Distributed SDN Network and Related Work

The distributed SDN architecture is illustrated in Figure 1. The SDN network is divided
into several domains in the data layer, and a controller manages each one. All controllers
constitute a joint heterogeneous controllers’ cluster in the control layer. These controllers,
provided by different vendors (e.g., ONOS, OpenDaylight, Faucet, etc.), communicate
through an east–west interface. Besides the need to help controllers in this SDN cluster
easily understand each other, the control layer also requires a consistency mechanism so that
all controllers share the same knowledge about the network state. In other words, they must
possess the identical local replication of the whole network topology and the device/link
state. Any state change in any controller (e.g., the appearance of a new device/link, the
failure of a device/link, etc.) must be disseminated to other controllers according to a
consistency algorithm. This section provides a brief survey of existing east–west interfaces
and their consistency mechanisms.

Figure 1. Distributed SDN architecture.

Almadani et al. [14] proposed a distributed SDN control framework, called DSF, also
for an east–west interface. They have already tested DSF with two control platforms: ONOS
and Floodlight. The problem of DSF is that its current version works only on Java-based
control platforms, although the authors explain that it can run on multiple platforms. For
other problems, DSF is not a distributed network, and they always need a centralized
controller to collect information from other ones or centralized shared data space.

Benamrane et al. [24] proposed an east–west interface, called communication interface
for distributed control plane (CIDC), that allows synchronization. CIDC’s performance is
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evaluated in emulated topologies with two services: firewall and load balancing. It uses
three communication modes: notification, service, and full. However, CIDC is implemented
only for the communication between Floodlight-based and ODL-based controllers. In [12],
Adekokun et al. presented a modified version of CIDC, called mCIDC, that is deployed
using Floodlight controller to ensure the communication between controllers of a WAN
network. mCIDC consists of four main modules: data updater, data collector, consumer,
and producer. The consistency model of mCIDC is based on publish/subscribe model,
where every update in each controller is propagated to others. Netty framework is used to
decrease the resource consumption and applied two communication modes: notification
and full. Both CIDC and mCIDC have the same disadvantage of applicability across
different controller types. In addition, these two interfaces applied the strong consistency
model to update every change of each controller, leading to performance degradation.

In [15], Yu et al. proposed an east–west interface, called WECAN, consisting of three
modules: the controller selection management (CSM) module, the cross-domain manage-
ment (CDM) module, and the network information collection (NIC) module. The role of
the NIC module is to provide a domain-wide network state by gathering network data
from a different set of controllers. The CDM module provides a global network state by
accumulating domain information from other domains. Finally, the CSM module chooses
the most efficient controller for each network flow based on the domain-wide and entire
network state. The experimental results showed that WECAN had improved some network
parameters (e.g., latency, throughput) compared with a single controller–controlled network.
However, WECAN can be integrated into only two controllers: Floodlight and Maestro.

The widely known controller platforms (e.g., NOX, ONOS, ONIX, OpenDaylight,
Faucet) have also implemented east–west communication techniques between SDN con-
trollers. Hyperflow [25], an application of the NOX platform [26], is a scattered-event-
driven control layer for OpenFlow. Each controller has a HyperFlow controller application
instance that publishes the update state events of the system using a publish/subscribe
system. Afterwards, other controllers apply all the published events to regenerate the
state. In other words, it aims to synchronize the view of all controllers based on an event
dissemination system applying publish/subscribe mechanism. However, Hyperflow uses
the broker-based distributed file system WheelFS [27] that caused the problem of network
performance degradation. The open-source platform ONOS uses a distributed system
framework, called Atomix [28], to manage SDN clusters. Atomix, considered an event-
driven reactive Java framework, also encounters the problem of scalability, leading to
system performance degeneration with the growth of the network scale. In [13], a tool
named ICONA (inter-cluster ONOS network application) is proposed to help ONOS to
operate in an individual supervisory WAN network plan. It allows an individual ONOS
cluster to be coordinated with numerous other clusters of different administrative do-
mains. However, ICONA works only with the ONOS controller, and it applied the active
replication method to guarantee strong consistency. In the ONIX platform [29], a data
structure—network information base (NIB)—is used to store network state information.
Using ONIX APIS, the state information can be replicated to all other controllers for ev-
ery state update. The performance limitation makes ONIX appropriate only for network
states with slow changes. Besides, ONIX has as strict a requirement the necessity of a
global view in all SDN controllers. The essential replication in real time of all persistent
transactional databases across all controllers makes ONIX not applicable to an unstable
large-scale network. The OpenDaylight platform [30] applied Akka framework [31] for
network state synchronization between clusters of SDN controllers. The Akka framework
has performance limitations because of large-scale clusters’ huge flow or control packets.
In the Faucet framework, the management of communication between SDN controllers is
handled by Prometheus [32]. This latter allows each controller to share information from
the local network or monitor other Faucet controllers’ network information. InfluxDB is
used to propagate network information between different controllers through a shared
database. For Kandoo [33], the controllers are distributed in a two-level hierarchy archi-
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tecture that consists of a root and multiple local controllers. The disadvantage of Kandoo
is that communication between controllers in a tier is not allowed. Additionally, the im-
plementation of second-tier services that demands a global view of the system is limited.
ElastiCon [34] creates a scalable controller pool that becomes larger or smaller according to
the traffic conditions. A load of tasks is dynamically allocated to controllers.

The main characteristics of mentioned SDN controller platforms are summarized in
Table 1.

Table 1. Characteristics of the SDN controller platforms.

Architecture Design Type

Scalability Level

Consistency Level

LanguagePhysically
Centralized

Physically
Distributed Flat Hierarchical Strong Eventual Weak

Hyperflow X X High X C++

POX X Weak X Python

NOX X Weak X Python

ONOS X X Very high X X Java

ONIX X X Very high X X Python C

OpenDaylight X X Very high X Java

Faucet X X High X Python

Kandoo X X Very high X Python, C++, C

3. Proposed East–West Interface for a Heterogeneous and Distributed SDN Network

The proposed SINA (SDN Inter-Domains Network Application) is an east–west in-
terface to enable network state sharing between heterogeneous SDN domains. Concretely,
every change/update of the network state of a domain is captured and then disseminated
to all other SDN domains through our SINA RESTful APIs. The source code of SINA is
open and available on GitLab upon access request [35].

SINA consists of two main components (Figure 2):

• SINA Listener component: Every network state update in the data plane is transmitted
to the Core Service management module as an event. SINA Listener component, similar
to a daemon process, aims to listen and capture these events in the core services of
each controller. Then, they are disseminated to other SDN controllers.

• SINA API component: It is a set of definitions and protocols used to manage the
network state database. SINA API allows controllers to make their resources accessible.
For example, as shown in Figure 2, after capturing an event from the core service,
controller one notifies it to controller two by calling the SINA API component. The
latter is responsible for maintaining and updating the local network state database.

The SINA framework is fully customizable. Concretely, the notification policy can
be adapted according to the nature of the information, the criticality level, or the network
conditions. In addition, to secure the information transmission, data transfer authorization
based on OAuth2 protocol (open authorization) (https://oauth.net/2/ accessed on 20 July
2021) can be activated. It can support different tokens to provide multiple authorization
levels and dynamically adapt them according to the requirements. In order to prove the
openness of SINA, we deploy it in three different widely used SDN controllers: ONOS [36],
OpenDaylight [30], and Faucet [37]. Figure 3 illustrates the implementation of SINA in
these three controllers as well as different interactions. The component SINA Listener is
continuously listening to any event generated by the core service component. After an
event is captured, SINA Listener calls SINA API component of other SDN controllers to
update the information. The IP addresses of the other controllers are configured in the
JSON file IPList.json.

In the inception phase, the proposed SINA is temporarily deployed with the active
replication mechanism to guarantee strong consistency based on the broadcasting method.
Explicitly, after an update occurs in a controller, it will be incontinently broadcasted to

https://oauth.net/2/
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all other controllers. The objective of this first temporary deployment is to validate the
correctness of the application’s operations. After, in the second phase (Section 4), we
develop an adaptive, quorum-based replication algorithm to balance the consistency level
and the network system performance.

SDN 1

Application Plane

SINA
SINA ListenerSINA API

Control Plane

Core Service

Data Plane

(1) Event of Data Plane
(e.g. adding hosts, removing devices, …)

(2) Get event from Core Service

SDN 2

Application Plane

SINA
SINA ListenerSINA API

Control Plane

Data Plane

(3) Call API to 
Notify Event

Knowledge 
about other 
SDNs

(4) Update the 
change

Figure 2. General architecture of SINA.

Figure 3. SINA implementations.

The different implementations of the SINA application in three controllers are de-
scribed as follows (Figure 3).

3.1. Development of SINA’s Components in ONOS

An application on ONOS usually consists of two main components @active and @Deac-
tive that are used to perform actions in the running state and the stopped/deleted state,
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respectively, (Figure 3). An ONOS application can execute functions and activate services.
Therefore, to build a Listener component, we create it as a service activated by the @active
component. ONOS offers several predefined functions for listening events, and new cus-
tom listener complements as an implementation of ListenerService class. The latter is an
abstraction of the service that offers asynchronous notification capabilities. It contains two
declared methods: addListener() and removeListener(). The SINA Listener is deployed
by implementing this interface and these two functions to capture events from the ONOS
core service.

For the SINA API component, the idea is also to create a service with additional APIs.
Using the Swagger framework simplifies the creation of APIs in ONOS. Concretely, an inter-
face called ApiService is created. Then, we create the SinaApiManager class that implements
the ApiService interface by defining all its methods. The SinaApiManager class extends the
BaseResource class so that the Swagger framework can implement the defined APIs.

3.2. Development of SINA on OpenDaylight

As shown in Figure 3, every application of ODL consists of two main functions: init()
and close() (similar to @active and @Deactive in ONOS). There is a difference between
ODL and ONOS regarding data management. In fact, in ONOS, services can capture events
or get switch information from the core service. On the contrary, it is impossible for ODL
services because the data is stored in an object called a dataTree. The operations, such as
altering, collecting, editing, deleting, and capturing events, are all implemented by an
object called a DataBroker.

For API development, ODL uses a model-driven service adaptation layer (MD-SAL).
The latter utilizes YANG (Yet Another Next Generation) [38] as a modeling language to
define the interfaces and the data to be exposed. So, to implement the SINA API, we define
the operations in a supported file, named sina.yang, and register it in the method init().

3.3. Development of SINA on Faucet

The Faucet, inherited from the Ryu controller [39], is essentially different from the
ONOS and ODL. It is impossible to create an application separately from the Faucet because
it is already an application on the Ryu controller. Any application developed outside of
Faucet can capture only Ryu events/information. Hence, we integrate our source code
directly into Faucet’s source code (Figure 3).

For the Listener component, the functions send_event() and send_event_to_observers()
are used. They are defined by the Ryu controller and can be used to add a new listener to the
Faucet’s listener list. In addition, Listener component used set_ev_cls to obtain events from
the core service. For example: set_ev_cls(dpset.EventDP) contains the event handlers
of the DataPath.

Faucet/Ryu implements a library based on WSGI (Web Server Gateway Interface) that
facilitates the API building. It is a specification that describes how a web server connects to
web applications and how these applications can process requests. According to the SINA
API component, we defined WSGI context in a Faucet class. In addition, a new class is also
created to define the supported operation.

3.4. Openness of SINA for Other SDN Controllers

According to the openness of SINA, besides the three controllers ONOS, OpenDay-
light, and Faucet, SINA is ready to be implemented into all other SDN controllers because
it uses two types of controllers library: Listening (SINA listener component) and API
creating library (SINA API component) packages. Developers can leverage that every SDN
controller uses these two types of libraries to implement SINA into that controller. For ex-
ample, Floodlight [40,41], a widely known Java-based controller, has three library packages
for Listener—SwitchListener, DeviceListener, and MessageListener—to receive notifications
whenever there is any update of switch, devices (end-host), and message. Concerning
the data translation, SINA has a broker module in charge of converting the network state
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information in the API component. After receiving data from other SDN controllers, this
broker module extracts the necessary data (switch, host, link, port, etc.) and saves the data
in a fixed form. This means that this data has the same form in different SDN controllers
and platforms. In addition, since the information transmitted is only in JSON or raw text,
this broker module can be customized easily.

4. Proposed RL-Based Consistency Algorithm

As mentioned above, the initial phase of SINA follows the active replication, where
any update information is propagated to all other controllers. Unfortunately, this broadcast-
based solution is not appropriate for large-scale distributed systems because it consumes a
lot of network bandwidth and degrades other quality of service factors (delay, loss rate, etc.).
Therefore, we are addressing the problem of how to ensure an acceptable consistency level
while guaranteeing good QoS metrics. That motivates us to propose an adaptive, quorum-
based algorithm to consider the compromise between consistency level and network system
performance. The objective is to maximize the consistency metrics represented by staleness
values, such as version staleness and time staleness, while continuously keeping the QoS
metrics below some predefined thresholds.

Among consistency protocols, the replicated write protocols are appreciated for their
flexibility of sending updates to multiple replicas instead of only one. Replicated write
protocols consist of two types: active replication and quorum-based protocol. The main
difference to distinguish these two protocols is that the former uses the broadcasting
mechanism by forwarding the update to all replicas, while the latter, on the contrary,
forwards the update to only some replicas (the write–quorum). According to the reading
operation, for the active replication protocol, a replica reads its local data item. Otherwise, for
the quorum-based protocol, a replica performs the read operation on a set of other replicas
(the number of replicas of this set is read–quorum).

The proposed consistency algorithm is described explicitly in the following subsections.

4.1. Quorum-Inspired Consistency Adaptation Strategy for SINA

The consistency strategy can be modeled by the quorum-based replication mechanism.
Let N, NR, and NW be the total number of controllers, the read–quorum value, and the
write–quorum value, respectively. Then, every time a network state update occurs in an
SDN domain, the controller forwards it to NW other controllers. Similarly, every time a
controller performs a read operation, it will pull the network state information from NR
other controllers. Thus, as explained above, there are two types of consistency guarantees.

• Strong consistency: The strict quorums require that the sum of write–quorum and
read–quorum must be greater than the total number of controllers: NW + NR > N.
This consistency model guarantees that the read operation always obtains the latest
data item value. However, it is costly in terms of network performance due to the
high synchronization overheads.

• Eventual consistency: The partial quorums allow the sum of write–quorum and read–
quorum not need to overlap the total number of replicas: NW + NR ≤ N.

Partial quorum-based systems guarantee only the eventually consistent network
information, resulting in inconsistent information returned to the applications. This issue
is not tolerable for some applications. Therefore, we apply the PBS model in [42] to analyze
the returned network data, evaluate the consistency level, and control the balance between
consistency level and network parameters representing QoS.

Based on these notions, this paper proposes an adaptive, quorum-based consistency
model for SINA using partial quorums. The expected benefits are good network perfor-
mance, scalability, and an acceptable consistency level. The key to the problem lies in
choosing the pair of values NR and NW to optimize network performance and consistency
levels. The network performance is based on the network metrics obtained when running
an application in the application plane, such as the read/write delay and the synchroniza-
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tion overhead. The continuous consistency model monitors the consistency metrics (i.e.,
version and time staleness metrics) to meet the consistency requirement consistently.

4.2. Proposed Reinforcement Learning-Based Consistency Model for SINA

We propose an adaptive, quorum-based algorithm to consider the compromise between
consistency level and network system performance. The objective is to maximize the
consistency metrics represented by staleness values such as version staleness and time
staleness while continuously keeping the QoS metrics below predefined thresholds. That
motivates us to apply reinforcement learning (RL) to optimize two parameters NR and NW ,
so that both the network performance and the consistency level are guaranteed. RL approach
uses the Q-Learning algorithm [43] (Figure 4) that is an algorithm for specific problems by
applying the RL approach [44] with its basic concept of Markov decision process (MDP).
Based on the experience and rewards, an RL agent can learn control strategies. The MDP
model is illustrated by a tuple (S ,A,P ,R) with S and A are set of states and actions,
respectively. The transition model P(s′|s, a) is the probability of switching to state s′ after
performing action a at state s. The obtained reward isR(s, a, s′) after executing a at state s
and switching to s′. At state s, the selection action a is qualified by the Q-value Q(s, a).

Figure 4. Q-Learning algorithm.

In order to solve an MDP, an optimal policy π : S −→ A is needed. The π policy
determines the action corresponding to the current state to maximize the cumulative
rewards. The Q-fixed point (Bellman equation) needs to be calculated:

Q∗(s, a) = r(s, a) + γ ∑
s′

P(s′|s, a)maxa′Q
∗(s′, a′) (1)

where r(s, a) represents the expected instantaneous reward of the chosen action a. γ
represents the discount factor.

Based on RL, the Q-Learning algorithm [43] is proposed to estimate the optimum
action-value function in Equation (1). The agent uses the returned reward r to update the
Q-values with the following update equation:

Q(s, a) = (1− α)Q(s, a) + α[r + γ max
a′

Q(s′, a′)] (2)

where α is the learning rate.
The characteristic of Q-Learning in directly approximating the optimum action-value

function with the current policy free motivates us to model the selection problem of the
pair of values NR and NW as the Q-Learning context.

Our selection of the Q-Learning’s action set in Algorithm 1 is inspired by the TCP
Vegas, the congestion avoidance mechanism of TCP [45]. That is explained by the fact
that the essence of TCP Vegas is to dynamically control the window size according to
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the network’s congestion level. For our problem, the values of NR and NW are adjusted
automatically according to the consistency level. If the consistency level is in a downtrend,
the values of NR and NW will be increased. Otherwise, if the consistency level is an uptrend
or acceptable, the values of NR and NW will be decreased.

Algorithm 1: Reinforcement learning consistency algorithm for SINA.
Input: R, ε, α, QValues[]
Output: Arrays NR[] and NW []
Initialize the array QValues[] of 6 update actions of NR and NW by Equations (6) and (7)
for t← 1 to R do

Choose an update action with ε probability for the highest Q-Value and (1− ε)
probability for a random action

Append the chosen NR and NW to two the arrays NR[] and NW []
Calculate the reward value by Equation (3)
Update QValues[] by Equation (2)

end
return Arrays NR[] and NW []

The reward is calculated by Equation (3).

Rewardt =

{
ThVst −Vst if WD < ThW&RD < ThR
−ThVst if WD > ThWorRD > ThR

(3)

where WD and RD are the read delay and write delay metrics, respectively. The former is
the period from when the request is sent to NR controllers to when these controllers’ results
are returned. The latter is the period to disseminate topology update messages to NW
controllers. The ThW and ThR are the delay thresholds for the write and read operations.
They are considered tolerable thresholds of the latency of write and read operations. These
two thresholds are analyzed in detail through experiments in Section 5.2.3. Vst and ThVst
are the metrics of version staleness and its threshold, respectively. The version staleness is
determined by the version difference between the real version of the local database and the
one at the moment where the controller performs a read operation [42,46].

We define the variable DIFF for the adjustment of NR and NW . DIFF is calculated by
Equation (4).

DIFF = N ∗
(

1− CL
CLbase

)
(4)

where CLbase is the largest value of the CL values observed in the last 10 times. The value
CL representing the consistency level is calculated by Equation (5).

CL =
π

Π
(5)

where π is the number of times that a replica has read the latest value in the last 10 s. Π is
the total number of requests in the last 10 s.

The NR and NW are updated with Equations (6) and (7). The two thresholds α and β
are pre-fixed through experiments (Section 5).

NR(t + δt) =


NR(t)− 1 if DIFF < α

NR(t) if α < DIFF < β

NR(t) + 1 if DIFF > β

(6)

NW(t + δt) =


NW(t)− 1 if DIFF < α

NW(t) if α < DIFF < β

NW(t) + 1 if DIFF > β

(7)
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For the selection mechanism of the Q-Learning algorithm, we applied the ε-greedy
policy [47]. The latter chooses with a probability of (1− ε) the value of NW or NR with the
highest Q-value and a probability of ε a random value of NW or NR in the current state.

The proposed algorithm is expected to guarantee acceptable values of version staleness
and time staleness while keeping the metrics WD and RD below the two thresholds ThW
and ThD, respectively.

4.3. Proposed Adaptive Architecture

The proposed architecture is illustrated in Figure 5. The SINA API component contains
the module “Network state updating” that is used to continuously listen and receive the
propagation information from other controllers (flow 1). Then, it updates the local network
state database representing the global view on the whole network of the current controller
(flow 2). To assess the performance of the proposed consistency model, we deployed
an application for file transfer (the module running application) with an adaptive routing
mechanism that finds the lowest cost path from the sender to the receiver machine. This
application extracts the network topology information from the local database to perform
the routing algorithm (flow 3). The SINA Listener component consists of two modules:
network monitoring and quorum-based replication. The former always listens for the update
events from the core service of the control plane (flow 6), updates the local database (flow 5),
then sends up to the module quorum-based replication for the propagation. The latter is the
core module of the SINA architecture. Since reads or writes operations are a decisive factor
influencing the application’s consistency level and the network performance, the selection
operation for the two values of NW and NR plays a crucial role in the consistency model.
Therefore, the quorum-based replication module is modeled as a Q-Learning model inspired
by the TCP Vegas algorithm as described in Section 4.2. After choosing the two values
NW and NR, the module quorum-based replication propagates the update information to NW
controllers, or sends the network state request to NR controllers (flow 8).

Figure 5. SINA architecture with the adaptive, quorum-based replication module. The numbers (1)–(8)
represent flow ID.

5. Performance Evaluation

In this work, the performance evaluation is divided into two phases:

• SINA east–west interface validation: In the first step, we aim to examine the correctness
of the SINA framework in applying the most straightforward consistency policy,
the active replication, based on the broadcasting mechanism. Every update in each
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controller is sent to all other controllers. We also compare SINA’s performance with
other east–west interfaces of three widely used frameworks: ONOS, OpenDaylight,
and Faucet.

• SINA with adaptive consistency model: In the second phase, the performance of the
SINA architecture in Figure 5 is evaluated in applying the quorum-based replication
mechanism using the Q-Learning algorithm.

5.1. SINA East–West Interface Validation
5.1.1. Testbed Setup

The used network topologies in our testbed are taken from TopologyZoo (http://www.
topology-zoo.org/, accessed on 18 June 2021), an in-progress project aiming to compile
network topology data from around the world. There are over two hundred and fifty
networks in the “Zoo” in different graph formats for statistical analysis, plotting, or other
network research topics.

In order to study the performance for different network scales, four network topologies
are selected from the TopologyZoo.

• AARNet is initially established between the University of Melbourne in Australia,
the Commonwealth Scientific and Industrial Research Organization (CSIRO) in all
Australian state capitals and the Australian National University in Canberra. AARNet
consists of 13 network switches and hosts.

• Abilene network generated by the Internet2 community with 11 network switches
and hosts.

• AMRES network is the national research and education network of Serbia. It has
21 network switches and hosts.

• NORDU network, located in Nordic countries, consists of 5 network switches and
their hosts.

These four network topologies are emulated by the tool mininet [48]. The network
topologies between SDN controllers are fully-connected. All virtual machines hosting
442 controllers are connected through the bridged networking method. We also tested the
latency between two machines: the obtained RTT result is about 0.03 ms. Consequently, it
does not affect the experimental results. Each switch is connected to only one controller.
The experimentation scenario aims to evaluate the communication between multiple SDN
controllers. The network is built with many SDN controllers (from 6 to 12) in each scenario.
According to the links’ characteristics, the throughput, latency, and loss rate are set to
10 Mb/s, 10 ms, and 2%, respectively. We use only HELLO messages for network traffic.

The experimental setup is physically deployed on the server PowerEdge R740 with 32 CPUs
Intel(R) silver 4216 2.10 GHz and 256 GB of memory. We create 13 Linux virtual machines on this
physical server to deploy emulated network topology and SDN controllers as follows:

• One virtual machine is used to emulate the network topology in using mininet.
• 12 remaining virtual machines are used to implement SDN controllers separately.

Concretely, each one is launched in a virtual machine. Thus, we spent 12 virtual
machines for the largest experiment where 12 controllers were deployed.

The three evaluation parameters are described as follows.

• Data transmission (bits): For each change of network topology, the SDN controller
broadcasts the update information to others.

• Latency (second): The period between the sending of the notifications and the receipt of
the last acknowledgment from the destination controllers.

• Overhead (%): The ratio between the controller packets to the total packets.

Each experiment is repeated 100 times. The confidence interval is concretely shown in
our obtained results, keeping the confidence level at 95%.

http://www.topology-zoo.org/
http://www.topology-zoo.org/
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5.1.2. Experimental Results

In order to prove the scalability and the interoperability of SINA, the communication
between multiple controllers is evaluated in varying the number of controllers in a testbed
from six to twelve in four different topologies. As shown in Table 2, the experimentation
scenario is divided into three sub-scenarios of 6, 9, and 12 controllers. Each sub-scenario is
divided into four schemes (4 rows for each sub-scenario in Table 2): in the first one, three
types of controllers (Faucet, ONOS, and ODL) are implemented in using SINA. For the
three remaining schemes, all controllers are implemented with one type. For example, in
the sub-scenario of 6 controllers, the first scheme is to implement six different controllers:
2 Faucet, 2 ONOS, and 2 ODL. The three remaining schemes are implemented with 6 Faucet,
6 ONOS, and 6 ODL. As mentioned above, the confidence interval (the values of the upper
limit, lower limit, and mean) is shown in Table 2 after launching each experiment 100 times
with the confidence level of 95%. The launching scenario is replicated strictly for each
experiment’s run. The idea is to analyze the impact of the SINA application. The obtained
results show a common feature: the larger the topology, the higher the data transmission
value. Similarly, the larger the topology, the higher the latency value obtained because lots
of data is exchanged between the controllers, causing the time-consuming. The average
confidence intervals of Data transmission and Latency are acceptable with the values
of 2412.2 (bit) and 0.36 (s), respectively. We also note that in most scenarios, the use of
SINA application dramatically improves performance in terms of both latency and data
transmission. However, in some cases, Faucet’s solution’s scheme attains better results (e.g.,
scheme of 9 Faucet controllers with the Abilene topology). To sum up, SINA has reduced
3.8% and 2.4% of data transmission and latency, respectively.

Table 2. Communication between multiple controllers. The blue and bold numbers are the best values
in networks with the same number of controllers. Similarly, the red and bold numbers are the worst
values. Explaination for abbreviations: x is an integer number. Pr: Parameter; DT: Data Transmission
(bit); Ltc: Latency (second); Low. Lim.: Lower limit of the confidence interval Up. Lim.: Upper limit of
the confidence interval; x diff.: x/3 ONOS, x/3 ODL, and x/3 Faucet (using SINA). x ONOS Controllers;
x ODL Controllers; x Faucet Controllers: not using SINA.

Nordu 1989 Abilene Aarnet Amres
Network Pr Low.

Lim.
Up.

Lim. Mean Low.
Lim.

Up.
Lim. Mean Low.

Lim.
Up.

Lim. Mean Low.
Lim.

Up.
Lim. Mean

DT 2981.3 4251.3 3616.3 7372.1 9145.5 8258.8 9186.6 12,936 11,061.3 17,887.4 19,061 18,474.26 diff. Ltc 0.011 0.051 0.031 0.03 0.078 0.054 0.044 0.066 0.055 0.081 0.111 0.096

DT 3075.2 4764.6 3919.9 9181 9945.8 9563.4 10,710.6 13,448 12,079.3 13,107 17,680 15,393.56 ONOS Ltc 0.029 0.047 0.038 0.033 0.087 0.06 0.073 0.085 0.079 0.063 0.167 0.115

DT 2301.2 6014.2 4157.7 9633.8 10,072.6 9853.2 12,503.6 14,572 13,537.8 18,321.6 22,623 20,472.36 ODL Ltc 0.043 0.081 0.062 0.028 0.078 0.053 0.087 0.105 0.096 0.103 0.145 0.124

DT 3532 4113.8 3822.9 9716.6 10,258.2 9987.4 10,509.2 13,991 12,250.1 16,108.6 22,271 19,189.86 Faucet Ltc 0.013 0.051 0.032 0.022 0.084 0.053 0.025 0.071 0.048 0.081 0.095 0.088

DT 3214.5 5004.3 4109.4 11,995.5 13,825.3 12,910.4 10,487.6 15,964 13,225.8 22,114 24,676 23,3959 diff. Ltc 0.034 0.042 0.038 0.034 0.088 0.061 0.056 0.084 0.07 0.12 0.136 0.128

DT 5204.8 8107.6 6656.2 11,610.2 12,056.8 11,833.5 12,636.8 13,253 12,944.9 17,453 19,472 18,462.59 ONOS Ltc 0.019 0.063 0.041 0.052 0.076 0.064 0.067 0.137 0.102 0.124 0.162 0.143

DT 3793.6 5384.8 4589.2 10,489.8 12,534.8 11,512.3 13,621 15,726 14,673.5 22,144.4 23,362 22,753.29 ODL Ltc 0.049 0.077 0.063 0.049 0.077 0.063 0.107 0.143 0.125 0.093 0.131 0.112

DT 3930.2 6152.4 5041.3 9680.4 10,245.6 9963 11,229.6 15,404 13,316.8 18,595.6 21,983 20,289.39 Faucet Ltc 0.023 0.055 0.039 0.0445 0.0535 0.049 0.049 0.067 0.058 0.101 0.159 0.13

DT 2441.9 6014.3 4228.1 9916.9 14,352.3 12,134.6 12,226 13,234 12,730 18,922 20,701 19,811.512 diff. Ltc 0.082 0.092 0.087 0.077 0.091 0.084 0.125 0.141 0.133 0.105 0.177 0.141

DT 3558.8 6825.4 5192.1 12,694 13,894.2 13,294.1 11,902.6 13,280 12,591.3 16,710.6 19,784 18,247.312 ONOS Ltc 0.07 0.11 0.09 0.05 0.132 0.091 0.117 0.135 0.126 0.175 0.193 0.184

DT 2725 6279.4 4502.2 13,039.5 15,437.1 14,238.3 10,348.4 12,148 11,248.2 16,884.2 21,364 19,124.112 ODL Ltc 0.057 0.085 0.071 0.059 0.143 0.101 0.157 0.225 0.191 0.1508 0.1712 0.161

DT 6158.7 7425.1 6791.9 8765.8 12,440 10,602.9 13,756.6 14,084 13,920.3 17,272.4 21,876 19,574.212 Faucet Ltc 0.017 0.047 0.032 0.077 0.093 0.085 0.065 0.097 0.081 0.14 0.158 0.149
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Figure 6 illustrates the latency and the overhead results in using the “Amres” topology,
the largest one. The confidence intervals are acceptable for each experiment, keeping the
confidence level of 95%. The results showed that the legacy Faucet solution obtains the
best results in terms of overhead and latency because the communication solution using the
Prometheus tool is optimized for the data exchanges between Faucet controllers. Concretely,
Faucet has reduced the overhead and latency of other controllers by 62.4% and 10.1%,
respectively. Regarding the two controllers, ONOS and ODL, the communication protocols
implemented in both cases generate more overhead than the SINA application. Concretely,
SINA improves the overhead and latency of ONOS and ODL by 58.1% and 14.5%, respectively.
Concerning the latency, the SINA application outperforms existing solutions in most cases,
although there are no constraints related to the heterogeneity of the controllers for other
approaches. Thus, the obtained preliminary results prove the scalability and interoperability
of SINA.

Figure 6. Latency and Overhead Analyses.

5.2. SINA with Adaptive Consistency Model

For this second phase of performance evaluation, the SINA is implemented in apply-
ing the adaptive, quorum-based replication mechanism with the Q-Learning algorithm
described in Section 4.

5.2.1. Testbed Setup

A large-scale topology, called Cogent, has been chosen among the topologies from
Topology Zoo to assess the efficiency of the proposed adaptive consistency model. The
Cogent topology, located in USA and Europe, consists of 176 switches and 21 hosts. We
use the mininet tool to emulate the Cogent topology and divide it into 18 separated SDN
domains, each of which is managed by a dedicated controller (ONOS, OpenDaylight, or
Faucet). Among these 18 domains, each of 17 domains has ten switches; six remaining
switches are located in the last one. Each domain of 15 domains has one host; the remaining
domains have two hosts. Each switch is connected to only one controller. Thus, the network
topology between SDN controllers is fully connected. Concerning the links’ characteristics,
the throughput, latency, and loss are set to 10 Mb/s, 10 ms, and 2%, respectively. The
HELLO messages are used for network traffic.

The open-source Tcpreplay tool [49] is used to generate the flows with any data bit-rate.
This tool is usually used to edit and replay a previously captured network traffic with a
fixed sending bit rate. It helps us generate a few initial data flows and replay them many
times after.
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In order to emulate the dynamic network environment, the constant changes of the
network topology are based on the classical 2-State Markov Model of Gilbert [50]. All SDN
switches and links follow the 2-State Markov Model with ON and OFF states. The former
represents the state where the switch/link works normally. Otherwise, the latter represents
the state where the switch/link is broken. The state transition is shown in Figure 7.

The values of transition probability p and r are determined by Equations (8) and (9).

p = P(qt = OFF|qt−1 = ON) (8)

r = P(qt = ON|qt−1 = OFF) (9)

where qt is the state at time t.

Figure 7. State transition of switches and links based on 2-State Markov Model of Gilbert.

Based on the experiments, both values p and r are fixed to 50%.
The experimental setup is also physically deployed on the mentioned server Pow-

erEdge R740. On this physical server, 19 Linux virtual machines are created to host one VM
for emulating network topology (with mininet) and 18 VM for separated SDN controllers
that manage 18 SDN domains.

5.2.2. Performance Metrics

For the performance metrics, two types of metrics are used as follows:

• QoS-related metrics: Concerning the QoS-related metrics, we are based on the over-
head and the delays. Concretely, they are WriteOverhead, ReadOverhead, WriteDelay, and
ReadDelay. The WriteOverhead and ReadOverhead are the numbers of the inter-controller
packets through TCP port 8787 for the read and the write commands, respectively.
The WriteDelay is the latency the system takes to disseminate the message of topology
update to NW controllers. The ReadDelay is the sum of the latency for sending topology
requests to NR controllers and the latency for receiving all topology data from these
NR requested controllers.

• Consistency-related metrics: Two staleness metrics are used: the time-based staleness
(t_staleness) and the version-based staleness (v_staleness) [42,46]. The former is calcu-
lated by the period between the last time the local topology database is updated and
the moment the controller performs a read operation on its local topology database.
The latter is determined by the version difference between the real version of the local
database and the one at the moment where the controller performs a read operation.

Similar to the first phase of SINA east–west interface validation, each experiment is
repeated 100 times. The running scenario for each run is exactly replicated for different
tests. The confidence interval is shown in the following obtained results in keeping the
confidence level of 95%.
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5.2.3. Experimental Results

For the first step, the two parameters NW and NR are fixed to the values of 18 and 1,
respectively. In other words, we reevaluate our proposal with the active replication method
in satisfying strong consistency condition: NW + NR > N (the number of controllers in our
experiment, N, is 18). The obtained results for WriteDelay and ReadDelay are illustrated in
Figure 8. The result showed that the curve of ReadDelay is always stable with a small value
of 2 (ms) because the NR is fixed to the value of 1. In other words, this short and stable
period is explained by the fact that each controller requests the topology data from only
one controller. Meanwhile, the WriteDelay value is gradually decreasing from 95 down to
70 (ms). Its stability is also reflected in decreasing the confidence interval from 7 down to
1.9 (ms).

From the following experiments, the Q-Learning is performed with the parameters
γ = 0.8 and α = 0.6. In the beginning, the initial values of NR and NW are 4 and 14, respectively.
The value of the write threshold is fixed to 50 (ms). Three scenarios are launched with three
different values of the Read-threshold: 10 ms, 30 ms, and 50 ms. The value ε of the selection
mechanism ε-greedy is fixed to 10%. We used the threshold in order to control the bounds of
the write delay, read delay, and version staleness. The following results will demonstrate the
capacity of the bound control.

Figure 8. ReadDelay and WriteDelay with fixed values of NW = 18 and NR = 1.

As shown in Figure 9, although the adaptive selection of the value NR increases the
read delay compared to the active replication method above, these delay values do not
exceed the fixed thresholds 10 ms, 20 ms, and 30 ms. After about 1200 s of initialization,
the delay variation related to the three thresholds 10 ms, 30 ms, and 50 ms become stable
under the correspondent threshold values. Thereby, this result showed that the proposed
algorithm had established a stable delay for the read operation. Similarly, the adaptive
selection of the value NW of the proposed algorithm decreases the write delay. As a
result, the write delay in three cases is always less than the fixed write threshold value of
50 ms. Concretely, the convergence values of the mean value of write delay for three read
threshold’s cases—10 ms, 30 ms, and 50 ms—are 45.2 s, 40 s, and 38.3 s, respectively. This
obtained result also showed that the more the read threshold is increased, the more the
write delay value is reduced with a fixed write threshold.

The obtained results in Figure 9 showed that the proposed algorithm guarantees a
bound control for the two metrics read and write delay. That is explained by the value
of the reward in Equation (3), where we assign a terrible value if the two read and write
values exceed the two thresholds.
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The version staleness and time staleness are illustrated in Figure 10. After the 1500 s,
the value of version staleness becomes stable. Concretely, the three cases of read thresholds
10 ms, 30 ms, and 50 ms have the convergent mean values of 0.4, 0.11, and 0.3, respectively.
Significantly, the version staleness metric is always less than the fixed version staleness
threshold (0.5). Similar to the previous case, the version staleness value is also bounded.
The curve corresponding to the read threshold of 30 ms attains the smallest range value,
showing the importance of selecting the read threshold value. An appropriate selection of
read-threshold gives a good consistency level in terms of version staleness. Concerning the
obtained results of time staleness, after the first 1500 ms with a high fluctuation, the value of
time staleness returns to a stable state. In three cases of read thresholds 10 ms, 30 ms, and
50 ms, the convergent mean values of time staleness are 2641, 2412, and 2502, respectively.

Figure 9. ReadDelay and WriteDelay with different values of ThR.

Figure 10. Version staleness and time staleness with different values of ThR.

According to the overhead result, as shown in Figure 11, the fixed case always obtains
the highest overhead value of 4950 (Bytes/s) because its sum of two values NW and NR
is greater than the other ones. After about 1500 s, the three curves corresponding to read
thresholds of 10 ms, 30 ms, and 50 ms become gradually stable with the convergent mean
values of 2670, 2415, and 2500, respectively.

The obtained experimental results showed that the proposed solution could maintain
an acceptable consistency level (metrics of version staleness and time staleness) while
continuously controlling the bound of different network metrics such as read delay, write
delay, and overhead.
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Figure 11. Overhead with different values of ThR.

6. Conclusions

This paper proposes an east–west interface called SINA to provide interoperability
and scalability for heterogeneous and distributed SDN networks. In the first step, since
we aim to validate its operations in a large-scale SDN network, SINA is implemented
with active replication to maintain the highest consistency level. The experiments showed
that SINA attains outstanding results compared to other well-known related interfaces
regarding reading/writing latency and overhead. However, despite its high consistency
level, the active replication has revealed its weaknesses in the excessive use of system
resources (bandwidth, processing capacity, etc.). That motivated us to propose an adaptive
and continuous consistency model in applying the quorum-based replication method in
the application layer of SINA. This Q-Learning-based algorithm, inspired by the Vegas
strategy—a congestion avoidance solution for TCP—transformed SINA into a more scalable
and innovative replication policy. As a result, the experiments show that SINA can connect
heterogeneous and distributed SDN domains. In addition, with the proposed adaptive,
quorum-based replication, SINA maintains an acceptable consistency level while providing
impressive network metrics such as read delay, write delay, and overhead. For future work,
we will perform other replication methods for comparison to have more experiments with
other consistency mechanisms.
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