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Abstract: Today’s quantum computers are limited in their capabilities, e.g., the size of executable
quantum circuits. The Quantum Approximate Optimization Algorithm (QAOA) addresses these
limitations and is, therefore, a promising candidate for achieving a near-term quantum advantage.
Warm-starting can further improve QAOA by utilizing classically pre-computed approximations
to achieve better solutions at a small circuit depth. However, warm-starting requirements often
depend on the quantum algorithm and problem at hand. Warm-started QAOA (WS-QAOA) requires
developers to understand how to select approach-specific hyperparameter values that tune the
embedding of classically pre-computed approximations. In this paper, we address the problem of
hyperparameter selection in WS-QAOA for the maximum cut problem using the classical Goemans–
Williamson algorithm for pre-computations. The contributions of this work are as follows: We
implement and run a set of experiments to determine how different hyperparameter settings influence
the solution quality. In particular, we (i) analyze how the regularization parameter that tunes the
bias of the warm-started quantum algorithm towards the pre-computed solution can be selected
and optimized, (ii) compare three distinct optimization strategies, and (iii) evaluate five objective
functions for the classical optimization, two of which we introduce specifically for our scenario.
The experimental results provide insights on efficient selection of the regularization parameter,
optimization strategy, and objective function and, thus, support developers in setting up one of the
central algorithms of contemporary and near-term quantum computing.

Keywords: warm-starting; QAOA; maximum cut; hyperparameter selection; quantum optimization;
layer-wise optimization; NISQ

1. Introduction

Quantum computing promises to solve a variety of problems, e.g., in chemistry [1], ma-
chine learning [2–8], or combinatorial optimization [9,10], more efficiently than any classical
computer. However, the current generation of gate-based quantum hardware, e.g., based
on superconducting qubits [11,12] or trapped ions [13,14], is still deficient in many respects.
For instance, the gate and measurement operations are error-prone and the number of
qubits, their connectivity, and the maximum depth of executable quantum circuits are
limited [15]. A promising candidate for reaching a near-term quantum advantage despite
the limitations of these so-called Noisy Intermediate-Scale Quantum (NISQ) devices [16]
is the Quantum Approximate Optimization Algorithm (QAOA) [17], a generic algorithm
for the approximation of optimal solutions to combinatorial problems. Being a variational
quantum algorithm [18], QAOA involves a classical optimization loop to determine param-
eter values for the QAOA quantum circuit. The approximation quality of QAOA improves
theoretically with the number of repetitions, p, of a cost and mixing operator in the quantum
circuit. However, since the circuit depth increases linearly with each repetition, the limits
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for the executability on NISQ devices are reached with only a few repetitions. For example,
p ≤ 3 is realistic for reasonably sized problems on current quantum devices [10].

Warm-starting is an approach in classical computing to speed up the search for an op-
timal solution, which is commonly used in the domains of machine learning and optimiza-
tion [19–25]. The general idea is to first generate a rough estimate close to the optimal solu-
tion using an efficient algorithm, and then utilize this solution as a starting point for another,
more precise algorithm to compute a better approximation. In the context of quantum com-
puting, warm-starting can help achieve better results with limited quantum resources by
combining classical and quantum computation in hybrid quantum–classical algorithms [26].
One example application scenario is the warm-started variants of QAOA (WS-QAOA) for
solving the Maximum Cut problem (MaxCut) [27,28]—MaxCut focuses on graph partition-
ing and has many applications, e.g., in machine learning. For example, in the approach
by Egger et al. [27], the well-known Goemans–Williamson Algorithm (GW) [29] is used
to classically generate an estimate solution that is encoded into the initial state of QAOA,
which has the potential to result in improved solution quality with fewer repetitions.

To leverage the advantages of warm-starting for quantum algorithms such as QAOA,
additional challenges related to hyperparameter selection need to be taken into account.
For example, the approach by Egger et al. [27] introduces a regularization parameter, ε, to
tune the deviation of the WS-QAOA algorithm from plain QAOA. However, selecting this
parameter is not straightforward, as neither its influence on the solution quality for a given
problem instance nor guidelines on how this hyperparameter can be selected to achieve
a high solution quality are well-documented. Similar questions might arise in regard
to the approach by Tate et al. [28], which allows different rotations before the classically
pre-computed solutions are mapped to a quantum state—selecting such a rotation from
a given set of possible variants is equivalent to setting a categorical hyperparameter. As
a result, providing guidelines on (i) how to set such approach-specific hyperparameters for the
encoding of classically pre-computed solutions to achieve high solution quality becomes crucial for
researchers and practitioners interested in employing WS-QAOA for their use cases.

Moreover, QAOA itself comes with certain traits that need to be addressed appro-
priately. One major factor is the increase of complexity of both initialization and classical
optimization due to the growth of parameters with each additional repetition in the cir-
cuit. Obtaining an improved solution quality is, hence, not guaranteed, due to possible
limitations of the classical optimization of circuit parameters. Therefore, it is important
to identify (ii) which optimization strategies can cope with the initialization and optimization of
many circuit parameters to increase the chances of improving the solution quality with WS-
QAOA. Furthermore, although several alternative objective functions for the optimization
were evaluated and have proven superior for standard QAOA, the existing approaches of
WS-QAOA, e.g., WS-QAOA for MaxCut, focus only on the energy expectation value as an
objective value [27,28]. In this context, finding alternative objective functions is especially
interesting, since good objective values do not necessarily correlate with a high solution
quality [30]. Thus, (iii) understanding whether alternative objective functions can improve the
solution quality in WS-QAOA and providing guidelines on using them is another important step
for facilitating the usage of WS-QAOA.

In this work, we address these challenges in the context of the approach by Egger
et al. [27]. To achieve this, we design and conduct a set of experiments in which we treat the
optimization strategies and objective functions together with the regularization parameter ε
as hyperparameters to the WS-QAOA algorithm. In particular, we consider a total of three
optimization strategies and five objective functions. The conducted experiments focus on
executions of WS-QAOA for MaxCut with different hyperparameter settings and problem
instances, hence, providing insights on selecting these hyperparameters to achieve a high
solution quality. Thereby, the contributions of this work are as follows. We (i) analyze how
the regularization parameter ε influences the solution quality depending on the input and
objective function used in WS-QAOA and derive possibles strategies to select ε. Further,
we (ii) present and evaluate two new optimization strategies addressing the complexity of
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initialization and optimization for low-depth QAOA. Our experiments show that these op-
timization strategies can improve the solution quality of WS-QAOA for MaxCut compared
to the standard optimization strategy. Finally, we (iii) evaluate a set of alternative objective
functions in the context of WS-QAOA for MaxCut finding that these alternatives can lead to
significantly increased solution quality when compared to the standard energy expectation
objective function. Two objective functions are introduced in this work specifically for the
warm-starting scenario at hand. The two solution quality measures taken into account are
the probability of finding a MaxCut (i.e., an optimal solution) and the probability of finding
solutions better than the estimate used to warm-start the algorithm.

The remainder of the paper is structured as follows. Section 2 discusses the related
work and Section 3 introduces the relevant background. Section 4 motivates the problem
and formulates the research questions. Section 5 describes the research design and ex-
perimental setup. The results of the experiments are presented and further discussed in
Sections 6 and 7, respectively. Section 8 concludes this work.

2. Related Work

In this section, we first review work on warm-starting in general and WS-QAOA in
particular, then focus on alternative objective functions, and finally on a typical optimization
approach in the quantum domain.

2.1. Warm-Starting

The concept of warm-starting is widely spread in mathematical programming [19–22]
and classical optimization [23–25]. Warm-starting has been identified as a pattern for hybrid
algorithms to induce a quantum-classic split [26]. Specifically in the context of QAOA, it
has been introduced by Egger et al. [27] and Tate et al. [28]. WS-QAOA has been applied
on a small scale for clustering via MaxCut [31,32].

Egger et al. [27] present variants of WS-QAOA based on continuous and rounded
SDP results. For MaxCut, their WS-QAOA is based on a rounded GW solution that is
regularized as per Equation (2). The mixer is adjusted such that the ground state of HM is
the initial state. For their variant based on rounded SDP, the mixer is additionally adapted
in a way that allows the generation of states that differ from the initial cut as well as retain
it by choosing certain parameter values. However, the eigenstate of this mixer no longer
corresponds to the prepared biased initial state. Thus, the arguments of Farhi et al. [17]
for the convergence of the algorithm to an optimal solution with increasing p no longer
apply. Egger et al. [27] therefore rely on the empirical analysis of their approach indicating
possible improvements upon GW. We build upon this work, but use the mixer that is
compatible with [17]. Other than Egger et al. [27], we also focus on different objective
functions and optimization strategies as hyperparameters of the algorithm.

Tate et al. [28] introduce a warm-starting pipeline that initializes QAOA with a low-
rank Burer–Monteiro relaxation. Nodes are mapped to the Rk, where k is the rank (instead
Rn in GW, see Section 3), and the mapping is directly encoded into the quantum state;
this is in contrast to Egger et al.’s [27] variant where one concrete solution is encoded
into the initial state. Specifically, rank-k solutions for k ∈ {2, 3} are considered, since the
mapping to the Bloch sphere is simple in these cases. As experiments confirm, this variant
of warm-started QAOA can consistently outperform CS-QAOA for small p. During the
writing of this manuscript, a generalized version of their approach appeared [33], which,
instead of using the standard QAOA mixer, is enabled for arbitrary separable initial states
and corresponding mixers. In simulations, this version outperformed CS-QAOA, pure GW,
as well as its predecessor.

2.2. Alternative Objective Functions for QAOA

For CS-QAOA, alternative objective functions have been evaluated [30,34]. The Con-
ditional Value-at-Risk (CVaR) objective function [30] is inspired by CVaR as used in finance.
It only takes the lower tail of the probability distribution into account. Assuming a list
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of samples sorted by their associated energy values in ascending order, only the fraction
α of the first samples in the list is considered, i.e., CVaR computes the average of the
energy values of that fraction. It is thus a generalization of the objective function based on
the expectation value (α = 1) and a trivial objective function that returns the minimum
sampled solution (α→ 0). On the other hand, the Gibbs objective function [34] inspired by
Gibbs free energy in statistical mechanics also focuses on low energy values. It is based
on the expectation value of eηE, where E is the corresponding cut size (interpreted as
energy) of the samples, and thus gradually de-emphasizes the probability distribution for
lower cut sizes depending on η. Both approaches introduce hyperparameters, α and η,
respectively, for which practical values need to be determined. Recent work [35] further
adapted CVaR by gradually evolving α towards 1 during the optimization. An additional
ascending function describes this evolution. This function is thus another hyperparameter.
The evaluations of these alternative objective functions show significant advantage over
optimization based on the energy expectation value depending on the choice of parameters.
We evaluate the CVaR and Gibbs objective functions; however, this was done in the context
of WS-QAOA and alongside other alternatives without additional hyperparameters.

2.3. Layer-Wise Training

Layer-wise training or, in other words, step-wise optimization is widely used with
VQA and quantum neural networks [36–39]. The basic idea is to optimize only a portion of
the parameters of a parameterized quantum circuit at a time, since training all parameters
at once can be very cumbersome for the optimizer, especially in a non-convex parame-
ter space, leading to inferior results. The underlying layer-wise trainability conjecture is
proved to not be true in all cases [40], i.e., the optimization can be predestined to saturate
prematurely without finding the global optimum. However, very recent work shows that,
for QAOA, this saturation occurs only as p reaches closer to the number of qubits [41]. Thus,
layer-wise optimization can outperform standard optimization for low-depth QAOA. With
what we call incremental optimization, we evaluate very similar optimization strategies
in the context of WS-QAOA.

3. Background

In this section, we provide details on the core concepts required for this work, including
QAOA and the warm-started variant of QAOA for the MaxCut problem.

3.1. Quantum Algorithms in the NISQ Era

NISQ devices are error-prone and limited in several respects [11,15,16], e.g., the limited
number of qubits and their lack of interconnections limit the usage of multi-qubit gates and
the size of problems they can solve. Moreover, gates introduce errors to the quantum states
as they are executed with insufficient success probability, and qubits quickly lose their states
due to decoherence over time. Moreover, interactions with the environment and crosstalk
between qubits may, despite all shielding, influence states. Measurement operations
themselves are error-prone too, since measurement time is significant compared to the
decoherence time of qubits, and thus measurement may not complete before decoherence
sets in. These limited capabilities of today’s NISQ devices restrict the width and depth of
executable quantum circuits strongly [15,16,42].

To still achieve good results with NISQ devices, hybrid quantum–classical algorithms,
i.e., algorithms comprising alternating classical and quantum parts, take advantage of both
quantum and classical computers [16]. Essentially, most quantum algorithms are hybrid as
they often require pre- and post-processing on classical computers, e.g., classical data need
to be encoded into the quantum circuit and post-processing needs to be applied afterwards
to retrieve meaningful results from the algorithm [43].



Electronics 2022, 11, 1033 5 of 25

3.2. The Quantum Approximate Optimization Algorithm

Variational Quantum Algorithms (VQA) are hybrid quantum–classical algorithms
that utilize a classical optimizer to learn parameters for a parameterized quantum circuit,
the so-called ansatz [18]. The goal is to search for (approximate) solutions for problems
that are hard to solve on classical computers. The ansätze for a VQA can be categorized
as problem-inspired or problem-agnostic, depending on whether information about the
problem is incorporated into the ansatz or not. In the case of QAOA, a problem-inspired
ansatz is employed, which requires the encoding of a given combinatorial optimization
problem into a cost Hamiltonian, HC, that corresponds to the total energy of a system, such
that the ground state of HC corresponds to the optimal solution.

QAOA was first introduced by Farhi et al. [17]. The initial state of the QAOA quantum
circuit is the equal superposition of all n qubits, |+〉⊗n. Apart from HC, a mixer Hamil-
tonian, HM, is used, the eigenstate of which is |+〉⊗n, i.e., exactly the initial state. The
Hamiltonians are implemented by corresponding unitary operators U(HC, γi) := e−iγi HC

and U(HM, βi) := e−iγi HM . These operators are employed to implement a trotterized ap-
proximation of an adiabatic evolution, thus leveraging the adiabatic theorem—Adiabatic
evolution follows the adiabatic theorem to achieve a transition of a system from the known
ground state of a Hamiltonian to the unknown ground state of another Hamiltonian, in
this case, from the initial state as a ground state of HM to a ground state of HC, an optimal
solution [44]. Therefore, the circuit proceeds from the initial state with sequential appli-
cations of U(HC, γi) and U(HM, βi), where i ∈ {1, . . . , p} in p repetitions. The parameters
γi, βi boil down to rotation angles for both operators. As p, and thus the circuit depth, is
increased, the approximation quality improves, and the quantum state converges towards
a ground state of HC corresponding to an optimal solution. The parameter values γi, βi
for i ∈ {1, . . . , p} are determined using a classical optimizer. The optimizer evaluates
the measured result of the executed circuit according to a classical objective function that
correlates with the quality of the approximated solution. The original objective function
computes the expectation value for the energy of the measured states, that is, by definition
of HC, linked with the optimality of the solution.

The potential of QAOA to perform tasks intractable on classical hardware is of great
research interest. According to current estimations, such quantum advantage via QAOA can
be reached with a few hundred qubits [45]. Further research indicates that the performance
of the algorithm strongly depends on a problem density property, e.g., the clause to variable
ratio of constraint satisfiability problems [46].

3.3. Warm-Started QAOA for Maximum Cut

As mentioned before, the general idea of warm-starting is to use the knowledge of
previous solutions or solutions for related or relaxed problems to facilitate the search for
better solutions. Warm-starting does not guarantee finding the best solution efficiently
but may speed up the search for a good result. In the context of quantum computing,
warm-starting describes the concept of utilizing a classical approximation as an initial point
for the quantum algorithm to improve upon [26].

Warm-starting has also been employed by Egger et al. [27] and Tate et al. [28] for one
of the most widely used examples [47] for QAOA, the Maximum Cut problem (MaxCut).
A cut is a division of an undirected graph into two partitions. It can be seen as a bit string
from {0, 1}n that assigns each of n nodes of the graph to a partition. The number of edges
between the nodes of both partitions of a cut is the cut size. In the case of weighted graphs,
the sum of the edge weights is considered instead. MaxCut is the problem of finding a
cut with the maximum cut size for the respective graph. Such a cut is also referred to as a
MaxCut. There can also be different cuts that take the same maximum value. For a given
graph with n nodes, the MaxCut cost operator to compute the size of a cut Z ∈ {0, 1}n can
be defined as:

C(Z) = ∑
{i,j}∈E

wi,j(Z[i] ⊕ Z[j])
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= ∑
{i,j}∈E

wi,j((Z[i](1− Z[j]) + Z[j](1− Z[i])), (1)

where ⊕ denotes an exclusive or (XOR), wi,j is the weight of an edge Ei,j, and Z[i] specifies
the assignment of the ith node to one of the two partitions as described above.

Determining the MaxCut is well known to be an NP-hard problem [48]; however,
there exist approximation algorithms. In classical computing, GW [29] is the best known
algorithm to approximate MaxCut. The algorithm is based on a semi-definite programming
(SDP) relaxation with random-hyperplane rounding, i.e., nodes are mapped to unit vectors
in Rn and then separated by a random hyperplane through the origin. For graphs with
non-negative edge weights, it is known to deliver solutions of an expected cut size that
is about ≈87.8% of the MaxCut. Under the Unique Games Conjecture, GW is believed to
be the optimal classical algorithm for MaxCut [49]. However, only the NP-hardness of
achieving an approximation ratio above ≈94.1% has been proven [50].

For their warm-started variant of QAOA for MaxCut, Egger et al. [27] introduce a
regularization parameter, ε ∈ [0, 0.5], to map 0 7→ ε and 1 7→ 1− ε in order to prepare
a biased superposition based on a classically pre-computed cut, Z, as the initial state to
warm-start QAOA. The biased superposition on each qubit is created by means of an RY
rotation by an angle θ according to

θ = 2 · arcsin(
√

ε) if Z[i] = 0,
θ = 2 · arcsin(

√
1− ε) if Z[i] = 1.

(2)

WS-QAOA with ε = 0.5 results in θ = π
2 , which initializes all qubits in the |+〉 state and is

equivalent to standard, i.e., cold-started, QAOA (CS-QAOA).

4. Motivation and Research Questions

Solving the problem of finding maximum cuts in graphs is important in various do-
mains, for example, in solid-state physics and very large-scale integrated (VLSI) circuit
design [51]. In the former, MaxCut can be used to find ground states of spin glasses, i.e., al-
loys of magnetic impurities diluted in non-magnetic metal. In VLSI, it is applied to minimize
the number of holes on printed circuit boards or contacts on chips. Another application
scenario for MaxCut is related to data clustering [52]. The graph partitioning described by
MaxCut can be used to separate data points into clusters, e.g., for pattern detection in the
domain of digital humanities [53]. While MaxCut can be approximated using the classical
GW algorithm, the combination of GW and QAOA into a hybrid warm-started quantum
algorithm is promising [27]. Figure 1 shows a developer’s perspective on using WS-QAOA
for MaxCut.

Configure 
Execution

2
Execute

WS-QAOA
3

Postprocess 
Result

4
Preprocess 

Data
1

A Set of 
Hyperpara-
meters

Input 
Data

Raw
Result

Output
Data

Figure 1. Selection of hyperparameters for WS-QAOA from a developer’s perspective.

First, the data supplied to the algorithm often require pre-processing, e.g., transforming
categorical into numerical data to represent it as a graph. Next, the WS-QAOA algorithm
needs to be configured with suitable hyperparameter values before executing it. After
the execution, the results are post-processed, which can also include reconfiguration of
hyperparameters to further improve the result. When compared to classical techniques,
such quantum-based, hybrid machine learning methods promise superior results either
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in accuracy or time consumption, making quantum machine learning (QML) a rapidly
evolving research area [2–8].

Similar to classical machine learning (ML) [54,55], QML algorithms also face the prob-
lem of selecting hyperparameters [53]. Furthermore, QML algorithms, which are often
hybrid [4,16], introduce additional hyperparameters, such as those related to quantum
circuit design and execution aspects. For example, WS-QAOA comes with multiple hy-
perparameters requiring an in-depth knowledge of the underlying quantum-mechanical
aspects of the circuit or extensive testing on scarce quantum devices including cumber-
some evaluation of measurements to determine viable values for these parameters. One
particular example of such quantum-specific hyperparameters is the regularization param-
eter ε employed in the approach by Egger et al. [27] (see Section 3). This is a continuous
hyperparameter [54] that tunes the bias of the superposition in the initial state towards
the classically pre-computed approximation. Since it directly influences the quantum
state, the regularization parameter, ε, evidently has great potential influence on the state
measured after circuit execution and, thus, on the resulting solution quality. Categorical
hyperparameters [54], such as strategies employed for optimization and objective functions,
used during optimization also influence the solution quality of the algorithm significantly.
At the same time, these hyperparameters possess characteristics unique to the quantum
computing domain. More specifically, optimization strategies can leverage knowledge of
the circuit design to increase the performance of the quantum algorithm and the objective
functions need to process measured quantum states to evaluate and direct the optimization
progress, thus significantly impacting the resulting solution. For example, the standard
objective function evaluates the energy expectation value, i.e., in the case of MaxCut, effec-
tively the expected cut size corresponding to measured states. Therefore, to improve the
quality of solutions obtained with WS-QAOA for MaxCut, application developers need
to understand the influence of these quantum-specific hyperparameters on the solution
quality and know how to configure the algorithm with respect to suitable parameter values.

While the influence of the regularization parameter ε on the energy expectation value
has previously been investigated [27], an evaluation of its influence on the solution qual-
ity, i.e., the probability of obtaining the MaxCut and cuts better than the classically pre-
computed solution, has not been previously studied. For example, instead of indicating
an improved solution quality, good energy expectation values can in fact signify that the
pre-computed cut has merely been preserved. Moreover, it has not been investigated yet,
whether delegating the selection of the regularization parameter ε to classical optimizers
is a feasible approach to facilitate the selection process for ε, as it is often performed with
continuous hyperparameters in classical ML [54]. Thus, it is important to understand how
to efficiently select ε values such that the solution quality is increased. Furthermore, since the
number of circuit parameters to be adjusted by the optimizer increases with the number of
repetitions of the QAOA ansatz, strategies for the initialization and optimization of these
parameters are needed to cope with the increasing optimization complexity. Also the time
span needed for the parameter optimization may increase with the number of parameters
and depending on the optimization strategy. Although optimization strategies from ML
could help, they need to be transferred to and evaluated in the context of WS-QAOA for MaxCut,
which, has not been previously investigated. Finally, while different objective functions
have been studied for QAOA [30,34,35], to the best of our knowledge, their applicability in
the context of WS-QAOA for MaxCut is yet to be analyzed. Moreover, these objective functions
introduce additional, conditional hyperparameters [54] which need to be configured when-
ever the respective objective function is selected, hence, making the selection process even
more complex. Thus, it is important to understand (i) how existing objective functions can
be employed in the context of WS-QAOA for MaxCut and (ii) whether suitable alternative
objective functions without additional hyperparameters exist and can be used instead,
to simplify the selection of objective functions.
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Therefore, to address the aforementioned hyperparameter selection issues in the
context of WS-QAOA for MaxCut, we formulate the research questions in this work
as follows:

RQ1:“How does the regularization parameter ε influence the solution quality, and is it possible and
meaningful to delegate the adjustment of ε to a classical optimizer?”

RQ2:“How do different optimization strategies for WS-QAOA influence the solution quality and
runtime of the optimization?”

RQ3:“Which alternative objective functions apart from the energy expectation value are suitable for
WS-QAOA, and how do they correlate with the solution quality, and are objective functions
without additional hyperparameters practical?”

5. Research Design

In this section, we design a set of experiments to address the research questions for-
mulated in Section 4 and discuss the details of the prototypical implementation. Firstly, we
give a general overview of the evaluation process and provide the technical details related
to its major steps. Afterwards, we describe three experiments that focus on different aspects
of hyperparameter selection for WS-QAOA, namely (i) the regularization parameter ε,
(ii) optimization strategies, and (iii) alternative objective functions.

5.1. Overview of the Evaluation Process

To investigate the different aspects of hyperparameter selection defined in the research
questions (Section 4), we implement and execute the optimization loop using different
hyperparameter settings and evaluate the resulting solution quality as depicted in Figure 2.
In Step 1, shown in Figure 2, we select a problem instance. In the case of WS-QAOA for
MaxCut, a problem instance is a graph with a given pre-computed initial cut that is used
for the warm-starting, i.e., as a starting point, it improves the search for the optimal or an
approximate solution. In Step 2, the algorithm needs to be configured for execution. The
configuration of an execution involves selecting three kinds of hyperparameters, namely
(i) the regularization parameter ε, (ii) an optimization strategy, and (iii) an objective function.
Additionally, it is worth emphasizing that the choice of an optimization strategy also defines
how (iv) the parameters for the quantum circuit, (βi, γi), are initialized. Next, in Step 3,
the optimization loop is executed to maximize the objective value and, hence, increase
the size of cuts sampled from the circuit execution by adjusting the circuit parameters
βi, γi. In the optimization loop, a classical optimizer executes the WS-QAOA quantum
circuit with iteratively updated parameter values, as shown in Step 3a of Figure 2. The
resulting measurements are evaluated according to the configured objective function,
as shown in Step 3b. Afterwards, the classical optimizer checks for convergence (Step 3c)
and, if the optimization has not converged, continues the iteration with parameters updated
according to its internal policy aiming to increase the objective value (Step 3d). When the
optimization loop is completed, the refined parameter values need to be retrieved as shown
in Step 4 of Figure 2. In this step, we utilize the optimization history to further improve the
parameters. Finally, in Step 5, the circuit is executed with these refined parameters and the
solution quality evaluated based on the measured samples. In the following, we elaborate
on each step of the evaluation process.

1© Problem Instance Selection. To obtain the problem instances, we generate three
regular (Gn,3r), random (Gn,rand), and fully-connected graphs (Gn,fc). For our experiments,
we use graphs with n = 12 and 24 nodes and random edge weights wi,j ∈ {−10, . . . , 10}
as depicted in Figure 3.
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Figure 2. Overview of the WS-QAOA evaluation process.
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Figure 3. The graphs used for the evaluation of different hyperparameter settings: Gn,3r, Gn,rand,
and Gn,fc with n ∈ {12, 24}.

For random graphs, edges are inserted at random positions: 33 edges for 12-node
graphs and 138 edges for 24-node graphs, i.e., half of the maximum possible edges in each
case. As the graphs are relatively small, the MaxCut can be determined classically and
is, in fact, often also output by the Goemans–Williamson Algorithm (GW). We use GW to
pre-compute high-quality starting points (initial cuts) to warm-start QAOA. An excerpt of
cuts for the graphs shown in Figure 3 computed using GW is provided in Table 1 with the
respective MaxCuts.

2© Configure Execution. As discussed previously, the selection of objective functions
and optimization strategies plays a critical role in improving the solution quality. In
the following, we elaborate on the set of optimization strategies and objective functions
employed as hyperparamteres during the configuration step for running our experiments.
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Table 1. Cuts and MaxCuts of the graphs in Figure 3. Cuts are represented as bit strings as described
in Section 3. Those for 12-node graphs are given in the left-hand side and those for 24-node graphs in
the right-hand side of the table alongside the cut size and respective ratio of the MaxCut.

Graph
n = 12 n = 24

Cut Size Size
MaxCut Cut Size Size

MaxCut

Gn,3r
100010110011 18 1 110111111010011000101000 111 1
100000100111 16 0.8889 101000000101100111110101 97 0.8739

Gn,rand
111010100111 98 1 100000001011000111100110 166 1
101111001010 86 0.8776 100000001010100110010111 145 0.8735

Gn,fc

111110011010 103 1 110001101001100111001001 278 1
110010111010 100 0.9709 110011101001110111001001 246 0.8849
111110111010 92 0.8932
111110001010 91 0.8835
111010111010 91 0.8835

Selecting the Optimization Strategy. For the configuration step, we employ three
optimization strategies, namely (i) the standard optimization strategy and two variants of
what we call the incremental optimization strategy—(ii) incremental full optimization and
(iii) incremental partial optimization. Inspired by classical optimization approaches [56],
the standard optimization strategy is to start directly with the intended QAOA depth
and randomly initialize and optimize all circuit parameters at once. In contrast to the
standard optimization strategy, the employed incremental optimization strategies focus on
step-by-step initialization and optimization inspired by similar approaches for classical and
quantum machine learning algorithms [36–39,57]. To better explain these strategies, we
look into the properties of the QAOA circuit. For p repetitions of the QAOA ansatz, the cost
Hamiltonian, HC, and mixer Hamiltonian, HM, are repeatedly applied p times and circuit
parameters γi, βi (i ∈ {1, . . . , p}) are introduced to the circuit. When both γi and βi are
set to 0 for one repetition of the Hamiltonians, the circuit effectively equals that for p− 1.
Therefore, it is always possible to retain the state generated by a lower-depth QAOA circuit.
This immediately suggests building the initialization of parameters on the optimized
parameters for a lower-depth WS-QAOA circuit. For instance, in order to optimize the
parameters for depth-2 QAOA, one can first find optimal parameters γ1, β1 by running
depth-1 QAOA with random initial values. Subsequently, (γ′1, β′1, γ′2, β′2) = (γ1, β1, 0, 0)
can be used as initial parameter values for depth-2 QAOA. We consider two options for
the optimization from this point: either optimizing all parameters, in this case γ′1, β′1, γ′2,
and β′2, or optimizing only the new parameters that were initialized with zeroes, in this case
γ′2 and β′2. We call the former variant incremental full optimization and the latter incremental
partial optimization. Clearly, incremental partial optimization aims to further simplify the
optimization process by reducing the number of parameters to be optimized in a step.

Selecting the Objective Function. For the objective function selection during the con-
figuration step, we employ five objective functions. Three of them are known from the
literature, namely (i) FEE based on the energy expectation value [27], (ii) Fα,CVaR inspired
by the Conditional Value-at-Risk [30], and (iii) Fη,Gibbs inspired by Gibbs energy [34]. Ad-
ditionally, we introduce two new alternatives, namely (iv) FGreedy and (v) FEE-I, which are
both adaptations of FEE for our warm-starting scenario. The five objective functions are
given by Equations (3)–(7) an explained in more detail below.

FEE is the standard objective function based on the expectation value for the cut size of
sampled solutions, which, in other terminology, is considered a representation of an energy
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value. The cut size is computed by the cost function C as given in Equation (1), Xi is the ith
of a total of K sampled solutions, i.e., K is the number of shots for the circuit execution.

FEE = ∑
i

C(Xi)

K
(3)

Fα,CVaR [30] assumes that the samples Xi are stored in descending order with respect to
the associated cost (i.e., C(Xi) ≥ C(Xi+1)). The hyperparameter α determines what fraction
of a total K samples is considered.

Fα,CVaR =
dαKe

∑
i=0

C(Xi)

dαKe . (4)

For Fη,Gibbs [34], η is a hyperparameter tuning the exponential profile of the objective
function.

Fη,Gibbs = log ∑
i

eηC(Xi) · 1
K

(5)

FGreedy is designed to take into account only samples that yield a cut size above the size
of the initial cut C(I) used to warm-start the optimization. Hence, it is similar to Fα,CVaR
but avoids the additional hyperparameter α. The intuition behind this objective function is
that, with warm-starting, we aim to find cuts that are better than the initial cut and should,
therefore, focus only on such cuts.

FGreedy = ∑
i

Ĉ(Xi)

K
,
{

Ĉ = C, C(Xi) > C(I)
Ĉ = 0, else

. (6)

FEE-I merely disregards samples with a cut size equal to that of the initial cut I and, thereby,
in contrast to FGreedy, also factors in cuts that are worse than I, such that these could be
avoided in the optimization.

FEE-I = ∑
i

Ĉ(Xi)

K
,
{

Ĉ = C, C(Xi) 6= C(I)
Ĉ = 0, else.

(7)

3© Execute Classical Optimization Loop. We follow previous analyses [27,30,58] in
using the gradient-free classical optimizer COBYLA via SciPy with the respective default
parameters [59]. COBYLA employs a linear approximation approach and supports inequal-
ity constraints. The implementation relies on minimizing the negated objective values
computed by Equations (3)–(7), which is equivalent to maximization. Therefore, the mini-
mization and maximization problem are not strictly distinguished in this work. When we
talk of high objective values as beneficial, the problem is viewed from the maximization
perspective although on the implementation level negated objective values are minimized.

4© Refine Parameters. Traditionally, the classical optimizer returns the final opti-
mized parameters that it determined at the end of the optimization loop. Occasionally,
during the optimization process, the optimizer probes parameter values that yield objective
values better than achieved with the final optimized parameter output by the optimizer.
This may happen especially in non-convex optimization, which is often the case in the
(γ, β) space for QAOA (we discuss this in more detail when presenting the experimental
results in Section 6). While intermediate results are usually discarded during optimization,
our strategy is to exploit them for post-optimization parameter refinement by picking the
best parameters (as per the corresponding objective values) probed during optimization.
This can be seen as a cross between optimization and exhaustive search in the (γ, β) space.
As a result, this selective parameter refinement using the optimization history provides
parameters at least as good as traditional optimization but better results on average.
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5© Execute Circuit for Problem Instance. For both circuit execution steps, occurring
inside (Step 3a) and outside (Step 5) of the optimization loop, we define and implement the
WS-QAOA quantum circuit. Since each node is represented by one qubit, the circuit width
coincides with the number of nodes of the considered graph, i.e., the problem instances
(Figure 3) require 12 and 24 qubits, respectively. The principal structure of the quantum
circuit is shown in Figure 4 for a minimal example.
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Figure 4. Minimal example: The quantum circuit on the left implements WS-QAOA with p = 1 for
the 3-node graph depicted on the right-hand side.

It consists of an initialization, the implementation of the cost Hamiltonian HC, and the
mixer Hamiltonian HM (each separated by a barrier in Figure 4). The RY rotations in the
first section encode the initial cut sequence 010 (cut size: 15) according to Equation (2)
using ε = 0.25. HC is integrated into the circuit in the second section by adding a (CNOT,
RZ(−wi,j ·γ1), CNOT) group for each edge, where wi,j is the respective edge weight, and the
control and target qubit for CNOT consist of the pair of nodes connected by the edge. The
mixer HM is the adjusted version for WS-QAOA from [27], however, without the additional
changes for rounded SDP. It applies a sequence of rotations RY, RZ, RY for each qubit in the
last section of the circuit, where RY depends on the initial state, and RZ depends on the
hyperparameter β1. Thus, the initial state is an eigenstate of the mixer and the arguments
regarding the convergence of the algorithm with the ground state (with increasing p)
apply [17]. In case the circuit cannot reproduce the initial cut, it can be retained classically
so as to ensure that the algorithm performs at least as well as mere GW. Circuit execution
for our experiments is simulated locally on Qiskit’s QasmSimulator backend [60]. In order
to obtain reliable information on the probability distribution, 5000 shots are sampled in
each circuit execution. The measured bit strings are interpreted as a mapping of the nodes
to a partition. For instance, the bit string 010 encodes the MaxCut of the graph depicted
in Figure 4, where node 1 is in a different partition, partition 1, than the remaining nodes,
which are assigned to partition 0.

6© Evaluate Solution Quality. We consider the probability of sampling a MaxCut
(MaxCut probability) as the main evaluation criterion for the comparison of different
hyperparameter settings. It corresponds to the probability of transitioning into a ground
state for the cost Hamiltonian and is estimated directly from the fraction of shots that result
in such a state. An additional measure is the overall probability of sampling a cut better
than the initial cut for WS-QAOA (BetterCut probability), which corresponds to transitions
into lower energy states compared to the state corresponding to the initial cut. The latter
may be more suitable in some cases where a direct transition into a ground state is highly
unlikely, but WS-QAOA can still improve upon the classically pre-computed result.

5.2. Experiment Designs

Having discussed the core aspects of the evaluation process, in the following we
design a set of experiments aimed at evaluating how different hyperparameters influence
the solution quality for WS-QAOA for the MaxCut problem. Each experiment is designed
to answer the corresponding research question formulated in Section 4.
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Experiment 1: Influence of the regularization parameter ε
To analyze the influences of the regularization parameter ε on the solution quality as

formulated in RQ1 in Section 4, we perform the following steps:

1. As the input for WS-QAOA for MaxCut, we use the generated problem instances,
each comprising a graph and an initial cut for this graph. For this experiment, we
exemplarily focus on G12,fc as a graph with medium difficulty in our set of generated
graphs (Figure 3). The problem instances for this experiment consist of this graph
combined with two different initial cuts of size 91 and 92, respectively, as presented
in Table 1. Both cuts are below an approximation ratio of 0.9, thus creating problem
instances for a realistic warm-starting scenario.

2. For each of these problem instances, we sequentially fix the regularization parameter ε
to each value in the range of {0, 0.025, 0.05, . . . , 0.475, 0.5} and execute the WS-QAOA
algorithm for depth 1 (depth-1 WS-QAOA) using FEE as the objective function.

3. We compute the median MaxCut probability achieved with optimized parameters
from multiple replications of these executions in order to learn how the MaxCut
probability correlates with ε for different problem instances. Multiple replications are
necessary to mitigate the randomness in the measurement of quantum states.

4. To determine how this correlation is influenced by the chosen objective function,
steps 1 to 3 are repeated using each of the alternative objective functions given in
Equations (4)–(7).

5. Finally, to investigate the suitability of the objective functions for delegation of the ad-
justment of ε to the classical optimizer, we analyze the correlation of median objective
values achieved in each setting with the MaxCut probability. If the ε values for a high
MaxCut probability coincide with high objective values, the classical optimizer could
be used to determine ε based on the objective value.

Experiment 2: Comparison of Alternative Optimization Strategies
To compare the three optimization strategies (see Section 5.1) as formulated in RQ2

in Section 4, we proceed as follows:

1. As input for WS-QAOA for MaxCut, we use a generated problem instance consisting
of the graph G12,fc (Figure 3) and the initial cut of size 92 for that graph (Table 1).

2. Depth-0 through depth-3 WS-QAOA are executed and optimized as prescribed by
each optimization strategy. Depth-0 WS-QAOA is equivalent to merely sampling
solutions from the initialized biased superposition. The regularization value ε is fixed
to an arbitrary value for this experiment to focus on the comparison of optimization
strategies for the circuit parameter optimization. FEE and FGreedy are used, exemplarily,
as the objective functions.

3. For each depth, we record the number of epochs of the optimization loop as a platform-
independent measure for execution time, i.e., the time span taken for the optimization,
and the median MaxCut and BetterCut probabilities are determined using the op-
timized parameters from multiple replications of the optimization loop in order to
assess the performance of the optimization strategies.

4. Additionally, we repeat the same experiment with multiple newly generated problem
instances in order to generalize the results obtained for G12,fc. Therefore, we generate
20 new graphs of each kind (G12,3r, G12,rand, and G12,fc) and run GW 250 times for
each graph. From the resulting list of generated cuts sorted by their cut size, we
select the first one of cut size below 0.9×MaxCut as the initial cut. For comparability
between problem instances, the relative change of the MaxCut probability obtained
from depth-0 to depth-1, depth-1 to depth-2, and depth-2 to depth-3 WS-QAOA is
considered to assess the suitability of the optimization strategies. The optimization
strategies should be able to produce an overall high MaxCut probability, that increases
with the depth of the QAOA circuit, and require a low number of optimization epochs,
i.e., a short execution time, which indicates high efficiency.
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Experiment 3: Evaluation of Alternative Objective Functions
To answer RQ3 formulated in Section 4, we evaluate the suitability of the five objective

functions presented in Section 5.1. First, we take the same particular problem instance
evaluated in Experiment 1 and Experiment 2 to evaluate and plot the objective values and
MaxCut probabilities in the (γ1, β1) parameter space for the most viable regularization
value ε for each objective function as observed in Experiment 1. We assume that the overlap
is especially high for the most viable regularization value ε, since these are the values
where the minima of the objective functions found by the optimizer lead to the highest
MaxCut probability. From the plots, we can then visually analyze the correlation of MaxCut
probability and each objective function to assess their suitability for WS-QAOA for MaxCut.

Secondly, to compare the objective functions, we perform the following steps:

1. We take generated problem instances consisting of the graphs shown in Figure 3
and corresponding initial cuts given in Table 1. For G12,fc, we use the initial cut
111010111010 (cut size: 91). Thus, all initial cuts are below an approximation ratio of
0.9 resulting in realistic warm-starting scenarios.

2. We run depth-3 WS-QAOA on each graph and for each objective function. Since we
focus on the different objective functions, the optimization strategy is fixed to the most
suitable of the three optimization strategies from Experiment 2. Further, we employ
the strategy for selecting a viable regularization value ε as obtained in Experiment 1.

3. The median MaxCut and BetterCut probabilities from multiple replications are com-
puted and compared to determine the suitability of objective functions with respect to
the obtained solution quality.

6. Results

In this section, we present the results of our experiments described in Section 5 aimed at
answering the research questions formulated in Section 4. For each experiment, we analyze
the obtained results and highlight our major findings. The prototypical implementation
used to obtain these results can be found on GitHub [61].

6.1. Experiment 1 Results: Influence of the Regularization Parameter ε

Following our study design, the first question to clarify concerns the regularization
parameter ε. First, we evaluate how the MaxCut probability correlates with ε for the two
problem instances. The results in Figure 5 indicate that the optimal regularization value ε
(with respect to MaxCut probability) depends on the initial cut used to warm-start QAOA.
For the initial cut of size 92 (Figure 5 (left)), the highest median MaxCut probability was ob-
served at ε = 0.075 for FEE. For the second initial cut of size 91 (Figure 5 (right)), the median
MaxCut probability reached a maximum at ε = 0.15 for FEE. Thus, a viable regularization
value ε strongly depends on the graph at hand, since it depends on the used initial cut.
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Figure 5. Median probability of sampling the MaxCut of G12,fc using depth-1 WS-QAOA in 20 runs
for each choice of ε and objective functions FEE and FGreedy. Warm-starting was initialized with
cuts of size 92 (left) and 91 ((right), bit string 111010111010), respectively (cf. Table 1). Each run
was initialized with γ1, β1 chosen uniformly at random from [0, π]. The graphs below depict the
normalized median objective values observed after optimization.

Second, we focus on how this correlation changes when we use different objective
functions. As Figure 5 shows, the objective function in use also influences the MaxCut
probability for different regularization values ε. For brevity, only the results for FEE and
FGreedy are compared in Figure 5. The results for the other objective functions provide
similar insights and are available in the project repository on GitHub [61].

Last, to investigate the suitability of the objective functions for delegating the adjust-
ment of ε to the optimizer, we compare the objective values for each regularization value ε
with the achieved MaxCut probability in Figure 5 (bottom row). From the curves of the
objective values, it is evident that the correlation between objective values and MaxCut
probability is non-trivial and depends on the respective objective function. In particular,
the optimal objective value for FEE is observed at ε = 0, whereas this choice for the regular-
ization parameter ε yields a MaxCut probability of 0 and is thus not favorable. Whereas for
FGreedy, a clear correlation can be seen especially for the initial cut of size 92.

Unsurprisingly, the results of the experiments shown in Figure 5 demonstrate that
finding a good regularization parameter ε is not trivial. Regularization values ε were
selected to deliver a high MaxCut probability. However, since the MaxCut of a graph is
not known and such exploration is not possible in general, the following two strategies for
selecting the regularization value ε can be employed: Either selecting an arbitrary value
that is expected to deliver acceptable results or letting the optimizer determine ε. The latter
requires that good objective values correlate with a high MaxCut probability. In the case
of FEE, as is demonstrated in Figure 5, ε would be optimized to 0, although the MaxCut
probability for this choice of ε is 0%. Similarly, ε would be optimized close to 0 for FEE-I.
Therefore, such optimization is unpromising with these two objective functions.

Major observations:

• The initial cut affects the solution quality independent of the objective function. A
minor change in cut size can significantly change MaxCut probabilities.

• Viable regularization values ε depend on the objective function in use, thus making
the selection of ε specific to the objective function at hand.

• Classical optimizers may be usable with some objective functions to optimize the
regularization parameter ε, however, not with FEE and FEE-I.
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6.2. Experiment 2 Results: Comparison of Alternative Optimization Strategies

Next, we evaluate the optimization strategies following the experiment design de-
scribed in Section 5.2. Figure 6 presents the results obtained with each optimization strategy
for G12,fc and the initial cut of size 92 (Figure 3 and Table 1). The regularization values ε
were adopted from searches as depicted in Figure 5. With standard optimization (Figure 6
(left)), both MaxCut and BetterCut probability drop significantly for p = 3 repetitions of
the main circuit.

This confirms our assumption that the high number of 2p circuit parameters, that are
optimized simultaneously, makes the optimization more complex. However, the objective
value was minimized to −70.6, −70.9, and −71.7 at p = 1, 2, and 3, respectively (not shown
in the figure). This once more illustrates an asynchronicity of the energy expectation value
and the MaxCut and BetterCut probability. A slight improvement was observed using
incremental full optimization (Figure 6 (center)) but for FEE both probabilities increased
only marginally for p = 2 and p = 3. In contrast, for FGreedy consistent growth of both
probabilities was observed. With incremental partial optimization (Figure 6 (right)), the
probabilities observed are similar to the incremental full optimization results. Most notably,
we obtained better results for higher p with both incremental optimization strategies than
with standard optimization.
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Figure 6. Comparison of the MaxCut and BetterCut probabilities obtained at each p ∈ {1, 2, 3}
for each optimization approach and objective functions FEE and FGreedy. WS-QAOA for G12,fc was
warm-started with the initial cut of size 92 (cf. Table 1). CS-QAOA was optimized based on the
energy expectation FEE. The values show median probabilities observed in 20 runs.

These results are fortified by the aggregated results of analogous experiments on
multiple graphs presented in Figure 7. Both incremental full and incremental partial
optimization achieved similar increase of the MaxCut probability with the depth of the
QAOA circuit. However, incremental partial optimization required notably fewer epochs
of COBYLA than incremental full optimization (Figure 7 (right)), since it optimizes only
γp, βp, while the other optimization strategies optimize 2p parameters at a time, hence,
making it the most suitable of both.
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Figure 7. (Left): Mean relative change of the MaxCut probability observed in experiments analogous
to Figure 6 optimized with FGreedy and ε = 0.15 for newly generated 12-node graphs as prescribed
in Section 5.2. Only problem instances, for which a MaxCut probability significantly higher than what
could be expected from uniform random sampling (> 0.1%) was found, were considered (7× G12,3r,
14× G12,rand, and 6× G12,fc). (Right): Average number of epochs of the standard, incremental full,
and incremental partial optimization.

Major observations:

• Incremental full and incremental partial optimization lead to higher MaxCut and
BetterCut probabilities than the standard optimization strategy.

• Incremental partial optimization requires less epochs of the optimizer than incremental
full optimization, thus making it the least resource consuming of both incremental
optimization strategies.

• Although the energy expectation objective value (FEE) improves, the MaxCut and
BetterCut probability may decrease at the same time, indicating a poor correlation
between FEE and the solution quality.

6.3. Experiment 3 Results: Evaluation of Alternative Objective Functions

This section focuses on the comparison of the different objective functions as prescribed
in Section 5.2. Therefore, we first analyze the MaxCut probabilities and objective values of
each objective function in the (γ, β) parameter space before assessing the performance of
each objective function for the generated problem instances. For the grid searches in the
(γ, β) space, as depicted in Figure 8, the regularization parameter ε was set to the value
that resulted in the highest median MaxCut probability for the respective problem instance
in Experiment 1 (Section 6.1). In this case, these were ε = 0.075 for FEE, F0.05,CVaR, and FGreedy
and ε = 0.05 for F5,Gibbs and FEE-I. The results indicate that the overlap of FEE and FEE-I
(Figure 8a,e) with the MaxCut probability at ε = 0.075 and ε = 0.05, respectively, is rather
limited. Low objective values concentrate around β = 0 and β = π, however, minima
hardly coincide with the maxima for the MaxCut probability. This indicates that parameters
for low objective values may not lead to high MaxCut probabilities, and, thus, optimization
based on these objective functions may result in inferior solution quality. For F0.05,CVaR,
F5,Gibbs and FGreedy (Figure 8b–d), the overlap is much more obvious, which indicates that
optimization based on these objective functions may result in higher solution quality. Note
that α = 0.05 for F0.05,CVaR implies a lower bound for the minimum objective value that
is reached each time when the MaxCut probability is higher than 5%. This effect visibly
widens the minima of the objective function in Figure 8.
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Figure 8. Grid search in the (γ1, β1) space for depth-1 WS-QAOA on G12,fc with initial cut of size 92
(cf. Table 1) using different objective functions (lower half) compared to MaxCut probability (upper
half). The distance between the evaluated points is π/20. α and η for Fα,CVaR, Fη,Gibbs were set to
exemplary values. For FEE, F0.05,CVaR, F5,Gibbs, and FEE-I, only values below manually set thresholds
were plotted to increase contrast and emphasize minima. Red circles mark the highest MaxCut
probabilities and lowest objective values observed.

Minima for F0.05,CVaR are not marked in Figure 8b, since too many points take the same
minimal value.

We now proceed with the evaluation of the performance of each objective function for
each of the problem instances as prescribed in Section 5.2. Both options for selecting the reg-
ularization parameter ε that we inferred in Section 6.1 are compared. First, we fixed the reg-
ularization parameter ε to an arbitrary value that we expected to be a generally acceptable
choice. The results obtained with this strategy are presented in Table 2 (left). Moreover, α for
Fα,CVaR and η for Fη,Gibbs were fixed at arbitrary values, as choosing them is likewise challeng-
ing and out of the scope of this paper. The results show that the median MaxCut probability
obtained for the 24-node graphs is significantly lower than that for the 12-node graphs.
Particularly, for G24,rand the MaxCut was not found at all in any run for any of the objective
functions and QAOA-depths. The MaxCut of G12,rand was found only by optimizing Fα,CVaR,
F5,Gibbs, and FGreedy. But the median probability was significantly lower than for the other
two 12-node graphs. Table 2 (bottom left-hand side) shows, that the median BetterCut prob-
abilities achieved for the 24-node graphs were mostly lower than for the 12-node graphs.

For the second option for selecting the regularization value ε, we repeated the same
experiments, but this time the regularization parameter ε was determined by COBYLA
during the depth-1 round of the incremental partial optimization. The optimization of
ε was constrained to the range [0, 0.5]. The final MaxCut and BetterCut probabilities for
these experiments are presented in Table 2 (right). As expected, ε was optimized close to
0 for FEE and FEE-I, resulting in negligible MaxCut and BetterCut probabilities (therefore
not shown in Table 2 (right), see project repository [61]). The optimization of ε for Fα,CVaR
resulted in decreased MaxCut probabilities, while BetterCut probabilities decreased for
most graph instances. Most notably, ε was optimized to 0 for all 24-node graphs, resulting
in both MaxCut and BetterCut probabilities reduced to 0%. For the 12-node graphs, FGreedy
and Fη,Gibbs produced mostly similar MaxCut and BetterCut probabilities compared to the
experiments with the fixed regularization value ε. For the 24-node graphs on the other hand,
the optimization of ε with FGreedy resulted in significantly increased BetterCut probabilities.
Moreover, the MaxCut probability for G24,fc increased with FGreedy. In these cases, ε was
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optimized to values around 0.025 to 0.085, which differs clearly from the fixed value of
0.125. Evidently, the optimized ε were more suitable in these cases, which shows that
hyperparameter optimization is a viable approach when a compatible objective function
is used.

Table 2. (Left): Final MaxCut and BetterCut probabilities after depth-3 WS-QAOA with fixed
regularization value ε. Problem instances consisting of each graph G in Figure 3 and each objective
function F (Equations (3)–(7)) were used. α was fixed at 0.05. η was set to 5 for the 12-node graphs and
2 for the 24-node graphs. The smaller η accounts for larger achievable cut sizes in the 24-node graphs;
however, the values are, in essence, arbitrary (see [34]). Initial cuts are given in Table 1, for G12,fc the
initial cut was 111010111010 (cut size: 91). Values reflect median probabilities observed in 20 runs
per configuration. (Right): Final probabilities after depth-3 WS-QAOA when ε is determined by the
optimizer during the depth-1 round of incremental partial optimization. The same problem instances
as above and the objective functions Fα,CVaR, Fη,Gibbs, and FGreedy are considered. Highest values in
each row are highlighted.

Final MaxCut probabilities after depth-3 WS-QAOA
with fixed regularization value ε = 0.125 with optimized regularization value ε

G F FEE Fα,CVaR Fη,Gibbs FGreedy FEE-I FEE Fα,CVaR Fη,Gibbs FGreedy FEE-I

G12,3r 0.13% 0.26% 0.38% 0.20% 0.11% - 0.06% 0.34% 0.14% -
G12,rand 0.00% 0.02% 0.17% 0.02% 0.00% - 0.01% 0.28% 0.02% -
G12,fc 0.37% 1.00% 2.03% 0.60% 0.54% - 0.63% 1.74% 0.49% -
G24,3r 0.03% 0.02% 0.04% 0.00% 0.00% - 0.00% 0.00% 0.03% -
G24,rand 0.00% 0.00% 0.00% 0.00% 0.00% - 0.00% 0.00% 0.00% -
G24,fc 0.08% 0.08% 0.16% 0.08% 0.08% - 0.00% 0.15% 0.17% -

Final BetterCut probabilities after depth-3 WS-QAOA
with fixed regularization value ε = 0.125 with optimized regularization value ε

G F FEE Fα,CVaR Fη,Gibbs FGreedy FEE-I FEE Fα,CVaR Fη,Gibbs FGreedy FEE-I

G12,3r 4.54% 6.46% 5.20% 9.11% 6.34% - 5.92% 2.70% 12.32% -
G12,rand 1.28% 3.87% 0.70% 3.00% 1.89% - 2.67% 0.69% 3.20% -
G12,fc 6.48% 8.53% 5.17% 10.69% 9.00% - 9.03% 5.33% 14.13% -
G24,3r 4.23% 4.04% 3.01% 4.59% 3.56% - 0.00% 2.02% 11.59% -
G24,rand 1.13% 1.78% 1.48% 1.62% 1.20% - 0.00% 5.89% 5.56% -
G24,fc 2.36% 2.82% 1.63% 2.98% 2.51% - 0.00% 3.02% 9.40% -

lowest probability per row highest probability per row

When ε was optimized in each round of the incremental partial optimization instead,
i.e., at depth 1 through 3, the resulting probabilities were significantly lower, although
the optimized ε were similar to those in the experiments described above. Similar to
the experiments in Section 6.2, it appears that more optimized parameters led to more
optimization epochs and inferior results. Notably, the optimized ε values at each depth did
not differ significantly from each other, which supports the assumption that ε is independent
of p ∈ {1, 2, 3}.

Major observations:

• The overlap of MaxCut probability and objective values is poorer for FEE and FEE-I than
for other objective functions, which consequently led to increased MaxCut probabilities
compared to FEE and FEE-I. Therefore, these alternative objective functions should be
preferred for WS-QAOA over the standard energy expectation objective function FEE.

• In our setup, Fη,Gibbs resulted in the highest MaxCut probabilities, while FGreedy resulted
in the highest BetterCut probabilities.

• When the regularization parameter ε is determined by the optimizer, the performance
of Fη,Gibbs and FGreedy with respect to MaxCut and BetterCut probability, respectively,
can increase significantly compared to the fixed value for ε.
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7. Discussion

In this section, we discuss further and summarize the results of the experiments
presented in Section 6 to provide a more comprehensive view of the hyperparameter
selection aspects formulated in our research questions.

7.1. Choice of the Regularization Parameter ε

The results of Experiment 1 (see Section 6.1) and Experiment 3 (see Section 6.3) show
that the regularization parameter ε depends on both (i) the problem instance at hand and
(ii) the objective function employed during the optimization. Regularization values ε that
lead to a high solution quality with one objective function on a particular problem instance
may result in low solution quality when the objective function is changed, e.g., as seen
with the problem instance considered in Figure 5 (right), where the regularization value
leading to the highest solution quality when objective function FGreedy is employed, results
in a poor solution quality when FEE is used instead. Based on the conducted experiments,
we identified two possible strategies for choosing the regularization parameter ε:

1. A naïve strategy is to fix the regularization parameter ε to an arbitrary value, thus
accepting some loss of solution quality due to sub-optimality for particular combina-
tions of problem instances and objective function. The benefit of this strategy is its
simplicity, and the results of Experiment 3 suggest it can produce acceptable solutions.

2. As an alternative strategy, selecting the regularization parameter ε can be delegated to
a classical optimizer. However, this requires a suitable objective function. As shown
in Experiment 3, the objective functions Fη,Gibbs and FGreedy are compatible with this
strategy. The benefit of this strategy is that it can potentially determine the optimal
regularization value ε for a problem instance automatically and thus achieve a better
solution quality compared to setting an arbitrary value. However, it introduces
additional optimization difficulty that may lead to increased execution time of the
optimization process.

Clearly, the naïve strategy could potentially be improved by heuristically determining
generally acceptable values for categories of problem instances in combination with a
specific objective function, thus improving the solution quality obtained with the strategy.
Moreover, the alternative strategy relying on objective functions compatible with the opti-
mization of ε could likewise profit from such heuristic values used as a starting point for the
classical optimization of ε to speed up the process and reduce additional optimization effort.

7.2. Choice of the Optimization Strategy

From the results of Experiment 2 (see Section 6.2), it can be observed that alternative
optimization strategies can significantly increase the solution quality. The presented al-
ternative incremental optimization strategies essentially execute lower-depth WS-QAOA
instances to obtain initial parameter values for higher-depth WS-QAOA circuit parameters
(in the case of incremental full optimization) or fix some parameters (in the case of incre-
mental partial optimization). This results in the execution of multiple optimization loops
for different depths of WS-QAOA, which increases the total number of optimization epochs.
However, when the incremental partial optimization strategy was employed, the total num-
ber of epochs was similar to that used for the standard optimization approach. Therefore,
one important recommendation derived based on our experimental results is to choose the
incremental partial optimization strategy over the other employed optimization strategies.
More specifically, the incremental partial optimization strategy (i) performs similarly well
with respect to solution quality compared to the incremental full optimization strategy and
(ii) its execution time is similar to the standard optimization strategy.

7.3. Choice of the Objective Function

The results of our experiments also provide some insights into different objective func-
tions and the corresponding solution quality achieved with each. Of all objective functions,
we learned most about the correlation of the energy expectation objective function FEE
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with the MaxCut probability and thus its suitability for WS-QAOA for MaxCut. In Exper-
iment 1 (see Section 6.1) and Experiment 3 (see Section 6.3), FEE leads to the lowest MaxCut
probabilities compared to Fα,CVaR, Fη,Gibbs, and FGreedy, while the results obtained with FEE-I
were similar. However, FEE-I resulted in significantly higher BetterCuts probabilities for
some problem instances in Experiment 3 (Table 2 (bottom left-hand side)). Furthermore, we
observed in Experiment 2 (see Section 6.2) that objective values increased with the number
of repetitions of the QAOA ansatz (p ∈ {1, 2, 3}) when FEE was employed, but the achieved
MaxCut probability stagnated or decreased, particularly with standard optimization. The
results from Experiment 3 made clear, that this is due to insufficient correlation between
MaxCut probability and the objective function in the parameter space, where the minima
of FEE and the MaxCut probability did not match. Thus, the optimizer finds parameter
values that lead to a high objective value, but not necessarily to a high MaxCut probability.
Eventually, this also leads to the overall comparatively poor performance of FEE. This
also occurred in the second half of Experiment 3, where we ran WS-QAOA on our sample
problem instances with different objective functions.

These results lead to an important observation. Using an alternative objective function
when executing WS-QAOA for MaxCut can result in significantly better solution quality
than the standard objective function FEE. More specifically, our experiments showed
that the objective functions Fα,CVaR, Fη,Gibbs, and FGreedy are more preferable with Fη,Gibbs
performing best with respect to MaxCut probabilities and FGreedy with respect to BetterCut
probabilities in Experiment 3. Moreover, the latter two are also compatible with optimizing
the regularization parameter ε as elaborated in Section 7.1, thus enabling the additional
improvement of the solution quality. A clear advantage of FGreedy, that was introduced in
this work specifically for WS-QAOA for MaxCut, is that it does not come with additional
hyperparameters, but instead takes the initial cut of the problem instances into account.
Thus, it avoids adding to the overall problem of hyperparameter selection.

7.4. Influence of Hamming Distance on Solution Quality

In Experiment 1 (see Section 6.1), we observed that the MaxCut probability obtained
with the initial cut of size 92 was significantly higher in general than that obtained with
the initial cut of size 91. On closer examination of these initial cuts, it can be observed
that the Hamming distance between the MaxCut and the initial cut of size 92 is 1 and,
thus, lower than the Hamming distance of 2 between the MaxCut and initial cut of size 91.
The Hamming distance is the number of positions where the bit strings of two cuts have
different values [62].

These observations led to a suspicion that the Hamming distance of an initial cut to
MaxCuts correlates with the solution quality achieved in WS-QAOA. Further analysis of
the initial cuts used in Experiment 3 (see Section 5.2) revealed that the Hamming distances
of the initial cuts for G12,3r, G12,rand, and G12,fc were 3, 5, and 2, respectively. For G24,3r,
G24,rand, and G24,fc the distances were 2, 6, and 3. Interestingly, the MaxCut and BetterCut
probabilities were generally higher for those problem instances where the Hamming
distance was low, and vice versa. To further examine the influence of the initial cut’s
Hamming distance and cut size on the solution quality of WS-QAOA, we compared
4 different initial cuts for G12,fc. The results shown in Figure 9 support our assumption
regarding the correlation between the Hamming distance and the achieved solution quality.
For example, of two different initial cuts with the same cut size of 91, the cut with the
smaller Hamming distance led to a significantly higher MaxCut probability.
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Figure 9. MaxCut and BetterCut probabilities for depth-1 to 3 WS-QAOA on G12,fc using FGreedy

with optimized ε values. All initial cuts listed in Table 1 were used. Their Hamming distance to the
MaxCut is annotated in the legend alongside the respective cut size.

Generally, the MaxCut probability seems to depend on a cut’s Hamming distance to
the MaxCut rather than its cut size. For example, the largest initial cut of size 100 led to
the lowest MaxCut probabilities in this comparison, presumably due to its high Hamming
distance to the MaxCut. The results also show that the BetterCut probability decreases with
the cut size since the remaining number of cuts better than the initial cut decreases with
its size. Particularly, for the initial cut of size 100, the MaxCut probability and BetterCut
probability are identical since no cuts larger than 100 exist except the MaxCut.

8. Conclusions and Future Work

Hyperparameter selection for QML algorithms is challenging, especially for hyper-
parameters specific to the quantum domain. In this work, we experimented with three
important hyperparameters of a WS-QAOA for the MaxCut problem. For the regular-
ization parameter, ε, of WS-QAOA, which tunes the bias of the algorithm to a classically
pre-computed solution, hyperparameter optimization using a classical optimizer proved
successful in cases where a suitable objective function was employed. Of the two alternative
optimization strategies that we assessed for the classical optimization of the WS-QAOA
circuit parameters, incremental partial optimization, i.e., a layer-wise optimization strat-
egy that successively optimizes two of the circuit parameters in each step, performed
best considering that it resulted in significantly increased solution quality but required
only a few more optimization epochs than the standard optimization approach. In our
experiments, we considered four alternatives to the standard energy expectation objective
function for the optimization process. All of these alternatives performed at least as well as
the standard objective function with respect to the resulting solution quality. Particularly,
two of the alternative objective functions proved suitable for the classical optimization of
the regularization parameter ε while producing the best results with respect to improving
upon the pre-computed classical result and producing an optimal solution, respectively. We
believe that these results will aid further experiments with and applications of WS-QAOA,
as well as in other optimization problems, as they not only demonstrate the importance of
quantum-specific hyperparameters, but also deepen the understanding of approaches to
cope with parameter selection.

We see manifold research opportunities related to WS-QAOA and hyperparameter
selection for the algorithm. Regarding alternative objective functions, there is clearly
potential to construct more such functions, e.g., by the combination of the different existing
concepts. For example, some objective functions are vulnerable for barren plateaus that
increase the optimization difficulty. These barren plateaus could be detected and replaced
by values generated with another objective function to help direct the optimization. The
incremental optimization strategies presented in this work, could also be developed further.
Instead of moving sequentially from one WS-QAOA depth to the next and reusing the
optimized circuit parameters as initial (or fixed) values for the next iteration, lower-depth
WS-QAOA could well be executed multiple times to receive better parameter values. For
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example, from optimized parameters of 10 replications of depth-1 WS-QAOA, the best-
performing parameters could be passed to the depth-2 WS-QAOA step, which may increase
the chances of finding a global optimum. Another idea is relying on WS-QAOA to find a
cut better than the classically computed initial cut and then running another WS-QAOA
instance using this improved solution with the aim of progressing hand over hand to
an optimal solution. An important point that is already scratched with the incremental
optimization strategies is determining initial parameters for WS-QAOA circuits. We are
aware of works concerning the transferability of QAOA parameters between different
problem instances or classical pre-computation of QAOA circuit parameters. In future
work, we plan to focus on such concepts and combine them with WS-QAOA to speed up
the classical parameter optimization. Moreover, the practical relevancy of our observation
regarding the initial cut’s Hamming distance to a MaxCut remains an open question to
examine. Although this correlation cannot be of direct help since computing the Hamming
distance requires solving the MaxCut problem in the first place, being aware of it deepens
the understanding of the WS-QAOA algorithm and may indeed help improving it. First
intuition might be bringing multiple initial cuts in superposition so as to increase the
chance that at least one of them is close to a MaxCut. Further, we plan on transferring and
rerunning our experiments on different quantum devices and with larger problem instances
to derive more precise guidelines for hyperparameter selection and assist in proceeding
towards real quantum devices and their applications for real-world use cases.
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