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Abstract: Intelligent unmanned systems for ground, sea, aviation, and aerospace application are
important research directions for the new generation of artificial intelligence in China. Intelligent
unmanned systems are also important carriers of interactive mapping between physical space and
cyberspace in the process of the digitization of human society. Based on the current domestic
and overseas development status of unmanned systems for ground, sea, aviation, and aerospace
application, this paper reviewed the theoretical problems and research trends of multi-agent cross-
domain cooperative perception. The scenarios of multi-agent cooperative perception tasks in different
areas were deeply investigated and analyzed, the scientific problems of cooperative perception were
analyzed, and the development direction of multi-agent cooperative perception theory research for
solving the challenges of the complex environment, interactive communication, and cross-domain
tasks was expounded.
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1. Introduction

With the development of artificial intelligence, big data, the internet of things, un-
manned systems, and other cross science and technology, the whole off human society is
evolving towards digital spaces through a series of cyber-physical systems (CPS), such as
digital city [1], digital economy [2], digital governance [3], and digital life [4]. As a funda-
mental theory and method for multi-dimensional mapping representation of physical space
and information space, perception mechanism and method have become a hot research
topic in recent years [5]. In cognitive science, perception is considered as the medium and
means of information transfer between human consciousness and the objective world, and
it also can be extended to the information expression of the living subject to its inner state
and the external world objects [6]. Unmanned systems include the unmanned aerial vehicle
(UAV), unmanned ground vehicle (UGV), unmanned surface vehicle (USV), autonomous
underwater vehicle (AUV), field robot, and other unmanned platforms and equipment.
Various types of unmanned systems for ground, sea, aviation, and aerospace application
are oriented to different physical domain-sensing tasks, thereby integrating different multi-
mode sensing chips and sensor devices and eventually forming distinctive configuration
features and sensing advantages, respectively [7–9]. With the advent of the digital intel-
ligence era, unmanned systems are gradually developing into anthropomorphic living
subjects with a certain degree of autonomy. The autonomous unmanned system turns into
a combination of artificial intelligence, robotics, real-time control, and decision-making
systems which can widely replace humans in a variety of environments, for completing
tasks such as perception, independently [10].

The future unmanned systems for ground, sea, aviation, and aerospace applications
and large-scale cross-domain collaborative applications will greatly improve the range of
human perception and expand human behavior capabilities. However, the development
and evolution of autonomous perception in unmanned systems is a long and slow process.
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There are numerous examples of the lack of autonomous perception in unmanned systems.
Autopilot cars are still far from being completely driverless, given a spate of safety incidents
caused by the unmanned vehicles’ insufficient perceptual abilities [11]. A comprehensive
survey of UAV shows that the current perception technology of a single drone leads to many
issues in UAV path planning in the compromise of cost-efficiency, time-efficiency, energy-
efficiency, robustness, and collision avoidance requirements. In addition, cooperative
perception by the multiple UAV network connectivity is a promising way for various
mission and critical operations performed by UAV [12]. Many challenges in the marine
environment of USV are also associated with autonomous perception, such as haze or fog
weather conditions, the surrounding environment reflections in water, large highlighted
water areas caused by sunlight, dynamic water surface, and varying backgrounds [13];
the state-of-the-art technologies of robots reveal similar trends. Typical robots, such as
mobile healthcare robots [14] and manufacturing robots [15], have witnessed a growing
interest in multi-agent cooperation and network connections. It can be expected that the
application scenarios of multi-agent cooperative perception are vast and more effective than
single-agent perception. To break through the key technologies of multi-agent cooperative
perception frontier science theory, this paper analyzed the key scientific issues in the field
of cross-domain multi-agent cooperative perception and summarized the research trends in
cross-domain multi-agent cooperative perception by combining the current development
status of unmanned systems for ground, sea, aviation, and aerospace application at home
and abroad.

The overall content architecture of this paper is shown in Figure 1. To better study
the problem of cross-domain collaboration, we first studied the perception methods of the
different unmanned systems of land, sea, and air. This is the main work of Section 2. As the
research on land, sea, and air unmanned systems often comes from different subdivision
disciplines, it is a challenge to extract knowledge from copious literature in different fields
and sum up the common perception technology of different unmanned systems. We sorted
out and analyzed extensive literature to deal with this challenge. Four kinds of perceptual
means are described in detail, including lightwave perception, microwave perception,
acoustic perception, and dedicated perception. Based on the advantages and disadvantages
of each means, the importance of multi-agent collaborative perception is discussed. The
literature review also indicates that the current research on collaborative perception is not
sufficient. The perception limitation of a single agent is an effective way to deduce the
challenges of multi-agent cooperative perception.
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In Section 3, we analyzed and summarized a large number of relevant scientific
papers focusing on the difficulties of multi-agent cooperative perception. For the related
challenges of multi-agent cooperative perception tasks such as environment complexity,
interactive communication, and task diversity, we also tried to provide solutions based
on theoretical knowledge and literature summaries and predict the future development
trends combined with application scenarios. The thorough analysis and countermeasures
of different challenges correspond to Sections 3.1–3.3 respectively.

After the investigation and analysis of the limitations of perception methods and the
key challenges of multi-agent cooperative perception tasks, we summarized the survey of
multi-agent cross domain cooperative perception in Section 4. The main contributions of
this paper are as follows: (1) Reference to the current lack of research on multi-agent cross-
domain collaborative perception of land, sea and air unmanned systems, the investigation
and analysis were carried out from the internal factors of agent system and the external
factors of environmental tasks. (2) We systematically summarized the internal and external
shortcomings and challenges and put forward research suggestions in different perspectives.
To some extent, this paper provides some research ideas for the follow-up research on
cross-domain collaborative perception.

2. Overview of Perception Technologies for Unmanned Systems

As shown in Figure 2, unmanned systems represented by unmanned aerial vehicles
(UAVs) [16], unmanned ground vehicles (UGVs) [17] and unmanned surface vehicles
(USV) [18], etc. have different sensor devices and sensing means due to their different
application fields, but there are also common technologies, mainly based on sensing means
such as light waves, microwaves, and acoustic waves, to achieve environmental sensing,
navigation, and positioning.
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Lightwave Perception: Lightwave sensors, including RGB cameras, infrared cameras,
lidar, X-ray detectors, etc., are used for autonomous navigation, tracking, and obstacle
avoidance by different unmanned systems. Lightwave perception has higher detection
accuracy and longer detection distance as well as higher visibility requirements, in compar-
ison with other perception methods. Lightwave sensors can be divided into active sensors
and passive sensors [19]. Active sensors such as lidar send out lightwave signals and sense
the measured changes in the outside world by receiving reflected signals. The strengths
and weaknesses of the LiDAR technologies emerging in recent years were analyzed by
Hsu [20]. Passive lightwave sensors do not emit light waves themselves but receive external
lightwave signals passively to sense things. Lightwave sensors such as optical cameras are
the most widely used sensors today, which are conducive to a series of tasks combined with
artificial intelligence technology such as feature detection, target tracking, environment
reconstruction and segmentation, and human or vehicle recognition [21]. A recent survey
of using artificial intelligence to passive lightwave sensors will further inspire new tools for
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material analysis, diagnosis, and healthcare [22]. The application of artificial intelligence to
different unmanned systems of land, sea, air, and space benefits from the current develop-
ment of edge computing. The current edge computing power has been greatly improved,
which promotes the application of intelligent algorithms for machine vision, lidar point
cloud processing, and so on.

Microwave Perception: A sensing method determines the distance by measuring
the time difference between the transmitted wave and the return wave of a microwave.
Millimeter-wave radar is a typical application of microwave perception. The detection
performance of microwaves is not as strong as that of lightwave sensors, but its ability to
penetrate materials makes it superior to lightwave sensors at night and in bad weather
such as fog and snow. The incorporation of microwave laminar imaging radar into UAS
can be applied to search and rescue operations during crisis events, as well as research
studies in cultural heritage and agriculture [23]. Millimeter wave radars are being used
extensively for commercial applications, especially for automotive radar applications at
77 GHz and 24 GHz [24,25].

Acoustic Perception: Acoustic perception also mainly uses the reflective ranging
method. It has the characteristics of high detection accuracy within a short distance, strong
penetration ability, and a relatively simple structure. However, acoustic perception is
affected by temperature and the Doppler effect. The speed of sound is slower than electro-
magnetic waves, which will produce a delay when the object’s speed is high. In addition,
with the increase in detection distance, its directivity will be sharply weakened. To address
this problem, Park et al. proposed a new ultrasonic sensor design approach that uses the
frequency difference between two ultrasonic waves to generate a highly directional low-
frequency wave with a small aperture to improve the spatial resolution of the ultrasonic
sensor [26]. The practical conditions such as the characteristics of the transmission medium
and environment constraints on unmanned systems pose substantial challenges for acoustic
sensor application [27,28].

In addition to environmental perception technology in unmanned systems, navigation,
and positioning technology, the use of unmanned system platforms or groups to carry
out perception tasks at different scales in different domains is also an important research
direction in the field of unmanned systems perception.

Dedicated Perception: As complex systems are coupled with multiple physical fields,
unmanned systems often integrate more sensors to realize different subsystems and com-
ponents with cross-level sensing capabilities. Due to the different functional properties of
various types of unmanned systems and their components, the types of dedicated sensors
required are varied. In the case of unmanned vehicles, for example, dozens of types of sen-
sors such as pressure sensors, temperature sensors, Hall sensors, oxygen sensors, etc., are
built to detect different functions such as temperature, pressure, speed, torque, exhaust gas,
etc. [29]. In recent years, with the continuous development of technology, new types of spe-
cial sensors and application methods have emerged. Some examples are shown in Figure 3.
Electronic skin tactile sensing based on an array of scalable tactile sensors deployed on
gloves can be used to simulate the process of gripping objects and judging their weight
and material [30]. New sensors based on piezoelectric and pyroelectric effects [31] can be
applied to environmental monitoring by measuring temperature and pressure. Olfactory
sensors consisting of insect tentacles combined with mechanical devices can be used to
track down the source of gas leaks or fires, thus identifying explosives, disaster prevention,
and disaster relief [32]. An intracortical brain-computer interface enables paralyzed people
to gain typing speed comparable to that of normal people by decoding neural activity [33].
Furthermore, many electromyography (EMG) sensors have been widely studied for human
robot interaction [34].
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prosthetic limb control [35].

Multi-Agent Perception: Li et al. showed in Nature that distributed perceptual
sensors combined with artificial intelligence algorithms can achieve ambient ubiquitous
intelligence. Their long-time practice in smart hospital scenarios showed that ambient
ubiquitous intelligent perception can understand the complex interactions between the
physical environment and health-critical human behavior and substantially improve the
efficiency of hospital convalescence [36]. Peter et al. from ETH, Switzerland, described
the important role of multi-robot collaborative perception in responding to the COVID-19
epidemic but also pointed out that the ability to perceive complex environments in hos-
pitals is still an important bottleneck for service robots to be used on a large scale [37,38].
Yoon et al. proposed that collaborative perception and information sharing have become
an important underlying theory for future large-scale applications of smart transportation
and unmanned vehicles. Compared with single-vehicle intelligence, decentralized multi-
vehicle networked cooperative sensing can help solve the long-tail problem of unknown
environments [39–41]. In addition, as Figure 4 shows, the collaborative perception of
unmanned systems across the domains of land, sea, and air has been intensively researched
and explored in recent years in ecological protection [42], smart agriculture [43], terrain
detection [44], and underwater exploration [45].

Electronics 2022, 11, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 4. Booming applications of multi-agent perception. 

3. Analysis of Difficulties and Trend of Cross-Domain Multi-Agent Cooperative Per-
ception 
3.1. Cooperative Perception Confronts Challenges of Environmental Complexity 

The physical world itself is composed of macro-scale, meso-scale, micro-, nano-, and 
other multi-scale materials, presenting constantly moving and changing characteristics of 
force, light, sound, heat, electricity, and magnet, and the actual application environment 
of unmanned systems is featured by multi-scale, high dynamics, and uncertainty. Un-
manned systems are often required to work in extreme environments, such as nuclear 
radiation and chemical leaks [46], electromagnetic interference around high-voltage 
power grids [47], weather hazards [48], light disturbances [49], and complex terrain with 
multiple obstacles [50]. These environmental factors pose certain difficulties and chal-
lenges to the work of intelligent robots. 

To begin with, as communication between an intelligent robot and the system to 
which it belongs relies primarily on mobile wireless networks, the impact of electromag-
netic interference on the communication of unmanned systems is an issue that cannot be 
ignored. For example, in Li’s investigation of the electromagnetic effects of UHV substa-
tions on drones, they mentioned that electromagnetic pulses from the substation equip-
ment can have detrimental effects on the electronic components of the drones [51]. The 
communication and control systems of drones are likely to be disturbed by strong electro-
magnetic fields during their tasks of substation inspections [52]. Some literature shows 
that weak magnetic fields can also produce interference effects. Various sinusoidal and 
impulse electromagnetic interference can have a significant influence on the bio-sensors 
used for the control of wearable robots [53]. A new communication system with higher 
communication quality and environmental adaptability has become the research hotspot 
of robot application expansion [22]. Secondly, light disturbances and complex meteoro-
logical changes may also increase the instability of unmanned systems. In agricultural ap-
plications, Olson et al. suggested that light disturbances caused by cloud movements may 
lead to problems of data degradation [54]. Kucharczyk et al. pointed out that current 
UAVs are difficult to work properly in sudden disasters such as floods and hurricanes. 
Common UAV sensor RGB cameras may fail in light-obscuring environments such as 
rain, haze, and smoke [55]. Complex environments influenced by light also have a big 
impact on unmanned vehicles. For example, Kim shows that a tunnel environment is ir-
regular and has significantly lower illumination, including tunnel lighting and light re-
flected from driving vehicles [56]. In addition, complex terrain and ecological environ-
ments may also have negative impacts on the movement speed and data collection effi-
ciency of intelligent robots. For example, mining equipment and remotely operated vehi-
cles sometimes struggle to function properly when operating in the deep sea due to con-
cerns about fragile ecosystems [57]. Johnston’s research on UAS for marine science and 
conservation mentioned that drones find it easy to collect high-resolution data at small 

Figure 4. Booming applications of multi-agent perception.

3. Analysis of Difficulties and Trend of Cross-Domain Multi-Agent
Cooperative Perception
3.1. Cooperative Perception Confronts Challenges of Environmental Complexity

The physical world itself is composed of macro-scale, meso-scale, micro-, nano-, and
other multi-scale materials, presenting constantly moving and changing characteristics of
force, light, sound, heat, electricity, and magnet, and the actual application environment of
unmanned systems is featured by multi-scale, high dynamics, and uncertainty. Unmanned
systems are often required to work in extreme environments, such as nuclear radiation
and chemical leaks [46], electromagnetic interference around high-voltage power grids [47],
weather hazards [48], light disturbances [49], and complex terrain with multiple obsta-
cles [50]. These environmental factors pose certain difficulties and challenges to the work
of intelligent robots.
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To begin with, as communication between an intelligent robot and the system to which
it belongs relies primarily on mobile wireless networks, the impact of electromagnetic
interference on the communication of unmanned systems is an issue that cannot be ignored.
For example, in Li’s investigation of the electromagnetic effects of UHV substations on
drones, they mentioned that electromagnetic pulses from the substation equipment can
have detrimental effects on the electronic components of the drones [51]. The communi-
cation and control systems of drones are likely to be disturbed by strong electromagnetic
fields during their tasks of substation inspections [52]. Some literature shows that weak
magnetic fields can also produce interference effects. Various sinusoidal and impulse
electromagnetic interference can have a significant influence on the bio-sensors used for the
control of wearable robots [53]. A new communication system with higher communication
quality and environmental adaptability has become the research hotspot of robot applica-
tion expansion [22]. Secondly, light disturbances and complex meteorological changes may
also increase the instability of unmanned systems. In agricultural applications, Olson et al.
suggested that light disturbances caused by cloud movements may lead to problems of
data degradation [54]. Kucharczyk et al. pointed out that current UAVs are difficult to
work properly in sudden disasters such as floods and hurricanes. Common UAV sensor
RGB cameras may fail in light-obscuring environments such as rain, haze, and smoke [55].
Complex environments influenced by light also have a big impact on unmanned vehicles.
For example, Kim shows that a tunnel environment is irregular and has significantly lower
illumination, including tunnel lighting and light reflected from driving vehicles [56]. In ad-
dition, complex terrain and ecological environments may also have negative impacts on the
movement speed and data collection efficiency of intelligent robots. For example, mining
equipment and remotely operated vehicles sometimes struggle to function properly when
operating in the deep sea due to concerns about fragile ecosystems [57]. Johnston’s research
on UAS for marine science and conservation mentioned that drones find it easy to collect
high-resolution data at small scales on the ground, but it is difficult to effectively sample
at large scales where feature domains are missing, such as in the ocean [58]. Jeong et al.
addressed the problem that traditional laser ranging methods can be limited by complex
terrain such as mountains and rivers [59]. To enable the smooth operation of intelligent
robots in uninhabitable environments, Freitas et al. proposed an active control strategy for
reconfigurable mobile robots on irregular terrain [60]. Gao et al. proposed an intelligent
system to support active quadrotor flight in complex environments, primarily by calculat-
ing the topologically equivalent free space of the user’s teaching trajectory and combining
spatiotemporal optimization, online sensing, and local re-planning [61]. Moreover, many
scholars tend to use multi-agent cooperative perception strategies in response to these
challenges. Kapoutsis et al. proposed a new method that uses multi-AXV robot swarms to
explore unknown areas and construct detailed maps of the environment under environ-
mental and communication constraints [62]. A large number of the research papers in the
field of unmanned vehicles show that smart vehicle–road cooperative perception will play
an important role in reducing congestion [63–65]. Unmanned aerial vehicles have recently
been used in a wide variety of cooperative perception applications too. Zhou et al. pre-
sented a decentralized and asynchronous systematic solution for multi-robot autonomous
navigation in unknown obstacle-rich scenes [66]. Andrade et al. proposed a real-time
path-planning solution using multiple cooperative UAVs for SAR missions [67]. Yu et al.
investigated the cooperative forest fire monitoring problem of multiple fixed-wing un-
manned aerial vehicles in the presence of actuator faults during a fire monitoring mission.
Cooperative robot tasks have been widely studied in intelligent manufacturing and other
fields as they can adapt to the varying and dynamic conditions of the environment. Col-
laborative work between robots and humans is becoming a hot topic in autonomous and
collaborative robots [68]. Compared with the studies of UAV and UGV, the research of
unmanned surface vehicles (USVs) is relatively recent. However, multi-USV collaborative
applications have received widespread attention for civil and military applications [69,70].
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The relevant academic literature indicates that the complexity of the environment
is reflected in the interference factors, spatial and temporal scales, scene changes, envi-
ronmental climate, and other aspects, and there is an urgent need to build theoretical
methods for in-depth research. Referring to the environmental challenges, it is difficult for
a single intelligent robot to cope with the challenges of sensing complex environments, and
multi-agent cooperative perception should become an important development direction in
the future:

(1) For the task of multi-scale complex environment perception, further research is needed
to establish a scenario-driven multi-grain size collaborative perception framework
for unmanned systems for ground, sea, aviation, and aerospace application to realize
multi-agent full-domain perception and information sharing and interaction.

(2) For the uncertainty of dynamic changes in the environment, research is needed
to study the multi-mode perception collaborative enhancement mechanism for un-
manned systems for ground, sea, aviation, and aerospace application, in order to form
a multi-grain size perception fusion method for complex scenarios of multi-agent.

(3) For the task of cooperative perception across land, sea, and air, there is an urgent need
to build a unified representation perception model with cross-level spatiotemporal
characteristics to develop a multi-agent cooperative perception theory and method
system driven by multi-dimensional cross-domain perception big data.

3.2. Cooperative Perception Confronts Challenges of Multi-Agent Interaction

The study of innovative weakly interactive multi-agent cooperative perception meth-
ods is urgent for cooperative perception tasks under restricted communication and in-
complete information conditions. As shown in Table 1, current unmanned systems have
different communication approaches such as Bluetooth, ZIGBEE, NB-IOT, 4G/5G, and
WIFI, and these approaches differ greatly in terms of transmission speed, distance, band-
width, security, and robustness.

Table 1. Communication classification of unmanned systems used.

Category Bluetooth 3.0 ZIGBEE NB-IOT 4G/5G WIFI

Transmission speed 24 Mbps 250 kbps 100 kbps 300 Mbps/
30 Gbps 600 Mbps

Communication distance 100 m 100 m 10 km 3 km/300 m 200 m

Frequency 2.4 GHz 2.4 GHz 800–900 MHz 700–2500 MHz/
28–39 GHz 2.4 GHz/5 GHz

Security High Medium High High Low
Power Low Low Low High High

Multi-agent cooperative perception tasks under the conditions of restricted commu-
nication and incomplete information widely exist due to multiple factors such as the
heterogeneous performance of unmanned systems, working conditions, and complex envi-
ronments. For example, typical cross-domain robot workspace such as subterranean areas,
narrow spaces, and rugged terrain make it impossible for UAVs to reach and communicate
with UGVs or field robots [71–73]. The darkness, unusual pressures and temperatures, and
complicated submarine environments pose a threat to AUV coordinated reconnaissance
and operations [74]. In addition, the mixed traffic scenarios of unmanned vehicles and
traditional vehicles, such as congestion, traffic accidents, vehicle cut-in, and vehicle cut-
out, increase the difficulty of vehicle–road coordination and vehicle–vehicle coordination,
which is also a challenge for multi-level collaborative perception [75,76]. For the problem of
restricted communication due to the variability of multi-agent heterogeneous cross-domain
communication methods, Dorigo proposed the need to establish universal interaction
rules as soon as possible based on the analysis of the development history and trends
of unmanned system clusters [77]. Todescato et al. proposed a scalable partition control
algorithm to solve the consistency problem of restricted cross-domain communication
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inspired by the generalized gradient descent strategy [78]. Referring to communication
problems such as communication intermittency and time delay, Su et al. proposed an
output adjustment algorithm based on adaptive observers to break through communica-
tion interaction perturbations [79]. Lin et al. proposed non-uniform unbounded convex
constraint sets and non-uniform step-size distribution continuous-time and discrete-time
optimization algorithms to solve the asynchronous communication problem [80]. Li et al.
established event-triggered bounded consistency algorithms for stochastic multi-agent
systems to solve the communication delay problem [81]. However, most of these algo-
rithms are theoretically simplified abstract models to solve the communication constraint
problem and are difficult to apply in practical scenarios. Related literature suggests that, in
conjunction with the development of communication technologies, the use of unmanned
system communication relaying strategies to achieve cooperative perception under weak
communication conditions in the future is more relevant to practical applications [82,83].
In addition, multi-agent cooperative perception is not entirely affected by the objective con-
ditions of communication. In an adversarial environment, the originally stable cooperative
communication mechanism may be broken by the gaming parties, and the cooperative
perception task needs to be redistributed among the agents to cope with factors such as
sudden communication interruptions [84]. Current collaborative task allocation mecha-
nisms can be achieved by simple communication mechanisms between agents, such as
the large-scale clustered collaborative robots published in Nature, which use phototropic
sensing devices to achieve clustered movements of more than 100,000 agents [85]. However,
for cooperative perception in complex environments, there is still a need to improve the
stability of the acyclic sampling data system of the agents [86].

Further study needs to be conducted on the mechanism of multi-agent interaction
under weak communication conditions. Several research directions based on the above
literature analysis are suggested as follows:

(1) The distributed multi-agent information complementation model tends to be con-
structed. The multi-agent information complementation model can be set up by using
edge computing instead of cloud computing to lighten the transmission of data in
the cooperative communication of a large scale of agents and expand the information
in this respect [87]. In addition, 5G, 6G, and other highly dynamic, large-bandwidth
communication technologies lay a technical foundation for the construction of multi-
agent information complementation models. However, the model also needs to pay
attention to the security and reliability of information sharing. Information security is
a very big field that has received a lot of attention in computer networks and wireless
sensor networks [88]. These information security studies provide a good reference
for the construction of the collaborative perception model. Recently, our team ap-
plied computer blockchain technology to the research of collaborative perception
construction to ensure the security and credibility of perceptual information [89].

(2) The task planning method based on autonomous collaborative positioning and nav-
igation needs to combine research with multi-agent perception. It means different
types of agents can provide positioning information for other agents through their
perception and positioning of surrounding environmental targets. For example, we
proposed an application of the cooperative perception localization method without
GPS positioning at the international conference of computers, control, and robots.
The data sharing interaction among the distributed sensing network nodes of the
intelligent lamp pole and UGV. As the position of the lamp post is fixed, we can
use the cooperative perception of poles and UGV for objection location, that is, the
lamp pole-mounted camera is used to track the pollution sources’ position based on
computer vision, and then the path of the UGV to the pollution source can be planned
in combination with the location of lamp poles, which can achieve collaborative fine
location detection of pollution sources [90].

(3) The task-driven multi-agent role assignment and unexpected situation response
mechanism need to be established in the field of multi-agent collaboration. Since
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unmanned systems in different domains have different sensing devices and different
perception perspectives, multi-agent cooperative task role division can be used to
realize complementary collaborative perception. A number of recent papers on multi-
agent collaboration have begun to study this method [91].

3.3. Cooperative Perception Confronts Challenges of Mission Diversity

Referring to the long time-series nonlinearity of discrete cooperative perception tasks,
the perceptual information memory and inference method for distributing perception
agent networks needs to be studied. Perception tasks such as smart city development pat-
terns [92], large infrastructure health monitoring [93], complex traffic flow prediction [94],
and tracking and tracing the outbreak of pandemics [95] all necessitate a long time series,
large samples, and widely dispersed perception source data mining and analysis. Batty
proposed a theory of urban complex modeling consisting of high-frequency real-time
big data and low-frequency city evolution data [96]. The theory explains the complexity
of urban perception missions due to the diversity, scale, and speed of accumulation of
data. Unmanned systems, with sensing nodes or edge computing units, will become an
important innovation technology for ubiquitous sensing and big data collection in the
future. Because a single unmanned system is restricted by limited memory and com-
putational power, it is of great research value for multi-agents to collaboratively set up
distributed sensor networks [97,98]. In recent years, some scholars have combined 5G/6G
and other high-throughput and low-latency advanced communication technologies to build
multi-agent networks and service frameworks to address the key technologies for building
multi-agent distributed sensing networks. For example, Han et al. combined 5G and big
data technologies to discuss in detail the mobile cloud sensing computing framework and
component construction methods to promote the development of ubiquitous intelligent
sensing in the physical world [99]. Sliwa et al. explored a collaborative crowdsourcing
sensing approach based on 6G technology and hybrid machine learning at the cloud edge,
which can improve data utilization by 223% on average while reducing network resource
usage by up to 89% [100]. Shrestha et al. discussed the development of 6G-enabled UAV
traffic management ecosystems, especially in the scenario of intensive air traffic, which can
ensure the safety and efficiency of transportation in urban air [101]. Gu et al. designed a
path-tracking control algorithm for tracked mobile robots under the framework of 6G and
edge cloud, which can enhance the tracking accuracy without undermining real-time per-
formance [102]. Lv et al. analyzed the interconnection of vehicles under 6G networks and
discussed the measurement and modeling of 6G-oriented wireless channels [103]. In ad-
dition, some scholars have devoted themselves to the problem of the network topology
optimization of complex systems. For example, Brown et al. presented a local computa-
tional method for the convex optimization of network structures in multi-intelligent body
systems and proposed a conjugate residual estimation algorithm based on the analysis of
local problems and their occurrence correlation factors and provided a theoretical basis
for the application of the local computational paradigm to convex optimization problems
in multi-agent systems [104]. Li et al. proposed a new multi-objective multi-intelligent
complex network optimization algorithm by drawing on the ideas of genetic algorithms
and validated the new algorithm for seventeen unconstrained multi-objective optimization
problems and seven multi-objective optimization problems [105]. Future multi-agent com-
plex networks are evolving towards multi-scale, dynamic, and multidimensional systems
where unmanned systems combined with intelligent learning algorithms play an important
role in network node mobility, diffusion, and security [98,106]. At the same time, with
the expansion of network nodes and layers, there are still great challenges for multi-agent
collaborative decision control and massive data processing.

Several important research directions are drawn through literature research and judgment:

(1) The optimization algorithms of complex sensing networks based on multi-agent co-
operative perception should be deeply developed. Take Shanghai’s urban governance
as an example. Shanghai has 25 million people, 1.3 billion m2 building area, and



Electronics 2022, 11, 1091 10 of 15

more than 6 million vehicles. It is hard to imagine how to construct a large-scale
multi-agent cooperative perception network to realize the global perception of the
whole city. The exponential growth of city data and the cost of computing power
have become increasingly prominent. Our team is conducting preliminary research
on the big project, such as how to achieve efficient data aggregation by optimizing the
clustering structure [107]. There is still a lot of work to be done for the optimization
algorithms of complex sensing networks.

(2) Distributed federated learning and cloud-edge co-intelligence sensing methods need
to be set up to address the challenges of mission diversity. Federated learning is a new
machine learning method that is well studied and widely applied for distributed data
learning [108]. Since the applications of land, sea, and air unmanned systems in smart
cities are scattered and considering the autonomy and intelligence of multi-agents,
federated learning, and cloud-edge collaborative computing will be the trend for a
wide variety of tasks.

(3) A full-coverage, full-factor, full-cycle spatiotemporal-coupled information sensing
model is promising for the future. Recently, digital twin and meta-universe technology
have become new research hotspots. The concepts of the digital factory [109], digital
city [110], and digital earth [111] are emerging one after another. The mapping of
physical space to information space has become the trend of social development. To
play the digital twin efficiency in the long time series and large span space, a full-
coverage, full-factor, full-cycle spatiotemporal-coupled information sensing model
is the precondition. Without perception, there is no source of data in physical space,
and without physical space data, there is no digital twin.

4. Conclusions

With the development of a new generation of artificial intelligence technology, in-
telligent unmanned systems will gradually develop into life-like subjects with certain
autonomy, which will greatly expand the perception capabilities of humans. In addition
to the integration of intelligent sensor devices for the improvement of the perception
capability of a single intelligent body, the research into the collaborative perception of
multiple agents in ground, sea, aviation, and aerospace is of great significance with broad
application prospects in fields such as smart cities, smart military, smart construction, and
smart agriculture.

Through the research and analysis of the current situation of unmanned system
perception technology, this paper summarizes the difficulties of cross-domain multi-agent
research: (1) the difficulty of multi-scale complex scene multi-grain perception under multi-
physical field-coupling conditions; (2) the difficulty of collaborative perception information
interaction when communication is limited and information is incomplete; (3) the difficulty
in executing collaborative perception tasks due to the diversity of ground, sea, aviation,
and aerospace scenes.

In the face of the above-mentioned scientific problems of cooperative perception, it is
urgent to build a unified model for the perception of spatiotemporal characteristics across
layers to develop a theoretical and methodological system for the cooperative perception
of multiple intelligences driven by multi-domain perception and big data. Further research
is needed to study the mechanism of multi-agent interaction under weak communication
conditions, to build a distributed multi-agent collaborative information complementation
model, to study task-planning methods based on autonomous collaborative positioning
and navigation, and to develop a task-driven multi-agent role allocation and contingency
response mechanism. Referring to the long time-series nonlinearity of discrete cooperative
perception tasks, the perceptual information memory and inference method for distributed
perceptual body networks need to be studied, and a spatiotemporal-coupled information
perception model with full coverage, full elements, and full cycles needs to be established.
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