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Abstract: This paper presents a maximum power point tracking (MPPT) algorithm in a solar photo-
voltaic (SPV) system that requires fewer sensors, is easy to implement, and offers a good tracking
efficiency and speed. Among various MPPT algorithms found in literature, the perturb and observe
(P&O) algorithm is most popular as it required less complex circuitry and is easy to implement,
but it suffers against fast-changing environmental conditions mostly in the case of partial shading
conditions and requires two sensors, i.e., voltage and current. This paper presents the one sensor-
based method based on the modified converter design which eliminates the effect of partial shading
conditions as well as the fast-changing environmental condition. The presented MPPT algorithm was
implemented and tested using an FPGA-based NI-sbRIO card interfaced with Labview software.

Keywords: impedance matching; maximum power point tracking (MPPT); DC-DC converter; solar
PV (SPV) systems

1. Introduction

In the following decade, energy demand has surged enormously worldwide. This
resulted in an arduous challenge of gush in energy demand as a result of overall socio-
economic growth [1]. Prominent among prevailing renewables, the photovoltaic cell (solar
PV) is on the leading edge [2], but the efficiency of the solar PV structure is not adequate
so as to boost the efficiency; it must be driven at a point where we can extort the utmost
potential power from it. Current literature reveals that research exertions are being made to
boost the output of modules in the context of MPPT. The characteristics of an SPV module
are non-linear and its power vs. voltage characteristics indicate that there subsists a solitary
point (Pm) at which the module delivers maximum power [3]. The point Pm deviates due
to change in temperature and/or insolation [4,5]. Consequently, the mismatch between the
source and load characteristics lessens the availability of the utmost potential accessible
power transmitted to the load, leading to huge power losses. To minimize power loss, the
MPPT algorithm ensures that the impedance of the source will be equal to or near to the load
impedance which is done by the DC-DC converter. Classification and comparison of MPPT
techniques are also available in the literature [6–8]. MPPT techniques in solar photovoltaic
systems under uniform insolation [9–11] and partially shaded conditions [12–14] are also
compared in the literature.

Electronics 2022, 11, 1053. https://doi.org/10.3390/electronics11071053 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071053
https://doi.org/10.3390/electronics11071053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9542-6113
https://orcid.org/0000-0001-6393-1273
https://doi.org/10.3390/electronics11071053
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071053?type=check_update&version=1


Electronics 2022, 11, 1053 2 of 19

1.1. Operating Strategy of MPPT

The functioning of MPPT has explicated an example for tracking maximum power
through the changes in insolation, as depicted in Figure 1a. Figure 1b depicts characteristics
of a solar cell for a linear resistive-type load (RL = 10 Ω); it has three maximum power
points (MPPs) which are A′, B′, and C′ on three different insolation level. Since the load is
linear, the operating points of the cell and the respective terminal voltages are A, B, and C.
It is apparent from Figure 1a,b that the power delivered via the solar cell concerning A, B,
and C is less than the power available [15].
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Figure 1. MPP for different insolation on (a) current vs. voltage curve and (b) power vs. voltage curve.

The MPPT functioning evokes the concept of seizing the terminal voltage correspond-
ing to the MPPs which are A′, B′, and C′ in place of the operating points A, B, and C. To
heave the operating point of the solar cell at the MPP, an electronic circuitry recognized as
the DC-DC converter was utilized in MPPT [16–18].

1.2. Impedance Matching by DC-DC Converter in MPPT Operation

In the tracking of MPP, the DC-DC converter is a vital component as the source is
capable of delivering the utmost power only corresponding to VMPP or IMPP. Although, in
designing a DC-DC converter, it is quite problematic to move the terminal voltage (Vi) or
current (Ii) of an SPV module in consequence to a VMPP or IMPP. This paper demonstrates
the MPPT algorithms based on various designs of the DC-DC converter [15] in which the
impedance as perceived from a solar PV (Zsource) matches the analogous impedance at
the MPP (Zmpp = Vmpp/Impp). Figure 2 depicts the block illustration of the general MPPT
operation. A comparison of MPPT algorithms and the control of DC-DC converters is
presented in [19–22].
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To authenticate the response of the converters, simulations are accomplished in MAT-
LAB’s SIMSCAPE library, which is closer to the practical design. The N-channel MOSFET is
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utilized for the switching function and it is directed through a voltage-controlled PWM gen-
erator. The general operation of MPPT is depicted in Figure 2, wherein the input constraints
are sensed and processed by the MPPT controller, thus the duty cycle is set accordingly by
the MPPT algorithm. The DC-DC converter works at this duty cycle to deliver the utmost
power to the load. More than 31 MPPT techniques have been found in the literature and of
these 31 techniques, the perturbation and observation (P&O) or hill climbing is well-liked,
with the benefits of ease of realization and involving less complex circuitry.

1.3. P&O/Hill Climbing Technique of MPPT

The P&O technique is one of the well-liked MPPT techniques. The technique is
fundamentally an iterative approach. In this technique, the operating point of the SPV
module swings around the MPP. The power vs. voltage curve of a solar PV shows that
the change in power in regards to voltage (dP/dV) is positive, negative, and zero for the
province before the MPP, after the MPP, and at the MPP, respectively [23,24].

This technique is realized by perturbing the duty ratio at regular intervals and swing-
ing around the point dP/dV = 0, i.e., MPP. This operation is explicated in Figure 3 and the
methodology is given in Table 1.
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Table 1. Methodology of P&O technique [23].

Perturbation Change in Power Next Perturbation

(+) Positive (+) Positive (+) Increment in duty ratio ‘D’

(+) Positive (−) Negative (−) Decrease in duty ratio ‘D’

(−) Negative (+) Positive (−) Decrease in duty ratio ‘D’

(−) Negative (−) Negative (+) Increment in duty ratio ‘D’

2. Proposed MPPT Technique

The proposed MPPT technique is based on a modified converter design [15] as the
DC-DC converters are playing a very important role in MPPT. The design of DC-DC
converters is an essential part of any MPPT scheme [25,26]. Application of conventional
DC-DC buck converters [27,28], boost converters [29–31], buck-boost converters [32–34],
novel converters [35,36], and multilevel inverters [37,38] are also reported in the literature
for MPPT operation.

The behavior of DC-DC converters is observed for variation in the duty cycle for the buck,
boost, and buck-boost converters in this paper and is explained in the subsequent section.
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2.1. Boost Converter: Relation between Output Voltage, Output Current, Output Power, and VPV

A graph of the output voltage, output current, output power, and VPV with variation
in the duty cycle is presented in Figure 4. It shows that the point of maximum power occurs
when the load voltage is at the maximum.
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The current is also at the maximum where the power is maximum ay D = 67%, which
is not visible in Figure 4a; by zooming in at the Y-axis, it is clear in Figure 4b.

2.2. Buck Converter: Relation between Output Voltage, Output Current, Output Power, and VPV

A graph of the output voltage, output current, output power, and VPV with the duty
cycle is presented in Figure 5.
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Figure 5. Buck converter: graph of output voltage, output current, output power, and VPV with
duty cycle.

Figure 5 shows that the point of maximum power occurs when the load voltage is at
the maximum at duty cycle D = 41% [15].

The current is also at the maximum where the power is maximum ay D = 41%, which
is not visible in Figure 5a; by zooming in at the Y-axis, it is clear in Figure 5b.

2.3. Buck-Boost Converter: Graph of Output Voltage, Output Current, Output Power, and VPV
with the Duty Cycle

A graph of the output voltage, output current, output power, and VPV with the duty
cycle is presented in Figure 6. It shows that the point of maximum power occurs when
the load voltage is at the maximum at duty cycle D = 75% [15]. The current is also at the
maximum where the power is at the maximum at D = 75%, which is not visible in Figure 6a;
by zooming in at the Y-axis, it is clear in Figure 6b.
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2.4. Operating Principle of Proposed MPPT Technique

The conventional P&O method senses input parameters or PV side parameters, i.e.,
VPV and IPV, and compares power at different time intervals as well as keeps on oscillating
around the maximum power. The maximum power will be transferred to the load when
the load side voltage will be at the maximum. An MPPT technique is proposed which
maximizes the load voltage in contrast to VPV in conventional P&O and causes maximum
power to be delivered to the load, as shown in Figure 7. The calculated duty cycle for
standard environmental conditions gives the maximum power at which the load voltage is
at the maximum; this duty cycle becomes the maximum duty cycle (Dmax). The minimum
duty cycle (Dmin) will be calculated by assuming the minimum set of environmental
conditions, such as, for example, an insolation of 50 W/m2 and temperature of 25 ◦C.
Calculation of Dmin and Dmax depends on the location of the solar PV array. In the proposed
MPPT technique, the perturbation of the duty cycle is done within the range of Dmin to
Dmax to maximize the load voltage; in this way, the proposed method becomes the PV
array-dependent method. Nevertheless, the response time to achieve MPP becomes less.
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This novel method is applied by perturbing the duty ratio at regular intervals and
observing the load voltage, thus oscillating around the point Vo ∼= Vo(Max), i.e., MPP. The
operation is explained in Figure 7 and Table 2.
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Table 2. Methodology of the proposed method.

Perturbation Change in Load Voltage Next Perturbation

(+) Positive (+) Positive (+) Increment in duty ratio ‘D’

(+) Positive (−) Negative (−) Decrease in duty ratio ‘D’

(−) Negative (+) Positive (−) Decrease in duty ratio ‘D’

(−) Negative (−) Negative (+) Increment in duty ratio ‘D’

2.5. Flow Chart of Proposed MPPT Algorithm

Figure 8 shows the flow chart of the proposed MPPT method. The method applies the
perturbation in the duty cycle within a predetermined range (Dmin to Dmax) to regulate the
output voltage of the converter or the load side voltage. The initial conditions are assumed
to be zero, which means the previous value of the voltage and duty cycle is zero. The
algorithm starts with the minimum value of the duty cycle (Dmin); senses the load voltage,
which is is Vnew; and compares it to the previous value of the load voltage (Vold) if Vnew >
Vold and Dnew > Dold. Then, the next perturbation is the positive increment of the duty cycle.
The MPPT operation follows the methodology presented in Table 2.
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3. Hardware Implementation of Proposed MPPT Method

The proposed scheme of MPPT is developed using a Field-Programmable Gate Array
(FPGA)-based NI-sbRIO card interfaced with Labview software. Control signals were
generated using Labview, which operates the boost converter to track the maximum power,
as shown in Figure 9. The proposed algorithm was tested using a boost converter because
the converters with continuous input current (as in the case of the boost converter) are
preferable from the PV array point of view.
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Figure 9. Block diagram of hardware scheme.

Figure 9 depicts the block diagram of the proposed MPPT algorithm, in which sensing
of the load voltage is done to track MPP as compared to the convention P&O method,
which senses the voltage and current of the source-side or PV array side.

3.1. Solar PV Emulator

The solar PV array is emulated by employing a solar PV emulator made by igrenEnergi
and ecosense world [39,40], as shown in Figure 10.
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Figure 10. Solar PV emulator with four channels (CH1 to CH4).

The solar PV emulator is a programmable and controlled power supply designed
to emulate solar panels. The PV emulator maintains the output corresponding to the I-V
characteristic of the panel with a fast transient response to change in load conditions for
a given environmental condition. It emulates the output of solar panels from different
manufacturers, variations due to the time of the day, the effect of season, and different
geographical locations. The PV emulator gives output across its four channels to match the
solar panel data selected by the user based on the date and time.

The specification of the array taken for testing is given in Figure 11a, wherein panel (SR-
M572175 made by Sunrise Solartech Co. Ltd., Changzhou 21302, China) details including
standard temperature and insolation are IMPP = 4.98 A and VMPP = 35.2 V, as shown in
Figure 11b. The day selected (10 July 2015) and time (9:00 A.M.) give the operating data
IMPP = 1.754 A and VMPP = 32.4 V at insolation 352 W/m2 and temperature 26.05 ◦C,
and the simulation (I-V and P-V characteristic) obtained from the emulator is shown in
Figure 12.
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Figure 12. I-V and P-V characteristic of PV array at 09:00 A.M.

The PV array emulation was used for a different time for testing purposes across
the emulator’s different channels, as shown in Figure 13. In channel 0 (CH0), the I-V
characteristic table or I-V table was downloaded for time 09:00 A.M.; in channel 1 (CH1)
for time 10:00 A.M.; in channel 2 (CH2) for time 11 A.M.; and in channel 3 (CH3) for time
08 A.M.
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For the time 10:00 A.M., the emulator gave the operating data IMPP = 2.354 A and
VMPP = 33.09 V at insolation 472 W/m2 and temperature 26.83 ◦C, and the simulation (I-V
and P-V characteristic) obtained from the emulator is shown in Figure 13. The I-V table
was uploaded across channel 1.

3.2. DC-DC Boost Converter

The DC-DC converter design was presented in [15] and the duty cycle of the boost
converter was calculated for the emulated PV array at time 13:00. For time 13:00, the
operating data obtained was IMPP = 2.904 A and VMPP = 34.9 V, and ZMPP = 12.04 at the
insolation level of 648 W/m2 and temperature 27.11 ◦C. The I-V table uploaded at channel 3
is shown in Figure 14.
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Figure 14. I-V and P-V characteristic of PV array at 13:00.

The duty cycle can be calculated as:

D = 1−

√
ZMPP

Zo
= 1−

√
12.04

40
= 0.4514

The output voltage or load voltage can be calculated as

Vo =
Vi

(1− D)
= 63 V

and maximum power is calculated as

Pmax = VMPP × IMPP = 34.9× 2.904 = 101.4 W

The DC-DC boost converter used for the testing is shown in Figure 15. The output of
the PV array obtained from the PV emulator was sent to the DC-DC boost converter and
controlling of the converter through the duty cycle of the boost converter was done by an
FPGA-based NI-sbRIO card.
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3.3. MPPT Operation by FPGA-Based NI-sbRIO Card Interfaced with LABVIEW

The sbRIO-9606 embedded device [41] was used to perform the MPPT operation of
the proposed method. The sbRIO-9606 is an embedded acquisition and control device
which integrates a user-reconfigurable FPGA and input–output (I/O) on a single-printed
circuit board (PCB) [41]. The connection diagram of the sbRIO-9606 [41] card is shown in
Figure 16.
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The Labview implementation of the proposed MPPT control is shown in Figure 17.
Figure 17 illustrates the Labview schematic used to implement the MPPT algorithm. The
MPPT control was achieved by modulating the duty ratio of the DC-DC converter.
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3.4. Resistive-Type Load

The linear resistive-type load was considered for testing. Three 600 W, 100 Ω variable
rheostats were used in the experimentation. The value of 40 Ω resistance was obtained by
these rheostats.

Figure 18 depicts the complete setup of the hardware implementation; the control
circuit or MPPT algorithm was developed in Labview software; and to operate the boost
converter, the duty cycle was generated by the NI card. A computer was interfaced with
the PV emulator through the USB cable and interfacing with the NI card was done through
the LAN cable. Results were analyzed through the YOKOGAWA digital signal oscilloscope
DL750, whereas the readings were taken through a multi-meter and ammeter.
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4. Results and Discussion

Figure 19 shows the front window of the Labview software, whereas Figure 17 shows
the back window of the Labview.
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The left-hand side top window exhibits the duty cycle modulation and becomes stable
at D = 0.45 when its operating point approaches MPP, corresponding to a solar isolation
of 648 W/m2 (13:00). The right-hand side top window shows the measured PV array
output power across the load. The lower LHS window shows the PV output voltage as
62.5 V, whereas the RHS window displays the inductor current of the boost converter in
continuous conduction mode.

The results across the load resistance of 40 Ω were taken on the YOKOGAWA digital
signal oscilloscope DL750, as shown in Figure 20.
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Figure 20. Results (for 13:00) obtained by hardware implementation: CH1: voltage across the load
resistance (62.5 V); CH2: current across the load (1.6 A); and CH3: solar PV array’s terminal voltage
(VPV = 34.9 V).

Channel 1 (CH1) shows the voltage across the load resistance, channel 2 (CH2) shows
the current across the load, and channel 3 (CH3) shows the PV array’s terminal voltage
(VPV), and the results show that the proposed MPPT technique tracks the maximum power
of 100 W.

The selected day (10 July 2015) and time (9:00 A.M.) give the operating data IMPP =
1.754 A and VMPP = 32.4 V at insolation 352 W/m2 and temperature 26.05 ◦C. Figure 12
gives the I-V and P-V characteristic of the array that indicates that the maximum power is
56.83 W. The proposed algorithm tracks the maximum power, which is shown in Figure 21.

The selected day (10 July 2015) and time (10:00 A.M.) gives the maximum power of
77.89 W, as shown in Figure 13. The proposed algorithm tracks the maximum power and
the hardware results are shown in Figure 22.

The proposed MPPT method was further tested for the partial shading condition,
wherein two channels of the PV emulator were connected in series (CH1 and CH2), as
shown in Figure 23. Two power diodes were used to make the diode mitigation technique
and channel 1 gave the PV module characteristic for 10:00 A.M. while channel 2 gave the
11:00 A.M. characteristic, as presented in Figure 23.



Electronics 2022, 11, 1053 15 of 19

Electronics 2022, 11, x FOR PEER REVIEW 15 of 19 
 

 

Channel 1 (CH1) shows the voltage across the load resistance, channel 2 (CH2) shows 
the current across the load, and channel 3 (CH3) shows the PV array’s terminal voltage 
(VPV), and the results show that the proposed MPPT technique tracks the maximum power 
of 100 W. 

The selected day (10 July 2015) and time (9:00 A.M.) give the operating data IMPP = 
1.754 A and VMPP = 32.4 V at insolation 352 W/m2 and temperature 26.05 °C. Figure 12 gives 
the I-V and P-V characteristic of the array that indicates that the maximum power is 56.83 
W. The proposed algorithm tracks the maximum power, which is shown in Figure 21. 

 
Figure 21. Results (for 09:00 A.M.) obtained by hardware implementation: CH1: voltage across the 
load resistance (44.8 V); CH2: current across the load (1.25 A); and CH3: solar PV array’s terminal 
voltage (VPV = 31.5 V). 

The selected day (10 July 2015) and time (10:00 A.M.) gives the maximum power of 
77.89 W, as shown in Figure 13. The proposed algorithm tracks the maximum power and 
the hardware results are shown in Figure 22. 

 
Figure 22. Results (for 10:00 A.M.) obtained by hardware implementation: CH1: voltage across the 
load resistance (54.5 V); CH2: current across the load (1.4 A); and CH3: solar PV array’s terminal 
voltage (VPV = 33 V). 

Figure 21. Results (for 09:00 A.M.) obtained by hardware implementation: CH1: voltage across the
load resistance (44.8 V); CH2: current across the load (1.25 A); and CH3: solar PV array’s terminal
voltage (VPV = 31.5 V).

Electronics 2022, 11, x FOR PEER REVIEW 15 of 19 
 

 

Channel 1 (CH1) shows the voltage across the load resistance, channel 2 (CH2) shows 
the current across the load, and channel 3 (CH3) shows the PV array’s terminal voltage 
(VPV), and the results show that the proposed MPPT technique tracks the maximum power 
of 100 W. 

The selected day (10 July 2015) and time (9:00 A.M.) give the operating data IMPP = 
1.754 A and VMPP = 32.4 V at insolation 352 W/m2 and temperature 26.05 °C. Figure 12 gives 
the I-V and P-V characteristic of the array that indicates that the maximum power is 56.83 
W. The proposed algorithm tracks the maximum power, which is shown in Figure 21. 

 
Figure 21. Results (for 09:00 A.M.) obtained by hardware implementation: CH1: voltage across the 
load resistance (44.8 V); CH2: current across the load (1.25 A); and CH3: solar PV array’s terminal 
voltage (VPV = 31.5 V). 

The selected day (10 July 2015) and time (10:00 A.M.) gives the maximum power of 
77.89 W, as shown in Figure 13. The proposed algorithm tracks the maximum power and 
the hardware results are shown in Figure 22. 

 
Figure 22. Results (for 10:00 A.M.) obtained by hardware implementation: CH1: voltage across the 
load resistance (54.5 V); CH2: current across the load (1.4 A); and CH3: solar PV array’s terminal 
voltage (VPV = 33 V). 

Figure 22. Results (for 10:00 A.M.) obtained by hardware implementation: CH1: voltage across the
load resistance (54.5 V); CH2: current across the load (1.4 A); and CH3: solar PV array’s terminal
voltage (VPV = 33 V).



Electronics 2022, 11, 1053 16 of 19

Electronics 2022, 11, x FOR PEER REVIEW 16 of 19 
 

 

The proposed MPPT method was further tested for the partial shading condition, 
wherein two channels of the PV emulator were connected in series (CH1 and CH2), as 
shown in Figure 23. Two power diodes were used to make the diode mitigation technique 
and channel 1 gave the PV module characteristic for 10:00 A.M. while channel 2 gave the 
11:00 A.M. characteristic, as presented in Figure 23. 

Power diodes  
Figure 23. PV emulator connection for partial shading condition. 

In this partial shading condition, the I-V and P-V characteristic obtained is shown in 
Figure 24, whereas the result obtained is shown in Figure 25, and it is clear in the figure 
that the maximum power achieved from the array was 129 W. However, the most popular 
MPPT technique of P&O may stick to the local maximum point of 89.46 W and failed to 
track MPP. 

 
Figure 24. I-V and P-V characteristic of PV array for partial shading condition (CH1 at 10:00 A.M. 
and CH2 at 11:00 A.M.). 

Figure 23. PV emulator connection for partial shading condition.

In this partial shading condition, the I-V and P-V characteristic obtained is shown in
Figure 24, whereas the result obtained is shown in Figure 25, and it is clear in the figure
that the maximum power achieved from the array was 129 W. However, the most popular
MPPT technique of P&O may stick to the local maximum point of 89.46 W and failed to
track MPP.
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Comparison of Proposed MPPT Technique with P&O MPPT

In this section, the proposed MPPT method is compared with the most popular MPPT
technique, namely the perturb and observe method (P&O)/hill climbing method. Both
the methods are based on the perturbation in the duty cycle; however, P&O compares the
power and the proposed MPPT compares the load voltage for each perturbation. In this
manner, the efficiency of the MPPT method depends on the perturbation size.

a Perturbation size: The size of the perturbation is inversely proportional to the effi-
ciency. The oscillations around the MPP become larger with a large perturbation size,
which causes losses, but the method becomes faster. Oscillation can be minimized by
reducing the perturbation step size, which slows down the MPPT.

b Similar perturbation size: In this work, a comparison of both the methods was done
while keeping the perturbation size of the duty cycles the same, that is, 1%, thus the
efficiency of both the methods is the same. The proposed method is based on varying
duty cycles between Dmin and Dmax, thus reaching MPP faster than the P&O method,
hence the overall efficiency of the proposed MPP becomes higher.

5. Conclusions

A single sensor-based maximum power point tracking technique for PV array with
a boost converter was employed. Hardware implementation of the proposed method of
MPPT was presented in this paper and the technique proposed was tested for different
environmental conditions as well as for partial shading conditions, and the results obtained
were discussed. The MPPT algorithm was developed and tested using an FPGA-based
NI-sbRIO card interfaced with Labview software. Through the results acquired during the
simulations and experiments, it is established that the proposed technique is capable of
tracking the SPV system under partial shading conditions. In this paper, a comparison of
both the proposed and perturb and observe method (P&O)/hill climbing method was done
while keeping the perturbation size of the duty cycles same, that is, 1%, thus the efficiency
of both the methods are the same. The operation of the proposed MPPT is simple, is faster,
can be easily implemented, and requires only one sensor or voltage sensor that reduces the
cost of the system.
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