
����������
�������

Citation: Chen, Y.; Wang, L. P-Ride:

A Shareability Prediction Based

Framework in Ridesharing.

Electronics 2022, 11, 1164. https://

doi.org/10.3390/electronics11071164

Academic Editor: Felipe Jiménez

Received: 15 March 2022

Accepted: 31 March 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

P-Ride: A Shareability Prediction Based Framework
in Ridesharing
Yu Chen and Liping Wang *

School of Software Engineering, East China Normal University, Shanghai 200062, China; yu.chen@stu.ecnu.edu.cn
* Correspondence: lipingwang@sei.ecnu.edu.cn

Abstract: Ridesharing services aim to reduce travel costs for users and optimize revenue for drivers
and platforms by sharing available seats. Existing works can be roughly classified into two types,
i.e., online-based and batch-based methods. The former mainly focuses on responding quickly to the
requests, and the latter focuses on meticulously enumerating request combinations to improve service
quality. However, online-based methods perform poorly in service quality due to the neglect of the
sharing relationship between requests, while batch-based methods fail in terms of efficiency. To obtain
better service quality more efficiently, we propose a shareability prediction-based framework P-Ride.
Specifically, we first introduce the k-clique listing strategy in graph theory based on the shareability
graph to reduce the infeasible request combinations. Moreover, we extend the shareability graph
to the hypergraph structure to represent the higher-order shareable relationships among requests.
Furthermore, we devise a shareability prediction model that supports the prediction of sharable
relationships for request combinations of an arbitrary size, which helps further filtering of candidate
request combinations with GPU devices acceleration. The extensive experimental results demonstrate
the efficiency and effectiveness of our proposed P-Ride framework.

Keywords: ridesharing; shareability graph; shareability prediction; intelligent transportation

1. Introduction

With the rapid development of the mobile internet and the sharing economy, rideshar-
ing has become an important transportation mode for traveling. In ridesharing services,
passengers share the available seats in vehicles in exchange for discounts on fees, while
drivers and platforms realize higher revenues by improving the utilization of vehicles.
Therefore, existing ridesharing service providers (e.g., Didi [1] and Uber [2]) are constantly
striving for improvements in service quality, such as higher platform service rates [3,4],
higher revenue [5,6] and reduced driving costs [5–8].

The ridesharing problem mainly focuses on the following two issues: request-vehicle
matching and route planning. The existing works in solving the ridesharing problem can
be roughly classified into two categories: online-based [7–10] and batch-based [11–14]
methods. For the request-vehicle matching problem, the online-based methods select the
vehicle with the lowest service cost for each request, according to a first-come, first-served
strategy, and assign the request to the current best vehicle immediately, while the batch-
based approaches meticulously group the requests in various combinations based on the
strategy of grouping before the assignment and then select the appropriate vehicle for each
group and assign the entire group of requests at once. For the problem of path planning,
the insertion [9,10,13,15,16] method has been widely adopted in online-based methods. The
insertion method updates the route by inserting the source and destination of the request
into the proper location of the vehicle’s current traveling route. Due to the insertion of
the source and destination of the insertion method without reordering the original route
waypoints of the vehicle, the route obtained by the insertion method only provides a locally
optimal solution. In contrast, the batch-based method enumerates all feasible travel routes

Electronics 2022, 11, 1164. https://doi.org/10.3390/electronics11071164 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071164
https://doi.org/10.3390/electronics11071164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6933-9828
https://orcid.org/0000-0003-3049-9917
https://doi.org/10.3390/electronics11071164
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071164?type=check_update&version=1

Electronics 2022, 11, 1164 2 of 18

for each request group and selects the best one for assignment to the service vehicle. In
general, the batch-based methods have better service quality (e.g., lower service cost, higher
service rate) because the online-based methods lack the analysis of shareable relationships
between requests and the detailed enumeration of routes, but the online-based methods
win in terms of efficiency.

In this paper, we optimize the online-based method for the lack of shareable relation-
ship analysis between requests, and the batch-based method, which takes substantial time
for request group and optimal route enumeration. If there is a feasible route that can serve
two requests simultaneously, then we say that the two requests are shareable. We obtain
the structure of the shareability graph by adding an edge between all shareable requests
as nodes. In this paper, through the analysis of the sharability graph, we find that the
request group Q enumerated by the batch-based method inevitably forms a k-clique in the
sharability graph, i.e., all requests in Q hold an edge in the sharability graph. Additionally,
k-clique listing [17–19] is a well-studied classical problem in graph theory, based on the
observation that we can improve its performance by combining the efficient k-clique listing
algorithms available in graph theory with the batch-based approaches since the shareability
graph represented by the classical graph structure can only express the shareable relations
between binary requests, while the shareable relations between requests can often reach
more than three or four in practical applications. Therefore, we extend the shareability
graph to a hypergraph data structure to express multiple shareable relationships. Based on
the shareability hypergraph, we propose a shareable prediction model for predicting multi-
variate shareable relationships. The shareability prediction model predicts the shareable
relationships among multiple online requests simultaneously in fixed time based on the
historical shareable relationships among requests from different regions. The shareability
prediction model can significantly reduce the number of request groups enumerated in the
batch-based approach and save the computational cost.

We will illustrate the motivation of this paper by the following example.

Example 1. In the ridesharing example shown in Figure 1a, there are four requests r1 . . . r4 with a
road network consisting of seven nodes a . . . g. The value close to each edge indicates the distance
between the connected two nodes. The details of the requests are shown in Table 1, where the release
time represents the time of the request submitted to the platform, and the deadline indicates the
expected arrival time to the destination. Suppose that the platform only allows one vehicle to service
up to two requests in a trip, and it takes one unit of time to move one unit of distance in the road
network. From the information given above, we have that r1 can share with r2 and r3, and r2 can
share with r1 and r3. However, r4 can only share with r2. We can construct a shareability graph of
these four requests as shown in Figure 1b, where each edge indicates that the connected two requests
are shareable.

Once the platform makes an allocation based on the online framework [7,8,16] (i.e., each request
will be served or discarded as soon as it arrives), it will choose requests r1 and r2 to share a vehicle,
which leads to the fact that requests r3 and r4 cannot share with other requests anymore when
they arrive.

In the platform that adopts a batch-based framework [11–14], all possible request groups will be
checked and the optimal one will be taken into service. Through observing the shareability graph, we
found that the shareable requests are connected to each other. For example, request r1 cannot be shared
with r4. Therefore, we can efficiently prune all request groups that contain r1 and r4 simultaneously
during the request group enumeration. Nevertheless, we still need to check the shareability of
request groups {r1, r2}, {r1, r3}, {r2, r3}, {r2, r4} and {r1, r2, r3}. With the hypergraph-based
shareability prediction model proposed in this paper, we can predict the shareability of these request
groups simultaneously in a fixed time, which significantly improves the computational cost of the
batch-based methods.

Electronics 2022, 11, 1164 3 of 18

Table 1. Requests release detail.

Request Source Destination Release Time Deadline

r1 a d 0 14
r2 c f 0 11
r3 b e 2 10
r4 c g 3 9

#

$

%

&

'

(

)

 *

 ! "

 +

7

2.3

2.3

1.4

(a) Example Road Network.

 !

 " # $

(b) Shareability Graph.

Figure 1. A motivation example.

We summarize the main contributions of this paper as follows.

• We study the dynamic ridesharing problem and optimize the efficiency of batch-
based methods.

• We propose a request group enumeration strategy based on k-clique listing on the
shareability graph to optimize request group enumeration for batch-based methods.

• We devise the P-Ride ridesharing framework with a shareability prediction model that
supports the batch prediction of shareable relationships among a arbitrary number of
requests in a fixed time.

• Through extensive experiments, we demonstrate that the proposed method in this
paper can significantly reduce the computational cost of batch-based methods. The
P-Ride framework proposed in this paper can significantly improve efficiency with
little impact on service quality.

2. Literature Review

The ridesharing problem can be reduced to a variant of the Dial-a-Ride (DARP) prob-
lem [20,21], aiming to plan the vehicle routes and trip schedules for n requests who specific
source and destination with practical constraints. The existing works on ridesharing
services are categorized as static and dynamic, depending on whether all requests are
known in advance. Most of the existing works [22,23] on DARP are in a static environ-
ment. For the dynamic ridesharing problem, the existing solutions are mainly in online
mode [7,8,15,16] or batch mode [11–13,24].

In online mode, insertion [25] is the state-of-the-art operation of the existing works [26,27]
in route planning, which inserts the pickup and drop-off locations of a new request into the
vehicle’s schedule without reordering. Tong et al. [16] proposed an insertion method based
on dynamic programming, which checks the constraints in constant time and dispatches
requests in linear time. Huang et al. proposed the structure of a kinetic tree in [8] to
trace all feasible routes for each vehicle to reduce the total drive distance. The kinetic tree
always provides the optimal vehicle schedule whenever the schedule changes (i.e., a new
request arrives).

Batch-based algorithms partition the requests into groups and assign groups to their
appropriate vehicles. Alonso-Mora et al. [11] proposed an RTV-Graph to model the
relationship and constraints among requests, trips, and vehicles, where trips are the groups

Electronics 2022, 11, 1164 4 of 18

composed of shareable requests. The RTV-Graph minimizes the utility function by linear
programming to allocate between vehicles and trips. The time cost for enumerating
trips in building RTV-Graph grows exponentially. Zeng et al. [12] proposed an index
called additive tree for pruning the infeasible groups during the group enumeration and
greedily chose the most profitable request group for each vehicle. Although the batch-
based methods achieve better service quality by meticulously enumerating request groups
compared to the online-based methods, the violent enumeration of request groups by
batch methods requires significant computational cost. Therefore, the ridesharing problem
critically requires an efficient way to analyze request shareable relationships and identify
the shareable request groups.

The structure of the shareability graph adopted in this paper is intuitive, and thus some
similar structures have been used in some existing works, which are designed in different
ways for request-vehicle matching. Wang et al. [28] formulate a tree cover problem to serve
urban demands with as few vehicles as possible. Alonso-Mora et al. [11] optimally assign
vehicles to shareable groups of customers through linear programming. Zhang et al. [29]
formulate the passenger matching as a monopartite matching problem and solve it by the
Irving-Tan algorithm. However, the existing works based on sharability networks mainly
present sharable relationships through traditional graph structures, and traditional graphs
can only represent binary shareability relations among requests. However, in the rideshar-
ing scenario, the shareable relationship between requests often contains three or even more
requests, which cannot be properly represented in the existing shareability graphs.

Therefore, in this paper, we propose the concept of the shareability hypergraph to
represent the high-order sharable relationship among requests, and we devise the share-
ability prediction model to identify shareable request groups of arbitrary size based on the
shareability hypergraph for fast screening of the shareable request groups.

3. Preliminary

In this section, we introduce and analyze the dynamic ridesharing problem studied
in this paper. We used a directed weighted graph to represent the road network, where
each node in the graph represents an intersection and each edge indicates the road be-
tween intersections. Besides, each edge in the graph is associated with a weight cost(u, v),
which indicates the cost to travel from u to v. In this paper, cost(u, v) shows the average
travel time.

3.1. Definitions

Definition 1 (Request). Let ri = 〈si, ei, ni, ti, di〉 denote an online request ri released at time ti,
which contains ni passengers departing from si and requires one to arrive at ei before the deadline di.

For each vehicle vj, it may be assigned with several numbers of mutually available
requests Rj simultaneously. Therefore, we also need to plan a route Sj for each vehicle vj,
which consists of a sequence of pickup and drop-off locations for the requests r ∈ Rj. We
define the route for each vehicle as follows.

Definition 2 (Route). Given a set of m requests R, let S = 〈o1, ..., o2m〉 denote the route where ox
is the source location si or destination ei of request ri ∈ R.

We mark a route as feasible if and only if it satisfies the following three constraints:

• Sequential constraint. The pickup location si of request ri ∈ Ri should be located
before the drop-off location ei in the feasible route.

• Capacity constraint. At any location ox ∈ S, the total number of requests on the
vehicle should not exceed the capacity of the vehicle.

Electronics 2022, 11, 1164 5 of 18

• Deadline constraint. For any location ox ∈ S, ∑x
k=1 cost(ok−1, ok) ≤ ddl(ok), where

ddl(ok) satisfied following Equation (1) for different location type (source or destination).

ddl(ok) =

{
ei − cost(si, ei), if ox is source

ei, otherwise
(1)

Definition 3 (Shareable). Given a pair of requests ra and rb, we call it shareable if and only if
there exists a feasible route S for serving ra and rb simultaneously.

We can extend the concept of sharable to multiple requests, i.e., we call the requests in
a set R sharable if there exists a feasible route that can serve all requests r ∈ R at the same
time. With the definitions above, we define the Dynamic Ridesharing Problem as follows.

Definition 4 (Dynamic Ridesharing Problem). Given a set R of n online requests and a vehicle
set W with maximum capacity constraint c, the Dynamic Ridesharing Problem requires planning a
feasible route for each vehicle w ∈W to serve r ∈ R, which minimizes a specific utility function.

In this paper, we refer to the following unified cost UC defined in [16] as the optimiza-
tion utility function. Specifically, the unified cost adopts the evaluation of total revenue
in [16], and the varying penalty coefficient β is equivalent to the balance between income
per unit time and fare per unit distance.

UC(R, w) = α ∑
wi∈W

µ(Swi) + β ∑
ri∈R−

cost(si, ei) (2)

µ(Sw) = ∑
ox∈Swi

cost(ox−1, ox) (3)

Table 2 summarizes the commonly used symbols.

Table 2. Symbols and Descriptions.

Symbol Description

R a set of m time-constrained request requests
ri request request ri of request i
Sj the planned route for vehicle vj
Q a candidate request group with size |Q| ≤ c

3.2. Hardness of Dynamic Ridesharing Problem

Following Theorem 1, we have that the dynamic shared travel problem is NP-Hard
and therefore intractable. Moreover, Tong et al. proved that there is no polynomial-time
algorithm with a constant competitive ratio for dynamic ridesharing problem [16].

Theorem 1 (Hardness of the Dynamic Ridesharing Problem). The Dynamic Ridesharing
Problem defined in Definition 4 is NP-hard.

Proof. We prove the theorem by a reduction from the URR problem defined in [9], which
has been proved to be an NP-hard problem. The URR problem can be briefly described
as follows: given a set R of m requests and a set V of n vehicles, each request is associated
with a source location si, a destination ei, a pickup deadline rt−i and a drop off deadline
rt+i . The URR problem arranges requests to vehicles to maximize the utility function u with
capacity and time constraints.

For a given URR problem, we can transform it into an instance of the BDRP problem:
we partition the requests ri ∈ R into a single element set Gi; the route of Gi is a simple
shortest path from si to ei. In addition, we set the utility value for each vehicle and
group pairs as µ′(vj, Gvj) = −µ(vj, ri). Then, for this BDRP instance, we would like to

Electronics 2022, 11, 1164 6 of 18

arrange a request group for the given vehicle with a route such that the summation utility
value ∑vj∈V −µ′(vj, Gvj) is minimized. This shows that the URR problem can be solved in
polynomial time if and only if the transformed BDRP can be solved.

In this way, we can reduce the URR problem to the BDRP. Since the URR problem
has been proved to be NP-hard, BDRP is also NP-hard. This completes the proof of
the theorem.

3.3. Brute-Force Solution

The existing batch-based methods [11–14] for the Dynamic Ridesharing Problem are
based on a two-phase framework: (1) the enumeration of shareable request groups among
the request in each batch; (2) the matching between request groups and vehicles to minimize
the utility function. We summarize the batch-based methods as shown in Algorithm 1.

Algorithm 1 Brute-Force Solution

Require: A set R of n requests, a set W of m vehicles and a batch period τ
Ensure: The planned routes set S for vehicle w ∈W

1: t← current timestamp;
2: for every time period τ do
3: R− ← {ri|ti ∈ [t, t + τ)}
4: for wj ∈W do
5: G ← initialize a empty set for candidate shareable groups;
6: for k ∈ [1..c] do
7: G′ ← enumerate shareable request groups g among R− where |g| = k;
8: G ← G ∪ G′;
9: end for

10: g∗ ← ming∈G UC(g, w);
11: S← enumerating routes for serving r ∈ g∗;
12: Sj ← arg minS∈S µ(S)
13: end for
14: t← t + τ
15: end for
16: return S = {Sj|wj ∈W}

Firstly, we retrieve all the requests R− that are in the current batch window (line 3).
Then we tried to select request groups for each vehicle w ∈W (line 4–13). Specifically, we
first enumerate request groups of size up to the vehicle capacity constraint c (line 5–9).
After that, we select the group g∗ ∈ G with the minimum unified cost (line 10). In the
route planning phase, we enumerate the routes S that can serve all requests r in the request
group g∗ simultaneously (line 11) and select the optimal route Sj to assign to the vehicle wj
(line 12). Finally, we update the timestamp t = t + τ and wait for the next trigger (line 14).

Complexity Analysis. For each vehicle w, we need to enumerate up to ∑c
i Ci

n request
groups. Since the capacity constraint c� n in practice, ∑c

i Ci
n can also be noted as O(nc).

Then, to identify whether the requests in each group are shareable, we need to examine up
to A2c

2c candidate routes 〈o1, . . . , o2c〉, and check whether each route satisfies the deadline
constraint in linear time. Therefore, the time complexity of the Brute-Force algorithm is
O(m× nc × (2c)!× 2c).

4. Shareability-Prediction-Based Ridesharing Framework
4.1. Shareability Graph

Shareable request group enumeration is a fundamental operator in batch-based meth-
ods (e.g., line 7 in Algorithm 1). Therefore, to optimize the efficiency of the shareable
request group enumeration, we first define the following shareability graph for visualizing
the shareable relationships between requests intuitively.

Electronics 2022, 11, 1164 7 of 18

Definition 5 (Shareability Graph). Given a set of requests R, SG = 〈R, E〉 denotes the share-
ability graph of R, where e = (ra, rb) ∈ E reflects that request ra and rb are shareable.

Here, clique [17–19] is an extensively studied subgraph structure, and k-clique is a sub-
set of k nodes in the graph that satisfies any two distinct nodes in the k-clique are adjacent in
graph theory. With the shareability graph, we have the following Theorem 2 for enumerat-
ing those request groups that form a k-clique in the sharability graph rather than an arbitrary
enumeration, which helps to reduce the search space by pruning infeasible groups.

Theorem 2. Given a feasible route S for k requests, the corresponding nodes of these k requests
form a k-clique in the shareability graph.

Proof. We will prove it by a contradiction. Suppose a feasible route S of k requests whose
corresponding nodes did not form a k-clique in the shareability graph. Thus, there are
at least two nodes ra and rb that are not connected. We derive the subroute S′ from S
by removing location ox except the source and destination of ra and rb. Since removing
existing waypoints reduces the detour, the subroute S′ is also a feasible route. According
to the definition of the shareability graph, there must exist an edge between ra and rb,
which contradicts our assumption. In summary, these k requests form a k-clique in the
shareability graph.

With the Theorem 2, a shareable request group of size k in the shareability graph must
constitute a k-clique. Therefore, we can achieve efficient enumeration of shareable request
groups by the state-of-the-art algorithm of k-clique listing [18] in graph theory.

4.2. Shareability Prediction with Hyper Graph

The dynamic shareability graph proposed in Section 4.1 can provide an intuitive
representation of the shareable relationship between pairs of requests. In reality, for
the ridesharing problem, the sharing relationship between requests may often contain
three, four, or even more requests. Therefore, the higher-order shareable relationships
cannot be expressed by such a traditional graph. However, the higher-order sharable
relationships widely exist for most batch-based algorithms. So, we propose the structure of
the shareability hypergraph to represent the higher-order shareability relations as follows.

Definition 6 (Shareability Hyper Graph). Let HG = 〈R, E〉 denote the shareability hyper-
graph for a given set of requests R, where E ⊆ P(R) (where P(R) is the power set of R). For each,
e ∈ E represents that the requests included in e are shareable.

The shareability hypergraph HG can represent the different sizes of shareable request
groups intuitively, but enumerating all hyper-edges of HG can be extremely expensive.
We need to perform ∑c

m=2 Cm
n times shareable judgments to determine whether there

are corresponding hyper-edges between nodes. Thus, it is impractical to construct the
shareability hypergraph by enumerating all hyper-edges brutally in an online scenario, but
a city’s historical shareable request groups are instructive in the guidance for the existence
of shareable hyper-edges. Therefore, we propose the following shareability prediction
model based on the hyper-edge prediction model Hyper-SAGNN [30] as shown in Figure 2,
which trains according to the historical shareable request groups in a city and predicts the
shareability among the given requests by batch in a fixed time.

Electronics 2022, 11, 1164 8 of 18

Biased Random Walk

 !

 "

 #

 $

 %

 &

 '

 (

)!

)"

)(

*!

*"

*(

+!

+"

+(

*! , +! °"

*(, +(°"

…
…

-!

-(

-

…

-"

Average
 !

 "

 # $#

%#!

%#"

Multi-head Attention

…

…
…

 !

Static Embedding

Skip-gram

Model

Source

Destination

Encode

Position-wise

Feed-forward Network

Figure 2. The structure of the shareability prediction model based on Hyper-SAGNN [30].

Because of the constraints of requests defined in Section 3.1, the shareable requests
often satisfy the following two conditions: (1) Temporal Locality—the requests are released in
a similar time; (2) Spatial Locality—the requests share similar sources and destinations. For
online ridesharing platforms, the shareability prediction model primarily serves to quickly
predict the shareability between requests released in close time on the platform. Therefore,
the request groups to be predicted already possess the temporal locality characteristics.
To satisfy the spatial locality requirement, we intuitively divide the city into a certain
number of grids. Specifically, we first divided the road network into row × col grids
according to a fixed grid size δ as a parameter, and the sources and destinations of each
request ri corresponded to gsi and gei among the grids, respectively. Then, we uniformly
encoded the requests whose sources and destinations fall in the same grid as the node
nri = gsi × N + gei in the shareability hypergraph HG, where N = col × row. Thus, each
node of the shareability hypergraph represents a class of requests that satisfy both temporal
locality and spatial locality.

With the nodes on the hypergraph generated from the above steps, we enumerate the
hyper-edges present in the historical request data of a specific city, i.e., the shareable request
groups (as shown on the left of Figure 2, each color edge represents a single hyper-edge).
Then, we generate a walking path for each node based on the constructed hypergraph
by a biased random walk method and extract the features of the nodes (−→x1 , . . . ,−→xk) by
a skip-gram model, which enables nodes with similar contexts to have similar embed-
dings. We feed the above node features to Hyper-SAGNN [30], a self-attentive-based graph
neural network for hypergraphs, which can support arbitrary-sized link prediction tasks.
Specifically, Hyper-SAGNN feeds the features of the nodes into both the static embedding
network and the multi-headed attention layer to generate the corresponding static em-
bedding and dynamic embedding of the nodes in the hypergraph. Then, the probability
scores (p1, p2, . . . , pk) are generated by a layer of position-wise feed-forward network with
a sigmoid activation function. Finally, the average value of these probability scores is
regarded as the probability of the existence of hyper-edge among requests (x1, x2 . . . , xk).

Based on such a prediction model, we encode the online requests to the nodes on the
corresponding hypergraph in constant time to determine the shareability of the request
group, so that we can quickly build a shareable network in batch mode. Meanwhile, the
determination of the shareability between requests is a fundamental operation for different
upper-level request dispatching algorithms, and the complexity of these algorithms can be
greatly reduced by such a prediction model. For example, in the batch-base method shown
in Algorithm 1, we have to enumerate up to ∑c

i Ci
n request groups line 7. However, based

on the sharability prediction model, we can efficiently predict whether the request groups

Electronics 2022, 11, 1164 9 of 18

are shareable or not in batch with GPU devices, which greatly reduces the search space of
request groups and improves the efficiency of the algorithm.

4.3. P-Ride: Shareability Prediction Based Ridesharing Framework

Based on Theorem 2 presented in Section 4.1 and the shareability prediction model
proposed in Section 4.2, we devise the online ridehsharing framework P-Ride as shown in
Figure 3. The P-Ride framework adopts the batch-based processing mode that optimizes
the request group enumeration and route planning of existing batch-based methods.

Online Requests

Shareability

Prediction Model

 !

 "

 #

 $

 %

 &

 '

 (

…)*)*+!

Route Planning

k-Clique Listing on

Shareability Graph

Request Group

Dispatching

Request Group Enumeration

Request-Vehicle Matching

Figure 3. P-Ride: Shareability prediction-based ridesharing framework.

In the request group enumeration, the P-Ride framework first enumerates the request
groups by k-clique listing in the shareability graph. Then, it further checks the filtered
candidate request groups in a batch manner by the shareability prediction model. In the
request-vehicle matching, the P-Ride framework selects the optimal group of requests
among all feasible request groups for each vehicle. Since in [31], Ma et al. revealed that
reordering waypoints almost has no change in effectiveness but needs more time and space.
Therefore, we generate service routes for the request groups based on the insertion method
instead of enumerating all feasible routes.

The detailed steps of the P-Ride framework are shown in Algorithm 2. Firstly, we
extract all the requests R− within the batch window and construct the corresponding
shareability graph SG for the request set R− (line 3–4). Then, we try to select the most
appropriate request group for each vehicle and plan a service route for it (line 5–15). In
particular, we first search for all feasible candidate request groups (line 6–10). Based on
Theorem 2, we enumerate the candidate request groups G′ in the shareability graph SG
by the k-clique listing algorithm (line 8). Then, we predict the set of candidate request
groups G′ in bulk by the pre-trained sharability prediction modelM based on the historical
sharable request groups. We only retain the request groups that are reported as shareable
by the shareability prediction modelM (line 9). After that, we pick the request group g∗

with the optimal unified cost UC(g, w) and plan a service route Sj for it (line 11–14). More
specifically, we insert the source and destination of each request in the optimal request
group g∗ into the appropriate position of the vehicle’s route Sj in turn (line 12–14).

Electronics 2022, 11, 1164 10 of 18

Algorithm 2 P-Ride

Require: A set R of n requests, a set W of m vehicles, a batch period τ and a shareability
prediction modelM

Ensure: The planned routes set S for vehicle w ∈W
1: t← current timestamp;
2: for every time period τ do
3: R− ← {ri|ti ∈ [t, t + τ)};
4: SG ← building the sharability graph for R−;
5: for wj ∈W do
6: G ← initialize a empty set for candidate shareable groups;
7: for k ∈ [1..c] do
8: G′ ← listing k-cliques g in SG;
9: G ← G ∪M.eval(G′);

10: end for
11: g∗ ← ming∈G UC(g, w);
12: for ri ∈ g∗ do
13: Sj ← insert si and ei into Sj by insertion;
14: end for
15: end for
16: t← t + τ;
17: end for
18: return S = {Sj|wj ∈W};

5. Experimental Study
5.1. Data Set

In the experiments, we use two real-life request datasets [16,32] from Chengdu (noted
as CHD) and Xi’an (noted as XIA), China to demonstrate the effectiveness and efficiency of
our proposed methods. Both datasets are available from the Didi GAIA [33] platform. The
request datasets contain the latitude and longitude of the pickup and drop-off locations
and the release time, but not the number of passengers for each request. Therefore, we
generate the number of passengers fields for the CHD and XIA datasets based on the
distribution in the NYC cities as [16]. Additionally, we set the deadline of each request
ri as di = ti + γ · cost(ri), which is a commonly used configuration in many existing
works [8,9,34]. We extracted requests data from 1 to 29 November 2016 for CHD and 1 to
30 October 2016 for XIA to train the shareability prediction model proposed in Section 4.2.
In the experiments for analyzing the effects of different parameters, we used data from
CHD on 31 November 2016, and XIA on 31 October 2016, for testing. The distribution of
the sources and destinations of the testing requests are shown in Figure 4.

(a) Requests distribution (CHD). (b) Requests distribution (XIA).

Figure 4. The distribution of the testing requests.

The road networks of both cities are downloaded from Geofabrik [35] and segmented by
Osmconverter [36] with city boundaries on OpenStreetMap [37] for CHD [38] and XIA [39],

Electronics 2022, 11, 1164 11 of 18

respectively (as shown in Figure 5). In addition, we also carefully trimmed the road networks
according to the distribution boundaries of requests’ sources and destinations so that there are
fewer irrelevant regions as possible. The weight associated with each edge on the road network
is the average travel time of the road segment. The details of the road network are shown in
Table 3, where # indicates the number of corresponding fields. With the distribution of testing
requests shown in Figure 4, we can visualize that the two datasets adopted in the experimental
study have different distribution characteristics due to the different road network structures; the
requests in the CHD are distributed in a star shape, while the requests in the XIA are distributed
in a grid shape. Since the road network in Chengdu is more diversified, there are more candidate
request groups available in the CHD, which results in generally higher service rates in the CHD
than in the XIA with the same parameter settings (as shown in Figures 6–9c,d). The detailed
experiment-related parameters are shown in Table 4 (default parameters are in bold).

(a) Border of Chengdu (CHD). (b) Border of Xi’an (XIA).

Figure 5. City borders.

pruneGDP BF P-Ride

0.5K 1K 1.5K 2K 2.5K
|W|

0.5

1.0

1.5

2.0

Un
ifi
ed

 C
os

t (
×1

08
)

(a) Unified cost (CHD).

0.5K 1K 1.5K 2K 2.5K
|W|

0.5

1.0

1.5

2.0

2.5

Un
ifi
ed

 C
os

t (
×1

08
)

(b) Unified cost (XIA).

0.5K 1K 1.5K 2K 2.5K
|W|

0.4

0.6

0.8

1.0

Se
rv
ice

 R
at
e

(c) Service rate (CHD).

0.5K 1K 1.5K 2K 2.5K
|W|

0.4

0.6

0.8

1.0

Se
rv
ice

 R
at
e

(d) Service rate (XIA).

Figure 6. Cont.

Electronics 2022, 11, 1164 12 of 18

0.5K 1K 1.5K 2K 2.5K
|W|

100

101

102

103

Ru
nn

in
g
Ti
m
e
(s
)

(e) Running time (CHD).

0.5K 1K 1.5K 2K 2.5K
|W|

101

102

103

104

Ru
nn

in
g
Ti
m
e
(s
)

(f) Running time (XIA).

Figure 6. Performance of variance |W|.

pruneGDP BF P-Ride

10K 30K 50K 70K 90K
|R|

0.0

0.2

0.4

0.6

0.8

1.0

Un
ifi
ed

 C
os

t (
×1

08
)

(a) Unified cost (CHD).

10K 30K 50K 70K 90K
|R|

0.0

0.2

0.5

0.8

1.0

1.2

Un
ifi
ed

 C
os

t (
×1

08
)

(b) Unified cost (XIA).

10K 30K 50K 70K 90K
|R|

0.7

0.8

0.9

1.0

Se
rv
ice

 R
at
e

(c) Service rate (CHD).

10K 30K 50K 70K 90K
|R|

0.6

0.7

0.8

0.9

1.0

Se
rv
ice

 R
at
e

(d) Service rate (XIA).

10K 30K 50K 70K 90K
|R|

100

101

102

103

Ru
nn

in
g
Ti
m
e
(s
)

(e) Running time (CHD).

10K 30K 50K 70K 90K
|R|

100

101

102

103

Ru
nn

in
g
Ti
m
e
(s
)

(f) Running time (XIA).

Figure 7. Performance of variance |R|.

Electronics 2022, 11, 1164 13 of 18

pruneGDP BF P-Ride

1.2 1.3 1.5 1.8 2.0
γ

0.5

1.0

1.5

2.0

Un
ifi
ed

 C
os

t (
×1

08
)

(a) Unified cost (CHD).

1.2 1.3 1.5 1.8 2.0
γ

0.5

1.0

1.5

2.0

2.5

Un
ifi
ed

 C
os

t (
×1

08
)

(b) Unified cost (XIA).

1.2 1.3 1.5 1.8 2.0
γ

0.4

0.6

0.8

1.0

Se
rv
ice

 R
at
e

(c) Service rate (CHD).

1.2 1.3 1.5 1.8 2.0
γ

0.4

0.6

0.8

1.0

Se
rv
ice

 R
at
e

(d) Service rate (XIA).

1.2 1.3 1.5 1.8 2.0
γ

101

102

103

Ru
nn

in
g
Ti
m
e
(s
)

(e) Running time (CHD).

1.2 1.3 1.5 1.8 2.0
γ

101

102

103

Ru
nn

in
g
Ti
m
e
(s
)

(f) Running time (XIA).

Figure 8. Performance of variance γ.

Table 3. Details of road networks.

Name # Nodes # Edges # Trainning Requests # Testing Requests

CHD 6066 13,242 3,090,337 110,190
XIA 5148 11,042 2,888,979 97,533

Table 4. Experimental settings.

Parameters Values

the number, n, of requests 10 K, 30 K, 50 K, 70 K, 90 K
the number, m, of vehicles 0.5 K, 1 K, 1.5 K, 2 K, 2.5 K
the capacity of vehicles c 2, 3, 4, 5, 6
the deadline parameter γ 1.2, 1.3, 1.5, 1.8, 2.0

the penalty coefficient pr (β) 10
the batching time τ (s) 30

Electronics 2022, 11, 1164 14 of 18

pruneGDP BF P-Ride

2 3 4 5 6
c

0.4

0.6

0.8

1.0

1.2

Un
ifi
ed

 C
os

t (
×1

08
)

(a) Unified cost (CHD).

2 3 4 5 6
c

0.6

0.8

1.0

1.2

1.4

1.6

Un
ifi
ed

 C
os

t (
×1

08
)

(b) Unified cost (XIA).

2 3 4 5 6
c

0.6

0.7

0.8

0.9

1.0

Se
rv
ice

 R
at
e

(c) Service rate (CHD).

2 3 4 5 6
c

0.6

0.7

0.8

0.9

1.0

Se
rv
ice

 R
at
e

(d) Service rate (XIA).

2 3 4 5 6
c

101

102

103

Ru
nn

in
g
Ti
m
e
(s
)

(e) Running time (CHD).

2 3 4 5 6
c

101

102

103

104

105

Ru
nn

in
g
Ti
m
e
(s
)

(f) Running time (XIA).

Figure 9. Performance of variance c.

5.2. Environment Settings

Implementation. We simulate the ridesharing and the driver’s moving based on the
released time of the requests. The request datasets are in the format of a sequence of GPS
track points of the vehicle in serving each request. Therefore, we pre-map the pickup
and drop-off locations of the requests to the nearest nodes on the road network through
the VP-Tree [40]. Specifically, we map the requests’ sources and destinations in the GPS
track points to the nearest nodes on the road network within 1km through the VP-Tree,
and we discard the requests with noisy pickup or drop-off locations where no nodes on
the road network exist within 1km around GPS track points. The initial location of the
vehicle is set to the earliest occurrence of GPS track points in the dataset. Additionally, we
update the location of the vehicles according to the assigned travel routes every second.
In the request-vehicle matching phase, we prune the requests that are too far away from
the vehicle with the grid index for each tested algorithm. Note that we approximate the
travel cost by dividing the Euclidean distance by the maximum speed in the pruning (e.g.,
cost(si, ei) ≈ euclidean(osi , oei)/vmax).

Electronics 2022, 11, 1164 15 of 18

For the training data of the shareability prediction model, we set the parameter δ of
the cell size of the road network division to 1.5 km, and we mapped the sources si and
destinations ei of historical requests ri into the corresponding cells gsi , gei . We uniformly
encoded the requests whose sources and destinations fall in the same grid as the node
nri = gsi × N + gei in the shareability hypergraph HG = 〈R, E〉, where N = col × row. For
each subset Q of the powerset P(R) in the hypergraph, we first try to construct feasible
routes through the insertion method offline, and we add a hyperedge to the hypergraph
HG when there exists such a route that can serve all requests r ∈ Q simultaneously. With
the above steps, we obtain the hypergraph HG with hyperedges for training the shareability
prediction model. The other training parameters of the shareability prediction model are
kept consistent with those of Hyper-SAGNN [30].

Running environments. All algorithms are implemented with C++ and compiled
with -O3 optimization. The algorithms run on a single server equipped with Intel(R)
Xeon(R) Gold 6258R CPU @ 2.70 GHz, NVIDIA Tesla A100 graphics card (contains 80 GB
of video memory), and 1TB of RAM. Moreover, we implemented all algorithms in a
single thread.

5.3. Approaches and Measurements

We compare the following four algorithms in our experimental study.

• pruneGDP [16]. It inserts the request into the vehicle’s current schedule sequentially
and selects the vehicle with the least increased distance for service.

• BF. The Brute-Force method shown in Algorithm 1. It is in batch mode and enumerates
all request groups among each vehicle’s candidate requests.

• P-Ride. The proposed prediction-based ridesharing framework in this paper. It
achieves the prediction of shareability of request groups in a batch mode based
on historical shareable requests by the shareability prediction model proposed in
Section 4.1, which significantly reduces the unnecessary request group enumeration.

We report all algorithms’ unified cost, service rate, and overall running time. Specifi-
cally, the unified cost adopts the evaluation of total revenue in [16], and the varying penalty
coefficient pr is equivalent to the balance between income per unit time and fare per unit
distance. The service rate evaluates the number of requests the platform accepts with a
limited number of vehicles. The overall running time demonstrates the efficiency of the
algorithms for processing the same number of requests. We early terminated those not
completed experiments within 12 h.

5.4. Experimental Results

Effect of the number of vehicles. Figure 6 shows the results of varying the number of
vehicles from 0.5 K to 2.5 K. As the number of vehicles increases, so does the service quality
of the evaluated methods. The BF algorithm leads other methods for the uniform cost,
which mainly benefit from its brute force enumeration strategy. The P-Ride performs
very similarly to the BF algorithm. However, in terms of the overall running time, be-
cause of the high time complexity of the brute force computation in the BF algorithm,
it takes nearly up to 40 min and 2.65 h to run on the two test datasets, respectively. In
contrast, the performance of the P-Ride method proposed in this paper is 10.35 times and
4.39 times faster compared with the BF algorithm on the CHD and XIA datasets (as shown
in Figure 6e,f), which mainly results from the fact that the clique enumeration strategy
proposed in Section 4.1 avoids unnecessary enumeration of request groups. In addition,
we further filter the candidate request groups using the shareability prediction model
proposed in Section 4.2. Benefiting from the linear time complexity of the online algorithm
pruneGDP, it leads in terms of overall running time. However, it performs poorly in terms
of service quality (service rate and unified cost) because it lacks the analysis of the shareable
relationships among requests. It should be noted that on the CHD dataset, the results of the
BF algorithm at |W| = 0.5 K are not presented because there are too few vehicles and most
requests cannot be served, resulting in a backlog in the platform, and the BF algorithm

Electronics 2022, 11, 1164 16 of 18

repeatedly processes these unexpired requests in each round of calculation. Moreover, it is
also the main reason for the significant increase in the running time of P-Ride in Figure 6f.
Effect of the number of requests. Figure 7 presents the results of varying the number of
requests from 10 K to 90 K. Because the number of accepted and rejected requests increased
significantly, the unified costs of all experiment algorithms grew. For the service rate
shown in Figure 7c,d, the BF and pruneGDP gradually appear to be inadequate as the
number of requests continues to increase. P-Ride performs the best, achieving a service
rate improvement ranging from 2.91∼35.85% and 6.93∼38.99% over other methods at
|R| = 90 K on the two datasets CHD and XIA, respectively. For the running time, the
insertion-based method pruneGDP is still the fastest. In Figure 7e, P-Ride is up to 19.36×
and 15.37× faster than BF on two datasets, respectively. When the number of requests
|R| = 10 K, there are enough vehicles in the platform to serve all the requests, so the
requests can be allocated quickly. Therefore, the running time gap between BF and P-Ride
is greatly reduced in Figure 7e,f.
Effect of the deadline. Figure 8 presents the results of the varying deadline of requests by
changing the deadline parameter γ from 1.2 to 2.0. With the gradual relaxation of deadlines,
the quality of service achieved by all testing methods has increased. The performances
of P-Ride and BF are similar when we strictly set the deadline of requests, i.e., γ = 1.2
or γ = 1.3. The reason for this is that the number of candidate request groups for each
request greatly reduced with a minor deadline, making it challenging to achieve noticeable
performance improvements by applying request group enumeration strategies. We note
that when the request deadline parameter γ = 1.5, the BF causes a significant increase
in runtime due to a sharp increase in the request groups. In this case, P-Ride achieves a
similar service rate and unified cost with only about 0.6% of the running time used by BF.
However, when the parameter γ ≥ 1.8, both BF and P-Ride are incapable of processing
all requests within the specified time limit on two datasets due to the dramatic increase
in the number of candidate request groups. That is primarily because the number of
feasible request groups cannot be reduced no matter how much of the pruning strategy
is performed during the request group enumeration. Additionally, Figure 9e,f presents
similar results for a similar reason.
Effect of the vehicle’s capacity constraint. Figure 9 illustrates the results of varying the
vehicle’s capacity from 2 to 6. In terms of unified cost, BF and P-Ride have similar perfor-
mance in terms of service quality. However, since the number of request groups increases
significantly with vehicle capacity for the BF method (e.g., when c = 6, the BF algorithm
needs to enumerate C6

n different request groups), the BF algorithm cannot finish within the
given time limit when c ≥ 5 and c ≥ 6 on two datasets, respectively. When the capacity
constraint of the vehicle c = 2, we observe that the BF algorithm can run in a shorter
time than P-Ride. That is because the capacity constraint c = 2 means that the maximum
number of request groups is 2, and the cost of constructing the shareability graph is already
higher than the direct enumeration of BF at this time. However, the superiority of P-Ride
gradually realizes with the increase of vehicle capacity constraint. We notice that when
the vehicle capacity constraint c ≥ 4, the running time of P-Ride is up to 19.36× faster
than that of BF on the CHD dataset. Additionally, on the XIA dataset, the P-Ride performs
712.88× faster than the BF algorithm as shown in Figure 9f. Therefore, P-Ride works better
in request groups with diverse sizes.

Summary of the experimental study:

• The group-based methods (i.e., BF, P-Ride) have superior performance in terms of
service quality (i.e., higher service rates and lower unified costs) compared to the
online-based methods (i.e., pruneGDP). For example, the P-Ride achieves a service
rate improvement of up to 38.99% compared to the other tested algorithm (servicing
approximately 35,091 more requests for the platform).

• The P-Ride shows excellent performance in most cases. For example, P-Ride runs up
to 712.88 times faster than BF in Figure 9f. In other words, P-Ride can process the
requests of XIA in 1.8 min, but BF takes up to 20.2 h.

Electronics 2022, 11, 1164 17 of 18

6. Conclusions

In this paper, we study the dynamic ridesharing problem and optimize the request
group enumeration with the shareability graph. Concretely, we first propose an efficient
request group enumeration strategy based on the k-clique in the shareability graph, which
helps one to achieve efficient enumeration of shareable request groups by the state-of-
the-art algorithm of k-clique listing in graph theory. Then, to represent the higher-order
shareability relations, we extend the structure of the shareability graph [11,28,29] to the
hypergraph. Furthermore, we devise a shareability prediction model to further filter the
infeasible request groups by the historical shareable relationships, which significantly
reduces the computational cost of existing batch-based methods [11–14] in enumerating
request groups. In the experimental study, the extensive experimental results demonstrate
that our method P-Ride achieves a better service rate and less unified cost than online-based
methods and achieves a shorter running time than batch-based methods.

Author Contributions: Conceptualization, Y.C.; methodology, Y.C.; writing—original draft prepara-
tion, Y.C.; writing—review and editing, Y.C. and L.W.; supervision, L.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Didi Chuxing. Available online: https://www.didiglobal.com/ (accessed on 2 March 2022).
2. uberPOOL. Available online: https://www.uber.com/ (accessed on 2 March 2022).
3. Cici, B.; Markopoulou, A.; Laoutaris, N. Designing an on-line ride-sharing system. In Proceedings of the 23rd SIGSPATIAL

International Conference on Advances in Geographic Information Systems, Bellevue, WA, USA, 3–6 November 2015; pp. 60:1–60:4.
4. Yeung, S.; Miller, E.; Madria, S. A Flexible Real-Time Ridesharing System Considering Current Road Conditions. In Proceedings

of the IEEE 17th International Conference on Mobile Data Management, MDM 2016, Porto, Portugal, 13–16 June 2016; pp. 186–191.
5. Asghari, M.; Deng, D.; Shahabi, C.; Demiryurek, U.; Li, Y. Price-aware real-time ride-sharing at scale: an auction-based approach.

In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS
2016, Burlingame, CA, USA, 31 October–3 November 2016; pp. 3:1–3:10.

6. Asghari, M.; Shahabi, C. An On-line Truthful and Individually Rational Pricing Mechanism for Ride-sharing. In Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS, Redondo Beach, CA,
USA, 7–10 November 2017; pp. 7:1–7:10.

7. Ma, S.; Zheng, Y.; Wolfson, O. T-share: A large-scale dynamic taxi ridesharing service. In Proceedings of the 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, 8–12 April 2013; pp. 410–421.

8. Huang, Y.; Bastani, F.; Jin, R.; Wang, X.S. Large Scale Real-time Ridesharing with Service Guarantee on Road Networks. PVLDB
2014, 7, 2017–2028. [CrossRef]

9. Cheng, P.; Xin, H.; Chen, L. Utility-aware ridesharing on road networks. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, 14–19 May 2017; pp. 1197–1210.

10. Cordeau, J.F.; Laporte, G. A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transp. Res. Part Methodol. 2003,
37, 579–594. [CrossRef]

11. Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.; Rus, D. On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment. Proc. Natl. Acad. Sci. USA 2017, 114, 462–467. [CrossRef] [PubMed]

12. Zeng, Y.; Tong, Y.; Song, Y.; Chen, L. The Simpler The Better: An Indexing Approach for Shared-Route Planning Queries. Proc.
VLDB Endow. 2020, 13, 3517–3530. [CrossRef]

13. Zheng, L.; Chen, L.; Ye, J. Order dispatch in price-aware ridesharing. Proc. VLDB Endow. 2018, 11, 853–865. [CrossRef]
14. Bei, X.; Zhang, S. Algorithms for Trip-Vehicle Assignment in Ride-Sharing. In Proceedings of the Thirty-Second AAAI Conference

on Artificial Intelligence, AAAI 18, New Orleans, LA, USA, 2–7 February 2018; pp. 3–9.
15. Xu, Y.; Tong, Y.; Shi, Y.; Tao, Q.; Xu, K.; Li, W. An Efficient Insertion Operator in Dynamic Ridesharing Services. In Proceedings of

the 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, 8–11 April 2019; pp. 1022–1033.
16. Tong, Y.; Zeng, Y.; Zhou, Z.; Chen, L.; Ye, J.; Xu, K. A Unified Approach to Route Planning for Shared Mobility. PVLDB 2018,

11, 1633–1646. [CrossRef]

https://www.didiglobal.com/
https://www.uber.com/
http://doi.org/10.14778/2733085.2733106
http://dx.doi.org/10.1016/S0191-2615(02)00045-0
http://dx.doi.org/10.1073/pnas.1611675114
http://www.ncbi.nlm.nih.gov/pubmed/28049820
http://dx.doi.org/10.14778/3424573.3424574
http://dx.doi.org/10.14778/3204028.3204030
http://dx.doi.org/10.14778/3236187.3236211

Electronics 2022, 11, 1164 18 of 18

17. Zhang, C.; Zhang, Y.; Zhang, W.; Qin, L.; Yang, J. Efficient Maximal Spatial Clique Enumeration. In Proceedings of the 35th IEEE
International Conference on Data Engineering, ICDE 2019, Macao, China, 8–11 April 2019; pp. 878–889.

18. Danisch, M.; Balalau, O.; Sozio, M. Listing k-cliques in Sparse Real-World Graphs. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, WWW 2018, Lyon, France, 23–27 April 2018; pp. 589–598.

19. Cheng, J.; Ke, Y.; Fu, A.W.; Yu, J.X.; Zhu, L. Finding maximal cliques in massive networks by H*-graph. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, IN, USA, 6–10 June 2010;
pp. 447–458.

20. Wilson, N.H.; Weissberg, R.; Higonnet, B.; Hauser, J. Advanced Dial-a-Ride Algorithms; Technical Report; In Tech Report R76-20;
Department of Civil Engineering; MIT: Cambridge, MA, USA, 1975.

21. Cordeau, J.F.; Laporte, G. The dial-a-ride problem (DARP): Variants, modeling issues and algorithms. Q. J. Belg. Fr. Ital. Oper. Res.
Soc. 2003, 1, 89–101. [CrossRef]

22. Wong, K.I.; Bell, M.G. Solution of the Dial-a-Ride Problem with multi-dimensional capacity constraints. Int. Trans. Oper. Res.
2006, 13, 195–208. [CrossRef]

23. Cordeau, J.F. A branch-and-cut algorithm for the dial-a-ride problem. Oper. Res. 2006, 54, 573–586. [CrossRef]
24. Zheng, L.; Cheng, P.; Chen, L. Auction-based order dispatch and pricing in ridesharing. In Proceedings of the 2019 IEEE 35th

International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1034–1045.
25. Jaw, J.J.; Odoni, A.R.; Psaraftis, H.N.; Wilson, N.H. A heuristic algorithm for the multi-vehicle advance request dial-a-ride

problem with time windows. Transp. Res. Part Methodol. 1986, 20, 243–257. [CrossRef]
26. Ioachim, I.; Desrosiers, J.; Dumas, Y.; Solomon, M.M.; Villeneuve, D. A request clustering algorithm for door-to-door handicapped

transportation. Transp. Sci. 1995, 29, 63–78. [CrossRef]
27. Häme, L. An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows. Eur. J. Oper. Res.

2011, 209, 11–22. [CrossRef]
28. Wang, C.; Song, Y.; Wei, Y.; Fan, G.; Jin, H.; Zhang, F. Towards Minimum Fleet for Ridesharing-Aware Mobility-on-Demand

Systems. In Proceedings of the 40th IEEE Conference on Computer Communications, INFOCOM, Vancouver, BC, Canada, 10–13
May 2021; pp. 1–10. [CrossRef]

29. Zhang, H.; Zhao, J. Mobility Sharing as a Preference Matching Problem. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2584–2592.
[CrossRef]

30. Zhang, R.; Zou, Y.; Ma, J. Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. In Proceedings of the 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

31. Ma, S.; Zheng, Y.; Wolfson, O. Real-Time City-Scale Taxi Ridesharing. IEEE Trans. Knowl. Data Eng. 2015, 27, 1782–1795.
[CrossRef]

32. Cheng, P.; Jian, X.; Chen, L. An experimental evaluation of task assignment in spatial crowdsourcing. Proc. VLDB Endow. 2018,
11, 1428–1440. [CrossRef]

33. Data Source: Didi Chuxing GAIA Initiative. Available online: https://outreach.didichuxing.com/research/opendata/ (accessed
on 18 November 2020).

34. Wang, J.; Cheng, P.; Zheng, L.; Feng, C.; Chen, L.; Lin, X.; Wang, Z. Demand-Aware Route Planning for Shared Mobility Services.
Proc. VLDB Endow. 2020, 13, 979–991. [CrossRef]

35. Geofabrik. Available online: https://download.geofabrik.de/ (accessed on 10 March 2022).
36. Osmconverter. Available online: https://wiki.openstreetmap.org/wiki/Osmconvert (accessed on 10 March 2022).
37. OpenStreetMap. Available online: https://www.openstreetmap.org/ (accessed on 10 March 2022).
38. Relation: Chengdu. Available online: https://www.openstreetmap.org/relation/2110264 (accessed on 10 March 2022).
39. Relation: Xi’an. Available online: https://www.openstreetmap.org/relation/3226004 (accessed on 10 March 2022).
40. Yianilos, P.N. Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces. In Proceedings of the Fifth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Austin, TX, USA, 25–27 January 1993; pp. 311–321.

http://dx.doi.org/10.1007/s10288-002-0009-8
http://dx.doi.org/10.1111/j.1475-3995.2006.00544.x
http://dx.doi.org/10.1287/opre.1060.0283
http://dx.doi.org/10.1016/0191-2615(86)90020-2
http://dx.doi.org/10.1287/trsc.29.1.63
http://dx.doi.org/10.1016/j.ejor.2010.08.021
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488862
http://dx.doi.org/10.1109/TITS.2018.2868366
http://dx.doi.org/10.1109/TKDE.2014.2334313
http://dx.doi.org/10.14778/3236187.3236196
https://outreach.didichuxing.com/research/opendata/
http://dx.doi.org/10.14778/3384345.3384348
https://download.geofabrik.de/
https://wiki.openstreetmap.org/wiki/Osmconvert
https://www.openstreetmap.org/
https://www.openstreetmap.org/relation/2110264
https://www.openstreetmap.org/relation/3226004

	Introduction
	Literature Review
	Preliminary
	Definitions
	Hardness of Dynamic Ridesharing Problem
	Brute-Force Solution

	Shareability-Prediction-Based Ridesharing Framework
	Shareability Graph
	Shareability Prediction with Hyper Graph
	P-Ride: Shareability Prediction Based Ridesharing Framework

	Experimental Study
	Data Set
	Environment Settings
	Approaches and Measurements
	Experimental Results

	Conclusions
	References

