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Abstract: In mobile networks, crowdsourcing in Quality of Experience (QoE) assessment phase
involves collecting data from the user terminals or dedicated collection devices. A mobile operator or
a research group may provide applications that can be run in different mobility test modes such as
walk or drive tests. Crowdsourcing using users’ terminals (e.g., a smartphone) is a cheap approach
for operators or researchers for addressing large scale area and may help to improve the allocated
resources of a given service and/or the network provisioning in some segments. In this work, we
first collect a dataset for three popular Internet services: on-demand video streaming, web browsing
and file downloading at the user terminal level. We consider two user terminals from two different
vendors and many mobility test modes. The dataset contains more than 220,000 measures from one of
the major French mobile operators in the Île-de-France region. The measurements are effectuated for
six months in 2021. Then, we implement different models from the literature for estimating the QoE
in terms of user’s Mean Opinion Score (MOS) for every service using features at radio or application
levels. After that, we provide an in-depth analysis of the collected dataset for detecting the root cause
of poor performance. We show that the radio provisioning issues is not the only cause of detected
anomalies. Finally, we discuss the prediction quality of HD video streaming service (i.e., launch
time, the bitrate and the MOS) based only on the physical indicators. Our analysis is applied on both
plain-text and encrypted traffic within different mobility modes.

Keywords: data collection; LTE mobile network; Quality of Experience (QoE); root cause analysis
(RCA); 5Gmark tool; video streaming

1. Introduction

Monitoring the Quality of Experience (QoE) nowadays is crucial for the main involved
entities in the application service chain: (i) mobile network operators (e.g., Free, Orange
and SFR in France), service providers (e.g., Google, Microsoft) and the end-users (e.g.,
customers or companies). Estimating the QoE in terms of user’s Mean Opinion Score (MOS)
can help operators and providers to identify performance anomalies and resolve them in
order to try to retain their customers [1].

In fact, the measurement techniques at the end-user side for assessing the QoE has
attracted the attention of many research works guided by operators, service providers or the
academic community because it is an easy and cheap way to collect data at a large scale [2].
In cellular networks, for a given base station (e.g., LTE eNB), an operator can measure all
physical parameters related to all user equipment associated with. However, with mobility,
some users may dissociate from the eNB to another one (if exists). In this case, the operator
will not be able to keep measuring (monitoring) the perceived QoE for that user and during
the complete service run time. In addition, a user may be completely disconnected due
to a lack of coverage. Moreover, the trend towards end-to-end encryption (like HTTPS)
has significantly reduced the visibility of network operators on the application parameters
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(buffer information, etc.) and the traffic of their customers, making the monitoring process
more challenging and cumbersome [3].

One important use case of crowdsourcing for Mobile network operators is the esti-
mation of Key Performance Indicators (KPIs) and relevant Key QoE Indicators (KQIs) to
quantify the end user’s perceived quality. It is also crucial for operators to easily produce
coverage maps with performance indicators to demonstrate that the coverage commit-
ments on which the license is conditional have been met in addition to limiting customer
churn due to quality dissatisfaction. In fact, with the constraints faced for privacy and the
adoption of end-to-end encryption, operators do not always have access to these indicators
via crowdsourcing. Instead, they appeal to machine-learning models to predict multiple
QoE-relevant metrics (KQIs) directly from the analysis of the encrypted traffic as done
in [3]. In this context, we can cite the work [4], where the authors provide an estimation
system of YouTube video bitrate using a decision tree classifier. In [5], the authors test
five ML methods for YouTube video QoE estimation by using a dataset of 1060 video
sessions. They found that, up to 84% QoE classification accuracy is achieved with the RF
method, using only features extracted from encrypted traffic. In [6], the authors introduce
another methodology, called eMIMIC, that estimates average bitrate and re-buffering ratio
for encrypted video traffic. Three datasets of cellular traces (3G, LTE) are used. The results
indicate that the re-buffering rate is estimated with accuracy of 70%, in addition to average
bitrate estimation with an error under 100 kbps for up to 80%. Another approach that in-
vestigates the estimation of KQI from the physical layer parameters has also attracted some
research attention. The authors in [7] have built up a QoE model for videos delivered over a
radio network (e.g., Long Term Evolution (LTE)) using HTTP (Hypertext Transfer Protocol)
adaptive streaming (HAS). Their objective consists of achieving a comparison of the QoE
prediction using HAS profile (video presentation) and using radio parameters (physical
layer). They concluded that the HAS profile is sufficient and better than the radio scenario
parameters to estimate user’s QoE in the context of LTE technology. Based on the same
technology, the authors of [8] introduce a no-Reference video streaming QoE estimator by
testing different machine learning techniques. The Gradient Tree Boosting (GTB) method
is selected to calculate the video QoE using 11 considered radio parameters. This model
achieves 78.9% of correlation and 0.114 of MSE. At the end, the authors concluded that the
radio parameters related with the transmission rate of the streaming session are the most
important features in predicting QoE for the GTB algorithm.

Therefore, our objective is to focus on the measurements on the end user terminals for
collecting radio indicators such as the Reference Signal Received Quality (RSRQ) and Refer-
ence Signals Received Power (RSRP) for 3G/4G networks in addition to some application
metrics like the buffering time before playing a video on demand. We aim at estimating
the QoE of some popular Internet services using different kinds of user terminals in a
large covered region by many radio units and through several mobility test modes. We
would like to understand the problem causes and, as a consequence, to come with helpful
recommendations to mitigate the poor observed performance.

To achieve this study, we proceed as follows. First, we survey some important and
related crowdsourcing based studies, and we highlight the main goal and applied use
case of the collected traces. Second, we collect our own crowdsourcing dataset composed
of more than 230,000 traces from one of the major French mobile operators in the Île-de-
France region using two different 3G/4G terminals. Third, we clean, process and annotate
the collected dataset by implementing a known QoE model per considered service. In
particular, we calculate the user’s Mean Opinion Score (MOS) per service. Then, we
use radio indicators to describe three interesting use cases: (i) Data statistical study in
heterogeneous environments, (ii) Anomaly root cause analysis for the considered services,
and (iii) we discuss the utility of estimating the MOS based on only the radio indicator
(e.g., bitrate) as done in many previous works in the literature. We provide publicly in [9]
the dataset with all the Python codes [10] for regenerating the analysis or reusing them on
other datasets.
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The remainder of the paper is organized as follows: In Section 2, we introduce the
related works including key existing mobile crowdsourcing works and the main applied
use cases with the collected datasets. In Section 3, we introduce our cellular measurement
campaign and the collected dataset. The pre-processing of the collected dataset is explained
in Section 4. In Section 5, we describe three use cases of our proposal. In particular, we
achieve first in Section 5.1 a statistical study in heterogeneous environments. Then, in
Section 5.2, we evaluate the root cause of bad performance of key Internet services. Third,
the impact of radio indicators on the video QoE is evaluated in Section 5.3. Finally, Section 6
concludes this work and presents future works. It is worth mentioning that the list of
acronyms used in this work is presented in the abbreviations section at the end.

2. Related Works

The research trend in the context of mobile crowdsourcing aims to address practical
challenges (e.g., traffic prediction, traffic classification, traffic routing, congestion control,
resource management, QoE management, network security, etc.) and meet the needs of the
system actors (users, operators, providers). As a result, numerous mobile crowdsourcing
campaigns were achieved in order to collect real datasets and to permit the study of a
particular challenge for mobile, service providers, or device vendors. In this kind of
campaign, different elements have to be taken into account like the measurement tools,
the used devices, the considered services, the access technologies and the mobility test
modes [11–14]. In fact, collecting datasets requires a lot of time and resources, in addition
to the mobilization of volunteers and/or testers to achieve the tests. The mobility aspects
increase the complexity level of crowdsourcing campaigns as the geo-localization of the
users or connected devices is an important factor and directly impacts the perceived
quality [14–16].

In [14], the collected mobile dataset by driving a car along a distinct route in the
Sydney metropolitan area considering the 3G (UMTS, HSPA) networks in 2008. The goal
is to study the impact of mobility in a vehicular network context.

In [15], the authors use three mobility test modes (static, car, high-speed rail) for the
LTE network between two large metropolitan areas in China: Beijing and Tianjin. The
objective is to evaluate the network performance, mainly the handover process, in high
mobility (300 km/h or above).

In [13], the physical indicators for LTE and non-LTE technologies are considered. The
collected data concern two network providers in three countries (U.S., Germany, Nether-
lands). Indeed, many mobility patterns are tested including sitting/standing, walking,
biking (fast), car, bus, trains and planes. The goal of this study consists of statistical analysis
of the impact of mobility speed on LTE performance.

In [17], the authors publish a mobile dataset for LTE and HSPA technologies taken
around Covenant University in Nigeria. In this study, the indoor pattern is evaluated for
two months between June and July 2020. All the measures were taken from 7:30 a.m. to
11:00 p.m. The goal is to investigate the performance of local operators networks. This
study is one of the first studies that concerns cellular technologies in Africa.

The authors in [2] used a Keysight so f tware tool to collect the mobile dataset at the
Institute of Telecommunications, TU Wien, Vienna, Austria. The authors choose a static
indoor pattern to analyze the effect of, on one hand, the short-term fluctuations of the
measured key parameter indicators, and on the other hand, time-of-day effects on 4G
networks. Another goal is to train a traffic throughput predictor (by machine learning) in a
dense urban environment.

The work [11] presents a large dataset, belonging to the company Tutela, which
contains more than 2.5 million crowdsourced network measurements, collected in Ger-
many between January and July 2019. Compared to the other presented datasets, upload,
download performance and latency are evaluated. According to the authors, the measured
values differ between individual measurements and the mean value for an area. This is
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why it can be helpful to study in depth the individual measurements and not just take into
account the performance of a global area.

In [12], the authors use the “G-NetTrack Pro” tool in different mobility patterns
to provide a 4G dataset for addressing two use cases. The first one is HAS algorithm
evaluation. They compared different optimization algorithms of chunk selection. The
second one is the handover analysis.

Using the same tool, in [18], the authors produce a 5G dataset, collected from a major
Irish mobile operator, and a synthetic 5G large scale multi-cell NS-3 simulation framework.
Their goal is to study 5G deployment. They consider video streaming and file downloading
services and aim at understanding the dynamic reasoning for adaptive clients in 5G multi-
cell wireless scenarios.

One important use case of crowdsourcing for Mobile network operators is the esti-
mation of Key Performance Indicators (KPIs) and relevant Key QoE Indicators (KQIs) to
quantify the end user’s perceived quality. In fact, with the constraints faced for privacy
and the adoption of end-to-end encryption, operators do not always have access to these
indicators via crowdsourcing. Instead, they appeal to machine-learning models to predict
multiple QoE-relevant metrics (KQIs) directly from the analysis of the encrypted traffic as
done in [3]. In this context, we can cite the work [4], where the authors provide an esti-
mation system of YouTube video bitrate using a decision tree classifier. In [5], the authors
test five ML methods for YouTube video QoE estimation by using a dataset of 1060 video
sessions. They found that up to 84% QoE classification accuracy is achieved with the RF
method, using only features extracted from encrypted traffic. In [6], the authors introduce
another methodology, called eMIMIC, that estimates average bitrate and re-buffering ratio
for encrypted video traffic. Three datasets of cellular traces (3G, LTE) are used. The results
indicate that the re-buffering rate is estimated with an accuracy of up to 70%, in addition to
average bitrate estimation with error under 100 kbps for up to 80%. Another approach that
investigates the estimation of KQI from the physical layer parameters has also attracted
some research attention. Authors in [7] have built a QoE model for videos delivered over a
radio network (e.g., Long Term Evolution (LTE)) using HTTP (Hypertext Transfer Protocol)
adaptive streaming (HAS). Their objective consists of achieving a comparison of the QoE
prediction using HAS profile (video presentation) and using radio parameters (physical
layer). They concluded that the HAS profile is sufficient and better than the radio scenario
parameters to estimate user’s QoE in the context of LTE technology. Based on the same
technology, the authors of [8] introduce a no-Reference video streaming QoE estimator by
testing different machine learning techniques. The Gradient Tree Boosting (GTB) method
is selected to calculate the video QoE using 11 considered radio parameters. This model
achieves 78.9% of correlation and 0.114 of MSE. At the end, the authors concluded that
the radio parameters related to the transmission rate of the streaming session are the most
important features in predicting QoE for the GTB algorithm.

In fact, many related works refer to mobile datasets that are produced by either
operators without publishing any detail or by research groups but with a reduced number
of parameters [13]. In order to have a full detailed dataset in our region and study the
performance of the most popular Internet services (e.g., video streaming, downloading and
web browsing) over a popular French mobile access network, we decided to build our own
dataset. In addition, we would like to study the impact of the radio parameters on the QoE
for streaming videos on fixed HD quality rather than using adaptive streaming as done,
for example, in [7] in order to evaluate the root cause of poor performance as discussed in
detail in Section 5.

3. Campaign Test and Data Description
3.1. Campaign Description

Before evaluating the network and service performance, we will present first in this
section the data collection procedure. The latter is composed of three parts: (i) the test
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campaign description, (ii) the collection of the data traces, and (iii) the raw data presentation.
Then, we will detail the achieved data pre-processing phase.

To begin, we illustrate in Figure 1 an overview of the achieved campaign.

Figure 1. Overview of the crowdsourcing campaign test.

In this campaign, we used the “5Gmark” tool for a variety of reasons, including the
simplicity and the efficiency in evaluating several services with many mobility test modes.
In particular, “5Gmark” allows for measuring the cellular connection through three modes:
“Speed Test”, “Full Test”, and “Drive test”. In practice, the “Speed Test” presents one
test cycle to assess the connection quality by measuring just the latency test (in terms of
milliseconds), download data test (during 10 s) and upstream data transfer (uploading
during 10 s). “Full Test” is also one test cycle that integrates, in addition to the “Speed Test”
data, the measurement of two additional service: YouTube streaming (display YouTube HD
video during 30 s) and web browsing (test connection during 10 s of 6 websites). The “Drive
Test” represents a test cycle, set of “Speed Tests” or “Full Tests”, which runs automatically
with a test number counter (5, 10, 20, etc.) and an interval in each test in minutes (by
default 0). Note that the server is selected for each service according the user position
regardless of the operator.

To study the impact of the user terminal, we consider two Android smartphone
named Xiaomi Note Pro 9 and Samsung A10 that have different characteristics. During
our tests, three different access technologies, named 2G (EDGE), 3G (UMTS, HSPAP
(HSPA+/3G ++) and 4G (LTE/LTE_A), are evaluated. The collection and analysis
methodology are applied to 5G or the beyond generations. In this evaluation, a wide
variety of parameters are collected including application, radio indicators and context
information. These parameters are gathered using an active data collection procedure
that concerns five services named latency test (ping), download data test, upstream data
transfer, web browsing and video streaming as illustrated in Figure 1.

The measurements are effectuated for six months, from March to September (except
August) 2021 in the Île-de-France region using two main categories of mobility modes. The
first mode is car mode with a maximum speed of 130 (km/h). This mode includes travel by
car on some highways around Paris as well bus’s lines in Paris center. The second mode
is trained with a maximum speed of 120 (km/h)). This mode includes a regional train in
Paris (RER) and the subway (metro).

3.2. Collection Procedure

The strategy for collecting the data are as follows: eight testers participate in the data
collection. They are teachers or students of ESME Sudria School (France). All of them
use one of the two considered Android smartphones (Xiaomi Note Pro 9 or Samsung
A10) and with the same SIM cards (for one single operator). The participants collected
the majority of traces during morning and evening hours during working days along
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work-home trajectory, in addition to some random mobility during the weekend. The
“Drive test” mode is programmed to execute a set of full test, and each one is composed of
a combination of five applications. Figure 2 presents the structure of one complete “Test
cycle” (full test).

Figure 2. Test cycle overview.

We will focus later on the analysis of the three most popular services: (i) file down-
loading, (ii) video streaming, and (iii) web browsing as they generate most of the Internet
traffic. Below we present a synthetic description of each selected service:

• File transfers are carried out in a single thread, representative of customer usage, so
as not to artificially maximize throughput. The downloaded files have about twenty
different extensions.

• Video streaming service is carried out on the platform of YouTube content. The video
is viewed in 720 p resolution for 30 s with no change in quality.

• There are six web browsing tests. Each test tries to request and view pages from
international and national web servers for 10 s. The six sites for the web test are
selected randomly from a predefined list of 30 popular sites. In Figure 1, you can see
an example of six selected web sites.

3.3. Raw Dataset Description

During the campaign test, we collect two raw datasets that contain 219,814 traces and
2742 test cycles (sessions). The first dataset will be used to deeply analyze the services
and to study the problem root cause (Sections 5.1 and 5.2). The second dataset is used to
explore the possibility of predicting video metrics and user’s QoE from the radio indicators
(Section 5.3). In fact, the traces consist of a lot of more than 100 parameters subdivided into
four categories in terms of data type: (i) categorical data, (ii) numerical data, (iii) temporal
data (measurement instant), and (iv) spatial data (GPS coordinates, geographical area of
the track, etc.). Figure 3 shows the distribution of the raw data measurements on the map
in the east of the Île-de-France region (France).

Figure 3. A simple bitrate-based service status overview of the measured traces in the Île-de-
France region.
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Figure 3 is obtained from the “5Gmark” user’s dashboard at the end of the crowd-
sourcing phase. The color within the plot represents the service status (good, medium or
bad) according only to the bit rate value. A detailed analysis based łall of the parameters is
presented in the next section. Indeed, as the data are collected mainly using two transport
modes (train and car), we clearly observe, in this figure, that the measurements are localized
on roads, highways and rails crossed by trains/metros/buses. Having a look at the simple
service status reported in the figure, it is obvious that most of the high bit rate connections
are located in the city centers like “Ivry sur Seine”, “Meaux” and “Paris” in our region and
most of the bad services are obtained on highways and rails like the rail line (SNCF Train
line P) in the middle that contains a lot of red points.

3.4. Dataset Pre-Processing and Feature Selection

Once the initial raw data of traces are obtained, we pass to the data cleaning step that
implements the following two operations named “feature selection” and “data preparation”.
Concerning the feature selection operation, we have applied a correlation study between
the main mobile physical parameters and the service status. Figure 4 shows the correlation
results for the video streaming service. We notice that RSRP and RSSNR are the two most
correlated with the service status (i.e., the bitrate) with 0.23 and 0.15, respectively. The
RSRQ, LTE_asu and LTE_dbm come after with 0.13. We have selected RSRQ as the third
important feature as it is consistent with what network operators do in general for radio
provisioning [19].

Concerning the “data preparation”, we have decided to simply discard entire rows
and/or columns containing missing values when the features are selected as we have
enough measures and do not want to consider any modified data.

Figure 4. Correlation matrix between radio indicators and service status.

After that, and to analyze the mobile experience from an end user’s perspective,
we calculate the user’s mean opinion scores (MOS) for each considered service using an
appropriate QoE model for each service from the literature, and we annotate the dataset
with this new feature. In particular, we drive MOS score (i) from the bandwidth rate as
in [1,20] for the downloading service, (ii) from the bitrate for HD video streaming service
as in [21,22], and (iii) from the application buffer information as in [23,24] for the web
browsing service. After calculating the user’s MOS score values, we represent the MOS
scale in 5-levels (mos) and 3-levels (quality) as done in the literature [25]. Table 1 reports
the final clean dataset with the considered features that is ready for the in-depth analysis.
A detailed description and script Python files for reproducing the analysis can be found in
our Gitlab repository [9].

After filtering incomplete entries, 164,426 trace measurements remain. Each trace is
composed of 22 parameters corresponding to one of the four data types named categorical,
numeric, temporal and spatial as presented in Table 1. Out of these features, we find
the meta information like measurement instant (id_QSCycle, timestamp), geo-coordinates
(latitude, longitude), and location (code_zone, name_zone ); the dataset also includes device
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information (such as device model). In addition, key physical parameters are included
like LTE Reference Signal Received Quality (RSRQ), LTE Reference Signal Received Power
(RSRP), and the bitrate. Finally, details about some application parameters such as the
initial buffering time, rebuffering duration, and rebuffering frequency are collected.

Table 1. Description of the dataset variables.

Name Datatype Description Examples|Values

id Numeric Unique id of the test 83159737

id_QSCycle Numeric Unique id of the cycle 8622500

timestamp Temporal Local Time of measure collection (GMT+1) 7 May 2021 17:46:00

cell_id Numerical Unique number used to identify each BTS 102952007.0

code_zone Spatial French national code 75010, 77100, etc.

name_zone Spatial City name where measure is gathered Paris, Chelles, etc.

latitude Spatial GPS latitude value 48.8873

longitude Spatial GPS longitude value 2.6304

network_techno Categorical Cellular used technology UMTS, LTE, etc.

mobility Categorical Mobility mode Car or Train

equipment Categorical Used Android Smartphone in the measurement Samsung or Redmi

service Categorical The tested service STREAM|WEB|DOWNLOAD

launch_duration Numeric Delay from start to 1st byte/loading/play in ms 540

bitrate_tra f f ic Numeric Bitrate based on OS Traffic stats (kbps) 12,034

speed Numeric Mobility speed (Km/h) [0, 135]

rsrq Numeric LTE Reference Signal Received Quality −84.0

rsrp Numeric LTE Reference Signals Received Power −84.0

rssnr Numeric Reference Signal Signal to Noise Ratio (dB) 70

signal_strength Numeric LTE signal strength (dB) −51.0

status Categorical Services status OK|TIMEOUT|FAILLED

mos Numeric MOS scores calculated in continuous format [0, 5]

quality Categorical MOS scores calculated on a scale of 3 {bad, sufficient, good}

4. Data Analysis

In this section, we divide our analysis according to the services, network access
technologies, mobility patterns and device types.

4.1. Services

To begin, Table 2 reports the number of examples and the rate of the selected services
(downloading, video, web).

Table 2. Statistics and rate of selected services.

Service Measurements (%)

Download 35,409 21.5(%)
Video 68,443 41.5(%)
Web 60,539 37.0(%)

Indeed, we notice that the number of traces that concern the web and the video (68,443
and 60,539 traces, respectively) are more presented than the traces of the download service
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with 35,409 traces. This is due to the setting up of “Full Test” mode itself presented in
Figure 2. We notice that the traces are collected for just 10 s for the Download service while
they are collected for a duration of 30 and 60 s for video and web services, respectively.
This observation explains why the bitrate of downloading traces is almost less than the
bitrate of video services as shown in Table 3.

Table 3. Description of services statistics.

Statistics Bitrate (kbits/s)
mean std min 25% 50% 75% max

Download 25,264 27,835 0 5112 15,340 35,735 192,963

Video 32,962 75,868 0 8629 20,912 39,185 237,068

Web 3503 10,313 0 388 1356 2771 153,461

Statistics Launch Time
mean std min 25% 50% 75% max

Download 0.726 37 0 0 0 0 2649

Video 3351 8238 0 183 247 335 30,000

Web 1050 1617 0 328 498 902 10,000

We found, as in the literature, that the video service is the most demanding service
in terms of bandwidth with 33 MB/s in average. Regarding the web service, it is the least
demanding service in terms of bandwidth with an average of 3.5 MB/s. This is justified by
the fact that it does not need a lot of bandwidth to view web pages that are not too large in
size compared to HD video segments.

Compared to the downloading service, we notice that it has the shortest launch time
compared to video and web services. This is logical as the user requires the complete
download before viewing the file.

In addition, we have noticed that the video bitrate peak exceeds 237 MB/s. This peak
is surely the result of LTE_A (4G) technology with the new LTE system with 4× 4 MIMO
(4T4R) configuration considered by the French operator. Notice here that we did not collect
5G traces, but the study remains applicable to it.

4.2. Technologies

To study the influence of the access technologies used in this study, Table 4 shows the
number of measurements collected during our test campaign as well as the percentage
of measurements made using the 2G (EDGE), 3G (UMTS, HSPAP (HSPA+/3G + +)
and LTE.

Table 4. Statistics about the access technologies in the dataset).

Technology Measurements (%)

LTE 152,756 92.9(%)
HSPA 8226 5.0(%)
UMTS 2332 1.4(%)
EDGE 1112 0.7(%)

As the phones used are not 5G compatible, the greatest number of measurements
are of the 4G/LTE type with a percentage of 93%. This implies that 4G technology is still
widely used in France in 2021 due to the modest NSA 5G deployment for the moment.
Moreover, a general lesson to be drawn is that 4G deployment in the Paris region is good
even if it cannot satisfy the requirements of the new generation applications (e.g, cloud
Virtual Reality).
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HSPAP as well as 3G are still used to ensure continuity of service in some complex
urban sectors (5% and 1.4%, respectively, of our traces). Finally, in all the locations evaluated,
at most, 0.01% of the measurements were carried out using a smartphone with 2G access.
This is in line with the outcome of recent measurement works [11,26] done in France
and Germany.

4.3. Mobility Aspects

Figure 5 shows a histogram of the number of traces collected versus speed, using a
step of 10 km per hour.

Figure 5. Distribution of data according to speed.

We see that, during our test campaign, we have collected measurements with different
speeds reaching more than 140 (km/h). From the histogram in Figure 5, we notice that the
greatest examples number are located at speeds of less than 10 (km/h). This is justified by
the reduced speed during traffic jams (especially in the Paris center) with cars and buses as
well as the frequent stops made by metros (subways). From speeds of 60 (km/h) and up to
130 (km/h), the number of tracks is roughly distributed according to a normal distribution
with 85 (km/h) average speed.

4.4. Device Types

The impact of the characteristics of the user terminal is detected in our dataset. In fact,
we have displayed the statistics in terms of bitrate for the two phones used (Redmi Note 9
Pro and Samsung A10). Table 5 presents a summary of these results.

Table 5. Statistics of collected bitrate with used smartphones

Statistics (Bitrate) Redmi Phone Samsung Phone

min 0.00 0.00
25% 1696.54 1402.76
50% 9445.40 5190.91
75% 30,425.03 22,657.07
max 237,068.80 113,644.17

mean 24,165.38 15,110.18
count 97,047.00 67,344.00

From Table 5, we can clearly see that using different terminals implies different
performances. Indeed, we observe that the average bitrate using the “Redmi” phone is
24 MB/s against 15 MB/s for the Samsung A10. This implies an increase of 60%, justified
by the hardware characteristics that are better in the “Redmi”.
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In addition, we also note that the maximum bitrate value reaches 237 MB/s and
113 MB/s for the Redmi and the Samsung A10, respectively. Thus, the maximum mea-
sured bitrate with Redmi is twice that of Samsung’s bitrate. This can be justified by the
compatibility of the Redmi with LTEA (4G) technology that includes the new LTE system
with 4× 4 MIMO (4T4R) while the A10 Samsung phone supports only simple LTE access
technology. In addition, we will see later that the antenna gain in Redmi is almost much
better than the gain in A10.

5. Use Cases

Mobile data collection has received significant attention in recent years as described
in the related works (Section 2). This is because it is important for several use-cases
as discussed in the survey [27] including traffic prediction, enhancing routing, traffic
classification, resource management, root cause analysis and QoS/QoE management.

We are interested here in three main use cases. The first one is the measurements
analysis in heterogeneous environments. By heterogeneous environments, we mean the use
of different user’s terminals and the consideration of three application services in addition
to the application of two mobility test modes.

The second use case presents the root cause analysis (RCA) of poor quality identified in
some sectors for a given service. The idea is to address the performance of the connections
that seem to be ”poor“ from the system’s point of view (that has the status FAILED or
TIMEOUT) or from the user’s point of view (when the MOS score is 1 or 2). Notice here
that, when the user application succeeds at connecting to and obtaining a response from a
server (i.e., system view status “OK”), the service quality could be poor for the user (e.g.,
low bitrate).

The third and last use case consists of studying the impact of radio parameters on
the video metrics and user QoE using the test cycles (sessions) dataset. The objective is to
explore the possibility to predict the overall video quality with ML techniques using radio
parameters including RSRP, RSRQ and SSNR.

5.1. Use Case 1: Data Statistical Study in Heterogeneous Environments

In the heterogeneous environments, one of the challenges that concerns the mobile
network sector is the management of the handover mechanism and the best station’s
coverage. The use of radio quality indicators is very helpful in this context such as the
RSRP and the RSRQ in long-term evolution (LTE) systems [28]. Therefore, the first use case
of our dataset is the study of the possible relations between RSRP and RSRQ on one hand
and their impact on the quality of the services on the other hand from both system and
user points of view. The objective is to come out with some recommendations of best signal
indicators range per service and per user terminal [19].

To that end, we rely on system-view quality that represents service status on two levels:
OK (service is supposed to work fine) and PROBLEM (presents FAILED and TIMEOUT
status)). This is given automatically from the evaluation tool and is calculated based on the
bitrate for the three tested services including file downloading, video streaming and web
browsing. Table 6 shows the statistics about physical parameters per service for the two
devices used.

As in [19], most of the results are expected in the case of video streaming and web
browsing. However, for a few number of traces, we notice that, despite very good received
signal strength on the radio side (average RSRP of −84 dBm) and regardless of the user
terminal, the user is not able to download the content. Therefore, we conclude here that the
poor performance is caused by the servers and not by the radio provision. It is more likely
that the servers were overloaded at the moment of the measurement of these few traces.
Caching the popular contents per region at the edge may help in such a scenario.

Next, we focus on the video streaming and web browsing services. In fact, we took the
average values of RSPR and RSRQ classes to achieve an overview of recommended signal



Electronics 2022, 11, 1011 12 of 21

strength levels for these two services as illustrated in Figure 6. Note that the measurements
of the two used devices (Redmi and Samsung) are taken into account.

Table 6. Statistics about RSRP and RSRQ for all devices per service.

Name OK (No Problem) Problem (Failed or Time Out)

RSRP RSRQ RSRP RSRQ

File downloading

COUNT 25,644 25,644 COUNT 41 41
MEAN −92.03 −12.35 MEAN −86.66 −8.87

STD 14.07 3.68 STD 14.64 3.78
MIN −140.00 −20.00 MIN −116.00 −18.00
25% −102.00 −14.00 25% −87.66 −10.87
50% −93.00 −13.00 50% −83.00 −7.00
75% −83.00 −11.00 75% −81.00 −6.00

MAX −44.00 −3.00 MAX −52.00 −5.00

RSRP RSRQ RSRP RSRQ

Video streaming

COUNT 48,977 48,977 COUNT 7125 7125
MEAN −92.01 −10.80 MEAN −97.65 −13.76

STD 13.81 3.78 STD 13.92 3.27
MIN −140.00 −20.00 MIN −134.00 −20.00
25% −102.00 −13.00 25% −107.66 −16.87
50% −93.00 −12.00 50% −99.00 −14.00
75% −84.00 −8.00 75% −90.00 −12.00

MAX −44.00 −3.00 MAX −44.00 −3.00

RSRP RSRQ RSRP RSRQ

Web browsing

COUNT 31,384 31,384 COUNT 5135 5135
MEAN −92.76 −11.67 MEAN −98.51 −13.65

STD 15.02 3.70 STD 18.30 3.75
MIN −137.00 −20.00 MIN −140.00 −20.00
25% −104.00 −14.00 25% −87.66 −16.00
50% −95.00 −12.00 50% −83.00 −14.00
75% −84.00 −9.00 75% −86.00 −11.00

MAX −44.00 −3.00 MAX −44.00 −3.00

Figure 6. Recommended signal strength levels for web and video using all devices.

By comparing our results in Figure 6 against the recommendations published in [19],
we notice that the results are similar in the two considered services (video and web). Indeed,
the same RSRP and RSRQ parameter thresholds are found in the cases of the categories:
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“Excellent”, “Good” and “No Signal”. In addition, we further refined the study of the “Poor
to Fair” category by finding the thresholds that allow this category to be subdivided into
two levels: “Acceptable” and “Very poor”, where the quality of video service is acceptable
between −90 (dBm) and −95 (dBm) for the RSRP indicator, and web service quality is
also acceptable between −90 (dBm) and −96 (dBm). Concerning the RSRQ indicator, the
acceptability threshold is −12 (dBm) for the two services.

According to these results, we have concluded that RSRP values are interesting for
studying each service separately according to our collected dataset. Furthermore, we
observe that the RSRQ does not have significant variations. For this later reason, we focus
on the RSRQ to study the impact of the user terminal type in a heterogeneous environment.
To do this, we present in Figure 7 the RSRP indicator thresholds by service (web or video)
and by user terminal. In our case, we measured with two devices: Xiaomi Note Pro 9
(noted Redmi) and Samsung A10 (noted Samsung).

Figure 7. Recommended RSRP signal strength levels by service (web or video) and by device used
(Redmi or Samsung).

From Figure 7, we find that the acceptable RSRP threshold is different for each user
terminal. In fact, with the Redmi device, the acceptable threshold is −93 (dBm) for both
web and video services, while it equals −98 (dBm) for the Samsung device. Consequently,
we notice that the Redmi is performing better than Samsung. This means that the gain of
the receiving antenna is much higher in the Redmi device.

As both devices are used in the same place, with the same direction and distance of
the base station and for similar technology (frequency band), and according to the Friis
Equations (4)–(7) in [29], we conclude that the antenna of Redmi has a better reception gain
than the one of Samsung.

5.2. Use Case 2: Root Cause Analysis for Service Problems

Understanding the service quality problem often requires definition of “poor service
quality events” that occurred in a test cycle (Figure 2). We define four events that reflect
problems during any test cycle. The first one is called a “radio provisioning problem”. It
happens when all the services are not functional. The second and third problems are “Web
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problem” and “Download problem”. These two problems appear during a test cycle when
the web and download services do not work and also, in the same test cycle, the video
service that is more demanding in bitrate and more sensitive to delay is working. We pay
attention here to the application buffer as it may help video streaming to keep working
even if there is some temporary disconnection or an interference happens. We call this last
situation the “servers problem” because the problem will instead come from the web and
downloading servers. Table 7 lists these problems.

Table 7. Service problem events list.

Datatype Description

Radio provisioning All considered services not works.

Web problem Video is working but web failed

Download problem Video is working but download failed.

Servers problem Video is working but both web and download failed.

To dive into the analysis, these problem events are examined using two different
modes to find the number of occurrences based (i) on number of trace cycles or (ii) on
geographic area sector.

5.2.1. Trace Cycles-Based Analysis

In the first mode, it is based on the test cycles. This means, in all the analyzed 2742 test
cycles, finding out how many trace cycles have these problem events and trying to look
for the root cause. To that end, we use Python capabilities to achieve data-frames slicing
with the Pandas library to select the desired trace cycles for both system and user views as
defined previously [10]. Table 8 presents the results for the two points of view.

Table 8. Statistics of service problem events in the context of trace cycles mode.

Problem According To Problem Label ]Measures

System view

Radio provisioning 6 test cycles.
Web problem 14 test cycles.

Download problem 36 test cycles.
Servers problem 2 test cycles.

User view

Radio provisioning 8 test cycles..
Web problem 23 test cycles.

Download problem 13 test cycles.
Servers problem 6 test cycles.

From the results, we observe that the problems occur rarely with only 2.2% (58 traces)
of the dataset. In these cases, we observe that the Web and download problems are detected
a little more than the two problems of “radio provisioning” and “Servers problem”. In
particular, in 36 test cycles, the download service does not work well while the video service
does. Contrary, from the user’s point of view, 23 test cycles have the video service working
well while the web browsing service is working less well. This is due to the model used to
define the status (system view), which is based on the physical bitrate, while the calculation
of the user MOS of the web service is based on the launch time [23,24].

Now, let us analyze the root causes of these problems. When we explore the six traces
of the provisioning problem, we remark that the radio indicators (RSRP, RSRQ, etc.) are
very poor during all of the test cycles. This is why all services are not available. Concerning
the web and download problems, we notice that the radio indicators are good and then we
assume that the servers are not well responding to their load.



Electronics 2022, 11, 1011 15 of 21

5.2.2. Geographical-Based Analysis

The second mode to analyze the measurements dataset consists of the subdivision
of the global geographic region in N × N small zones according to the GPS coordinates.
The goal is to find the number and size of small zones where the problem events (Figure 8)
occur and try to map what we have found for the geographical placement of the base
stations and also for the mobility mode (e.g., highway or dense urban sector). This may
give us an idea on the handover moments, the existence of near or far stations, possible
radio problems due to fast fading, etc.

Figure 8. Geographical-based analysis results using 1024 small zones (32× 32).

Initially, the measurements were collected over the Île-de-France geographical region
in the format of a rectangle 96 (km) wide (longitude) and 68 (km) long (height). To find the
interesting geographic zone that helps us to understand the root cause of problem events,
we divide the region into 1024 zones (32× 32) as illustrated in Figure 8.

Using the same methodology as the previous mode, based on Python capabilities, we
achieve the statistics of service problem events in the context of geographical-based.

Using the same methodology as the previous mode, based on the capabilities of
Python, we perform statistics on the number of resulting problems compared to geographic
areas. The results are given in Table 9 below.

Table 9. Statistics of problem events that occurred compared to geographic parts.

Problem According To Problem Label ]Measures

System view

Radio provisioning 4 parts.
Web problem 4 parts.

Download problem 8 parts.
Servers problem 2 parts.

User view

Radio provisioning 3 parts.
Web problem 2 parts.

Download problem 13 parts.
Servers problem 2 parts.
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As a result, we found that, in the existing 1024 (32 × 32) geographical parts, 771 parts
are empty, where we did not obtain any measure. From the rest of the geographical parts,
we see in Table 9 the number of those where problems happen. Thus, we confirm the con-
clusions of the first mode, which indicate that the problems occur rarely with approximately
2% of all considered geographic area (Île-de-France region) and the download service does
not work well while the video service does, in 8 geographic parts and 13 geographic parts,
respectively, according to system point view and user point view, respectively.

Concerning the other problems, we can visualize in Figure 8 some locations in the map
where these events have occurred. We see clearly that the Radio provisioning problems
occur in the geographical parts where red color (bad quality) dominates. Furthermore, we
observe that the web problems occur where green color dominates due to the good quality
of video service in this place. Finally and concerning the Servers problems, we notice that
the dominant color is orange and red because of the bad quality of downloadin and web.
This can be explained by the fact that, when moving from good to bad cellular cover, the
video application can mitigate (overcomes) the temporary disconnection by its applicative
buffer, whereas the web service can not leak of buffer.

5.3. Use Case 3: Impact of Radio Parameters on the Video Metrics and User QoE

As already discussed in Section 2, we are interested in studying the impact of the radio
parameters on fixed HD video quality streaming over the 4G mobile network. In particular,
we would like to evaluate the impact of the three radio signal references (RSRP, RSRQ and
RSSNR) on both the user MOS and the video KQI (i.e., bitrate and launch time). In other
words, can we, based on these three physical parameters (RSRP, RSRQ and RSSNR), predict
the video streaming performance (MOS and KQI)? To give a good answer to this question,
we aim at training several machine learning models that take as input features these three
parameters and gives as output the targeted video metrics (MOS, the bitrate, and the launch
time). It is straightforward to train and predict the bitrate and the launch time with ML
regressors as we have everything in our dataset. However, we do not measure directly
in our campaign the user’s MOS, so we need to build this feature in the dataset for every
video session before to build and train any regressor. To that end, we calculate the MOS
based on key models from literature. In fact, two approaches do exist in the state of the
art to compute the MOS value. The first (MOSquality) is based on the bitrate video values
like in [21,22], and the second (MOSbu f f er) is based on the buffer information like in [23,24].
We will denote by (user_mos) the user’s MOS score that is the minimum calculated MOS
value from both approaches for each video session (we have 746 completed video sessions).
We consider here the worst case of perceived quality between the buffer-based MOS and
bitrate-based one. In the remainder of this part, we explain the implementation of the
various steps of our prediction evaluation using the dataset [30].

Thus, to begin, let BR, Tinit, Trebu f , and frebu f denote the bitrate video, initial buffering
time, rebuffering duration, and rebuffering frequency, respectively. Based on the study [22],
we achieve the video MOS from bitrate video as follows (1):

MOSquality = fliterature(BR, Resolution) (1)

The idea is to achieve the MOS score continuously for HD video resolution over the
interval 0 and 9 Mbps as shown in Table 10. In fact, the MOS is considered excellent (with
5 value) when the bitrate is larger than 9 Mbps.

Table 10. HD video MOS versus Bitrate.

Bitrate (kbits/s) 110 to 500 500 to 1050 1050 to 2250 2250 to 9000

MOS 1 to 2 2 to 3 3 to 4 4 to 5
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Concerning the second approach, we implement the provided relationship between
QoE and buffer information as in [24]. The used formula is given below in Equation (2):

MOSbu f f er = 4.23− 0.0672 ∗ Lti − 0.742L f r ∗ L f r − 0.106 ∗ Ltr (2)

where Lti, L f r, and Ltr are the respective levels of Tinit, Trebu f and frebu f as defined in [23,24],
where the authors use 1, 2, and 3 to encode the “low”, “medium”, and “high” levels,
respectively.

Therefore, we achieve the overall user’s MOS score by using the below equation that
implements Minimum (min) function as mentioned above:

user_mos = min(MOSbu f f er, MOSquality) (3)

Once the MOS scores are calculated, our dataset is ready for the training and the
prediction phases using four ML regressors. We aim at predicting, on one hand, the
calculated MOS scores, and, on the other hand, the video KQI (bitrate and launching time).
We consider here Random forest (RF), Decision tree (DT), K-nearest neighbors (KNN),
and Gradient Tree Boosting (GTB), and we test many hyper-parameters configurations
described in Table 11).

Table 11. Used configurations in the ML tuning step.

ML Method Configurations

Decision Tree (DT) type = DTregressor
h ∈ {2, 3, 4, 5, 6}
th : 0.1 to 0.9

k-Nearest type = regression
Neighbours (KNN) n_neighborsint ∈ {1 . . . 200}

Random Forest (RF) type = RF regressor
n_estimators ∈ {10 . . . 1000}
max_depth ∈ {10, 20, 50, 100}

DT-based Adaptive base = DTC(DecisionTreeRegressor)
Boosting (AdaBoost) n_estimators ∈ {10 . . . 1000}

learning_rate : 0.1 to 0.9

During the hyper parameter tuning step, the results are validated using a 5-fold cross-
validation method using Python “scikit-learn” package, where the data are divided into
80% for training and 20% for testing. The next operation consists of the final prediction step,
in which the best configuration for each ML method is used to implement the regression
method that predicts three calculated MOS scores and two considered video KQI (bitrate
and launching time).

Concerning the three MOS scores prediction, the results are given in Table 12. We
report in this figure the Mean Absolute Error (MAE) [31] and Mean Absolute Percentage
Error (MAPE) [32] and Pearson correlation rate (r) [8].

Table 12. MOS scores prediction performance results using 80% for training and 20% for testing with
5-fold for cross validation.

Method/Performance
MOS Based on Buffer Information MOS Based on Bitrate Global MOS (User)

MAE MAPE r MAE MAPE r MAE MAPE r

RF 0.16 0.06 0.88 0.21 0.32 0.88 0.17 0.07 0.90

DT 0.28 0.09 0.31 0.20 0.05 0.27 0.29 0.09 0.30

KNN 0.07 0.03 0.92 0.10 0.14 0.91 0.35 0.16 0.63

GTB 0.06 0.02 0.81 0.13 0.03 0.73 0.07 0.02 0.80
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From Table 12, we notice that all the considered models, except the DT method,
performed reasonably well on the task of MOS score prediction and showed high degrees
of accuracy with at least 81% in the case of buffer-based MOS, 73% in the case of bitrate-
based MOS and 63% in the case of buffer-based MOS. According to the results, we see also
that the KNN method, with 11 n_neighbors and square inverse distance weight, is the best
one in the prediction of buffer-based MOS and bitrate-based MOS with mean error of 0.07
and 0.1. This confirms the efficiency of the KNN method in the context of QoE prediction as
achieved in [25]. Furthermore, and concerning the user’s MOS prediction, we find that the
two ensemble methods, RF and GBT, achieve the best prediction performance result with
mean error rate equal to 0.17, respectively, and 0.7. In fact, the correlation performance of
GBT, with 90%, is close to the values reported by other researchers in the literature. The
results of predicting video KQI are given in Table 13.

Table 13. Bitrate and launch time prediction performance results using 80% for training and 20% for
testing with 5-fold for cross validation.

Method/Performance
Launch Time KQI Prediction Video Bitrate KQI Prediction

MAE MAPE r MAE MAPE r

RF 536 4.47 0.77 11,078 1.21 0.84

DT 1257 2.75 0.13 18,894 1.62 0.32

KNN 1004 4.16 0.10 19,967 7.73 0.31

GTB 246 0.36 0.86 9406 1.06 0.90

According to the results, the behavior of the ML models is not the same. Indeed, we
observe that the ensemble methods (RF and GBT) give better results than the classical meth-
ods (DT and KNN). These are justified by the strong of ensemble ML methods compared to
classical ones, where a classical ML method (DT or KNN) is built on a complete data set,
using all characteristics/variables of interest, while ensemble methods (RF or GBT) select
observations/lines and specific characteristics/variables to build multiple predictors from
which the results are then averaged. In fact, the ensemble ML methods are more suitable
when we have large interval values of the targets: bitrate and launch time. As the range of
values for these targets are large, both the MAE and MAPE metrics do not necessarily lead
to a good interpretation. Thus, we replace these metrics by the logarithm of the relative
error (denoted by log(RR)) between the estimated and the reference values as reported in
Table 14.

Table 14. Bitrate and launch time prediction performance results.

Method/Performance
Relative Logarithmic Error (log(RR))

log(RR)—Launch Time log(RR)—Video Bitrate

RF 0.24 0.32

DT 0.96 0.34

KNN 0.79 0.59

GTB 0.02 0.33

From Table 14, we observe that the logarithm of the relative error is between 0 and
1, which presents credible values. In fact, we confirm that using radio parameters can
give acceptable prediction results in the case of launch time with a log(RR) of 0.02 that
represents an average error rate of 246 ms, and a correlation rate of 87%. However, the
results are less good and not sufficient for the bitrate KQI with a log(RR) of 0.33 that
represents an average error rate (MAE) of more than 9400 kbits/s.
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6. Conclusions and Perspectives

The crowdsourcing approach offers a new cheap paradigm for services’ quality of
experience (QoE) assessment perceived by end users. Analyzing traces is very useful for
enhancing the QoS and identifying the root cause of poor performance that may happen
in some small zones. It is also crucial for operators to easily produce coverage maps, for
instance, to demonstrate that the coverage commitments on which the license is conditional
have been met in addition to limiting customer churn due to quality dissatisfaction.

We have collected a dataset for three popular Internet services using two different
3G/4G user terminals. The measurements are effectuated during 6 months in 2021 and for
one popular French operator in a large region in France (a rectangle 96 km × 68 km). This
region is divided later on the map into 1024 small zones. The QoE in terms of user’s Mean
Opinion Score (MOS) has been computed from known models found in the literature for
every service with the aim of analyzing the cause of poor performance found in some zones.
Several problem events are defined and matched against the traces. Our analysis is applied
on both plain-text and encrypted traffic within different mobility modes. We concluded
that the radio provisioning is not the only possible cause of poor performance as anyone
intuitively thinks especially with mobility. The capacity of application’s servers, their
location with respect to users, and the user terminal characteristics can be good reasons for
problems. We have noticed also that older mobile technologies are still used to enlarge the
coverage in less dense sectors (where the density of population per km2 is not important).
We have also demonstrated that the key radio parameters can be used in a simple way
to give an acceptable prediction of the HD video quality metrics, mainly the launch time,
the bitrate and the MOS. It is worth mentioning that our study is applied for 5G new
radio. The crowdsourcing campaign, the collecting and preparation of the datasets and
the applied performance evaluation methodology on the key internet services are still
the same. The main difference from the practical point of view is changing the dataset
features with the new radio indicators. In fact, 5G will lead to significant gains in network
throughput, outage and power consumption thanks to several key technologies including
Downlink/Uplink Decoupling, Massive MIMO (beamforming), and the introduction of
millimeter wave bands [33,34]. Due mainly to beamforming, the 5G new radio (NR) uses
Synchronization Signals (SS) and Channel State Information (CSI) instead of the Cell-
Specific Reference signals (CRS) which are transmitted by neighboring cells [35]. In fact,
in 3G/4G systems, the CRS is shared by all User Equipment (UE) in the same cell and
this is why a CRS transmission cannot be beamformed to a specific UE. Instead, in the 5G
NR, a UE specifically configured and dedicated measurement signal named the Channel
State Information Reference Signal (CSI-RS) had been introduced since release 10. Later,
configuring multiple CSI-RS to one UE simultaneously is enabled with a larger number of
antenna ports (e.g., release 13). This permits measuring the characteristics of a radio channel
so that it can use correct modulation, code rate and beamforming. The base station (e.g.,
gNB) sends CSI Reference signals to report channel status information such as CSI-RSRP,
CSI-RSRQ and CSI-SINR for mobility procedures [35]. Therefore, our study is applied to 5G
networks once the correct CSI Reference signals are collected instead of those for 3G/4G.

In the future, we would like to explore other efficient ensemble ML methods and deep
learning techniques that can be used to achieve real-time measurement of video QoE.
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Abbreviations

EDGE Enhanced Data Rates for GSM Evolution (2.75G)
eNB evolved Node B
GPS Global Positioning System coordinates
HAS HTTP Adaptive Streaming
HSPA High Speed Packet Access (3G+)
ISPs Internet Service Providers
KPI Key Performance Indicators
KQI Key Quality Indicators
LTE_A LTE Advanced (4G ++)
LTE_asu LTE signal measured in Arbitrary Strength Unit (ASU)
LTE_dbm LTE signal measured in dBm
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MOS Mean Opinion Score
QoE Quality of Experience
QoS Quality of Service
RSRP Reference Signals Received Power
RSRQ Reference Signal Received Quality
RSSNR Reference Signal Signal to Noise Ratio
UMTS Universal Mobile Telecommunications System (3G)
r Pearson “r” correlation rate
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