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Abstract: The object detection algorithm of the PCB (Printed Circuit Board) assembly scene based
on CNN (Convolutional Neural Network) can significantly improve the production capacity of
intelligent manufacturing of electronic products. However, the object class imbalance in the PCB
assembly scene, the multi-scale feature imbalance, and the positive/negative sample imbalance in the
CNN have become critical problems restricting object detection performance. Based on YOLOv3, this
paper proposes a class-balanced Train/Val (Training set/Validation set) split method for object class
imbalance, an additional feature fusion strategy for multi-scale feature imbalance, and an efficient
anchor concept for positive/negative sample imbalance. These three contributions are Balanced-
YOLOv3. After experimental verification, compared with other YOLOv3 series algorithms, the
mAP@.5 (Mean Average Precision at Intersection over Union threshold 0.5) and mAP@.5:.95 (average
mAP over different Intersection over Union thresholds, from 0.5 to 0.95, step 0.05) of Balanced-
YOLOv3 have achieved the best results and ranked third in the metrics of parameter and inference
time. Compared with other current anchor-based object detection algorithms, Balanced-YOLOv3
has excellent detection performance and low computational complexity, which effectively solves the
problem of imbalanced object detection in PCB assembly scenarios.

Keywords: Balanced-YOLOv3; imbalance problem; object detection; class balanced split; efficient
anchor; PCB assembly scene

1. Introduction

Artificial intelligence (AI) is expanding from consumer intelligence to manufacturing
intelligence [1–5]. In intelligent production, automated production plants are currently
used more frequently. Benefiting from the advancement of machine vision technology,
the application of AI in product quality monitoring and defect management is becoming
more and more critical. Especially in the electronic product manufacturing industry,
closely related to general public life, it is more difficult to produce and assemble due to
the wide variety of electronic product parts and sizes, coupled with short product life
cycles, high quality, and cost sensitivity. The vision-based PCB assembly scene object
detection algorithm can identify and locate the PCB, holes to be assembled, assembled
holes, and various electronic components in the picture [6]. These inspection results can
be applied to many vital areas, such as product defects, AR (Augmented Reality) guiding
assembly [7], generating assembly scene descriptions, and assisting robots in replacing
humans in achieving intelligent assembly, etc., and can significantly improve the production
capacity of electronic product companies in intelligent manufacturing.

As an advanced model structure, CNN can extract various feature information from
images and at the same time use different layers of the network to express semantic and
location information with different emphases, which can well solve the question of the
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“what” and “where” of the object in the detection task. The rapid development of CNN-
based visual object detection tasks came about because when CNN processes images, it
can extract image features by itself through multiple convolution kernels and deal with
object displacement scaling. Concerning other forms of distortion invariance, it has good
robustness and computational efficiency. However, there are various imbalance problems
in object detection, and these imbalances will affect the final detection effect. Many existing
studies can be attributed to the methods to solve these imbalances [8]. Class imbalance
refers to a situation where one or more classes are over-represented, which will cause the
classifier to be biased against over-exposed classes during training. Feature scale imbalance
refers to the significant difference in the performance of object features across different
scale spaces, which will lead to poor representation of the object due to information fused
across other scale features. The imbalance of positive and negative samples means that
in the anchor-based object detection algorithm, an object can only be responsible for one
anchor, and other anchors are considered negative samples. Too many negative samples
will increase the inference time and affect the judgment of the classifier.

As a special kind of object detection, PCB assembly scene object detection also has
imbalance problems that affect its detection accuracy and speed. In the object detection
dataset of the PCB assembly scene, there are many electronic components to be assembled or
assembled, and a small number of PCBs to be assembled and to be assembled through holes.
The object size of the PCB assembly scene varies widely, from small through-holes, SMD
(Surface Mount Device), and plug-in electronic components to large-sized PCBs. When
these objects are extracted through the backbone, there will be multi-scale feature imbalance
problems, and even a small-sized objects’ location and semantic features disappear. At the
same time, the YOLO series algorithm uses nine anchors evenly allocated to three detection
heads without considering the spatial position and size of the actual PCB assembly scene
object distribution. It cannot generate efficient anchors that adapt to the PCB assembly
scene objects. There is a positive/negative sample imbalance based on dense anchors.

Aiming at the problem of class imbalance in object detection, the current research
includes three main aspects: oversampling with few samples [9], under-sampling with
multiple samples [10,11], and mixed sampling [12,13]. However, whether it is oversampling
or under-sampling, it is necessary to add additional small-sample data or remove multi-
sample data, which will inevitably add some redundant information or missing samples
to the original data. To the best of our knowledge, no one has discussed the issue of
object class balance from the perspective of the train-validation-test split. Aiming at the
imbalanced scale of object features extracted by the object detection backbone network,
the current research mainly includes the cascade method of shallow and deep features
of the backbone network [14–17] and the unified size transformation method of feature
fusion [18–20]. However, few people consider the fusion method of multi-scale imbalanced
features according to the spatial distribution of the object to be detected. Regarding the
imbalance of positive/negative samples in object detection, the current research includes
three main aspects: balancing the number of positive/negative samples [21–25], attention
mechanism [26–28], and weight focus loss function [29–34]. However, for anchor-based
object detection algorithms, few people solve the problem of the anchor generation method,
which is the source of positive /negative sample imbalance.

Although CNN-based object detection algorithms emerge in an endless stream, they
have become a research and application hotspot in academia and industry because the
one-stage anchor-based YOLO series algorithms are efficient and accurate. Meanwhile,
due to limited computing resources and insufficient software support in various practical
applications, YOLOv3 is still one of the most widely used detectors in the industry. Based
on the above problem analysis and knowledge gaps, we choose YOLOv3 as the object
detection framework, take PCB, THT (Through Hole Technology) electronic components,
and through holes under two scales as the detection objects, solve the imbalance problem
that affects the object detection effect as the breakthrough point. An object detection method
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is designed in the PCB assembly scene with high recognition accuracy and high positioning
accuracy. The main contributions of this paper are summarized as follows:

(1) We propose a class-balanced Train/Val split method. This method ensures that all
classes are included in Train/Val and that the proportion of the number of classes
allocated in Train/Val is the same. The class ratio imbalance bias is caused by the
random number of pictures split to Train/Val.

(2) We construct an addition feature fusion model suitable for object detection problems
in PCB assembly scenarios. This feature fusion method can preserve the invariant and
equivariant information of multi-scale objects, speeding up the training and learning
process by reducing the number of channels and making up for the disappearance of
information brought by small-size objects through deep networks.

(3) We design an efficient anchor, which analyzes the size of the sample labels in the
training set by clustering, and counts the spatial distribution on the three output ports
of the detection head, which determines the number of anchors with actual detection
effect in the data set. The efficient anchor alleviates the imbalance of positive/negative
samples and directly provides the basis for the assignment of anchors.

The following section reviews object detection methods for PCB assembly scenarios
and various approaches to address object detection imbalance. In Section 3, we describe
the specific implementation details of the proposed method. In Section 4, we show the
experimental results and the effectiveness of the proposed method. Finally, Section 5
concludes the paper.

2. Related Work

Since the proposed Balanced-YOLOv3 solves the imbalance problem in object detection
in PCB assembly scenes, it involves class imbalance, multi-scale feature imbalance, and
positive/negative sample imbalance. We summarize the research results related to the
above imbalance problems and object detection in PCB assembly scenarios.

2.1. Class Imbalance in Object Detection

The related research work on class imbalance is summarized as follows. Ren et al.
proposed BALMS (Balanced Meta-Softmax) for long-tailed visual recognition. They derived
a balanced softmax function from a probabilistic point of view, which explicitly consid-
ered changes in label distribution during optimization. They introduced Meta-sampler,
which resamples via meta-learning for high validation accuracy [9]. Wang et al. proposed
that after an instance segmentation model is trained, a novel two-layer sampling scheme
combining image-level and instance-level sampling is used to collect class-balanced pro-
posals, and then these collected proposals are used to calibrate the classify head to improve
the performance of the tail class. The scheme also contains a simple two-head inference
component, which can effectively alleviate the performance degradation of the head class
after calibration [10]. Wang et al. proposed the Dynamic Curriculum Learning (DCL)
framework for imbalanced data learning and designed two-level curriculum schedulers.
The first stage is a sampling scheduler that dynamically trains the model from imbalanced
to balanced, and the second stage is a loss scheduler that combines cross-entropy loss (CE)
and metric learning loss, thereby achieving a good balance between class bias accuracy
and class balance accuracy [11]. In learning classification tasks, Kang et al. separated
representation learning and classifier learning, readjusted the classification boundary, and
proposed deconstructing the traditional “classifier representation joint learning” paradigm,
seeking suitable representations to minimize the negative impact of long-tailed imbalanced
sample classification [12]. Zhang et al. proposed using an extra buffer as an unbiased
dictionary, periodically monitoring the training history corresponding to model updates,
and finding meaningful samples from the training data as reward data. The unbiased dictio-
nary continuously updates and provides reward information to optimize class-imbalanced
sample weights. This method does not rely on additional generated data, and it can be
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directly applied to solving the common long-tail imbalanced sample identification data
bias [13].

2.2. Multi-Scale Feature Imbalance in Object Detection

Targeting the problem of the imbalanced scale of object features extracted by object
detection backbone network, Liu et al. proposed Path Aggregation Network (PANet),
which creates bottom-up path augmentation, shortens information paths, and enhances
feature pyramids with accurate localization signals present in lower layers. At the same
time, it recovers the damaged information paths between each proposal and all feature
levels. This adaptive feature pool is designed to aggregate all feature-level features in
each proposal interval [14]. Zhao et al. proposed a multi-level feature pyramid network,
which fuses basic features with the largest output feature map of alternately connected,
aggregates multi-level, and multi-scale features through an attention mechanism, and
finally builds a more effective feature pyramid to detect objects of different scales [15].
Xu et al. proposed the feature pyramid automatic connection structure. Four other scale
feature map transformation methods were designed before determining the feature map
cascade method of different scales in the backbone network. By traversing the transforma-
tion methods of all feature maps, the feature pyramid determines the optimal multi-scale
feature fusion method [16]. Kong et al. redefined the feature reconstruction function of the
feature pyramid, using global attention to emphasize the global information of the entire
image and then performing local reconstruction to local model patches in the receptive
field, propagating strong semantics across all feature maps different scales [17]. Kong et al.
proposed a reverse connection on the traditional CNN structure, enabling forward features
to contain more semantic information. The size difference of adjacent feature maps is
eliminated by deconvolution, and features of different scales are generated through reverse
connection. After the map, candidate boxes of various sizes are designed for each feature
map to cover objects of different sizes and shapes [18]. Kim et al. proposed a parallel
feature pyramid network to solve the feature scale imbalance problem. They first adopted
Spatial Pyramid Pooling (SPP) to generate wide feature pyramid pools with feature maps
of different sizes and then designed a Multi-Scale Context Aggregation (MSCA) module
to resize these feature maps to uniform size [19]. Li et al. proposed a zoom-in-and-out
network that utilizes multi-scale feature maps at different depths and actively searches for
and activates neurons from low-level locations and high-level semantic feature maps. The
network splits anchors of different sizes to give the feature map of each scale its own set
of features, and the classifier corresponding to each scale to detect the object of a specific
scale range [20].

2.3. Positive/Negative Samples Imbalance in Object Detection

Some scholars have carried out some research on the problem of imbalanced positive/
negative samples. Ge et al. proposed introducing an enlargement/reduction factor k in
the first-stage region proposal network of Faster R-CNN [35], and k adjusts the number
of positive/negative samples through competition. This gradient annealing strategy can
balance the influence of positive/negative samples [21]. When using anchors to generate
proposal regions, because the value of the threshold directly determines the ratio of posi-
tive/negative samples, Han et al. proposed using a segmentation strategy to determine
the anchor threshold for the balance of positive/negative samples to reduce the impact of
negative samples on object detection performance [22]. In the anchor-free target detection
task, Hou et al. proposed using hard-positive samples, easy-negative samples, and hard-
negative samples to balance the number of positive/negative samples [23]. In the two-stage
object detection algorithm, Li et al. proposed increasing the number of positive samples
and balancing the proportion of positive/negative samples by reducing the threshold of
the anchor and introducing the boundary map of the object’s actual value [24]. Li et al.
directly introduced the online hard sample mining module into the backbone network of
Faster R-CNN, which instantly expanded the number of candidate regions of the object
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and avoided the problem of imbalanced positive/negative samples based on anchors [25].
Li et al. proposed a method to embed spatial attention and non-local attention modules in
object detection, strengthen more significant regional features, suppress remaining unim-
portant regional features, and achieve the goal of balancing positive/negative samples [26].
Based on YOLOv3, Li et al. proposed combining self-attention and feature pyramid net-
work, adding the weight of positive samples to the end features of the backbone network,
improving the extraction ability of deep features, and alleviating the imbalance between
positive/negative samples [27]. Based on SSD, Xu et al. proposed the concept of a core
anchor, which regresses conventional multi-scale dense anchors into a square anchor. This
proposed core anchor is equivalent to a type of preprocessing, which achieves the purpose
of balancing positive and negative samples [28]. Li et al. proposed a new soft edge focus
loss function, which introduced a penalty function to expand the center distance between
positive/negative samples and solved the problem of difficult object detection caused by
the imbalance of positive/negative samples [29]. Based on the focal loss function, Li et al.
also considered the number of samples in different classes. They combined the mean square
error loss function when regressing the object, further alleviating the positive/negative
sample imbalance [30]. Under the framework of YOLOv3 object detection, Li et al. adopted
the method of multi-scale clustering anchors, separately clustered according to the size
of the output port, and achieved the purpose of balancing positive/negative samples by
generating multiple anchors and using focal loss [31]. Based on SSD, Lu et al. proposed
an improved confidence loss function by introducing two adjustment factors to adjust the
contribution of positive and negative samples [32]. Zheng et al. proposed calculating the
ratio of the number of positive and negative samples in the dataset and using the inverse of
the ratio as the sample weight to deal with the imbalance of positive/negative samples [33].
Li et al. proposed a weighted binary cross-entropy loss function, which uses the proportion
of negative samples in the total samples as the weight to calculate the loss. When the
number of samples is imbalanced, the model can better consider the learning of positive
samples and obtain better object detection results [34]. Pang et al. proposed a balanced
feature pyramid, which firstly adjusted the features of different levels to the same size
based on interpolation or max pooling, and then took the mean to obtain the balanced
semantic features. Finally, the original features of each layer are enhanced by reversing
the operation [36].

2.4. Electronic Component Detection in PCB Assembly Scene

For the electronic component detection problem in the PCB assembly scene, the
current research mainly includes six aspects: small size object detection [37,38], PCB
positioning [39,40], electronic component detection [41–46], model lightweight [47,48]
and real-time detection [49,50]. Li et al. proposed a detection method for small-sized PCB
electronic components based on multiple detection heads. This method integrates shallower
feature map semantics and location information to improve the detection accuracy of many
small-sized objects [37]. Liu et al. proposed a CNN combined with a residual network for
object detection of small-sized electronic components [38]. Zhao et al. realized the multi-
task detection of category, position, and angle in the PCB assembly process by adding an
angle detection task based on the Faster R-CNN [39]. For the precise positioning problem
in PCB automatic assembly, Tsai et al. proposed and compared four models: simple
multi-layer perceptron (MLP), convolutional neural network (CNN), and CNN combined
with support vector regression (SVR). They complete the PCB regression positioning
problem quickly and accurately [40]. Lin et al. used the YOLO algorithm to design
an automatic positioning and fast identification model for nine kinds of capacitors on
the PCB [41]. Kuo et al. designed a three-stage detector to detect electronic components
on PCB. In addition to a class-independent region proposal network, the three-stage
detector also proposed a graph network to refine the features of electronic components [42].
Lu et al. proposed a method for object detection of scattered electronic components using
YOLOv3 [43]. Mukhopadhyay et al. used a color space conversion model to convert
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RGB to YCbCr when detecting IC (integrated circuits) on a circuit board. Then, three
shape descriptors were combined to achieve the best detection effect [44]. To improve the
accuracy of object detection of electronic components on PCB, Liu et al. proposed a new
box regression loss function based on YOLOv4, called Gaussian Intersection Joint (GsIoU),
which uses the Gaussian function to predict boxes under different anchors. Combined at the
same location, the box regression loss is calculated, which ultimately improves the accuracy
of the final box regression [45]. Li et al. proposed an anchor allocation strategy based on
the effective receptive field in the problem of object detection in the whole scene of PCB
assembly, which can improve the accuracy of object detection and reduce the computational
complexity [6]. Baranwal et al. used VGG16 to propose a classification model for correctly
placing surface mount components during PCB assembly. The classification accuracy was
higher than trained artificial vision classification [46]. Shen et al. proposed a PCB defect
detection model after assembly. The model consists of a lightweight electronic component
detection module and a character recognition module on electronic components. This
method is based on Faster R-CNN with context-aware ROI (Region of Interest) pooling
and spatial transformer networks to meet industrial needs [48]. Li et al. proposed an
object detection model for PCB electronic components based on effective receptive field-
anchor matching. By analyzing the influence of different depth backbone networks on
the size change of the effective receptive field of the anchor allocation layer, a modular
combination strategy of the backbone network is designed to realize the lightweight of the
model [47]. Aiming at the problem of visual real-time detection of electronic components
on the assembly line by industrial robots in the electronics industry, Guo et al. proposed
to use the multi-scale attention module to adaptively fuse the middle and high-level
features extracted by Tiny-YOLOv4, which meets the requirements of real-time detection
in industrial environments [49]. Shuai et al. proposed a secondary screening detection
method to detect electronic components and characters on electronic components in real-
time. They first searched and detected the features of electronic components through a
gradient boosting decision tree model, and then used CTPN (Connectionist Text Proposal
Network) + Tesseract-OCR (Optical Character Recognition) deep learning technology to
complete character recognition on electronic components [50].

Although many researchers have made significant progress in the above areas, for the
first time we combine solving the imbalance problem that affects the accuracy of object
detection and detection efficiency with the multi-class object detection problem in PCB
assembly scenarios. Our proposed method will fill some of the knowledge gaps in the
above survey methods.

3. Methodology

This study proposes a balanced split of Train/Val, the addition fusion of feature layers,
and the efficient anchor concept, which solves the imbalance problem of PCB assembly
scenes and improves the accuracy and speed of object detection. The algorithm uses
YOLOv3 as the primary network. It takes PCB, electronic components, and through holes
as detection objects in two scales of PCB assembly scenarios, and all classes are equally
split in the Train/Val. Because the method proposed in this paper solves three imbalanced
problems in object detection, for the convenience of the description below, the method
proposed in this paper is called Balanced-YOLOv3.

The overall framework of Balanced-YOLOv3 is shown in Figure 1. It mainly includes
three parts: the balanced classes split of Train/Val, the multi-scale feature fusion method,
and the proposal and acquisition method of the efficient anchor. These three parts occur in
the preprocessing before the CNN learning, the connection between the backbone network
and the detection head, and the pre-selection box generation stage.
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Figure 1. A framework of Balanced-YOLOv3.

3.1. Class-Balanced Train/Val Split
3.1.1. Function of the Training Set, Validation Set, and Test Set

The object detection method based on deep learning is realized by training CNN with
big data. In particular, the convolution kernel weight of each layer of the CNN is learned
by data-driven learning. We hope that the object detection algorithm obtained has a strong
generalization ability. Generalization ability refers to the ability of the trained algorithm
to predict unknown data. Our modeling aims to make the model have a better predictive
power for known and unknown data. Our modeling seeks to give the algorithm a better
predictive ability for known and unknown data.

Before training the CNN object detection algorithm, we need to divide the dataset
into the training set, validation set, and test set in advance. The training set is the dataset
used to train and make the algorithm learn the features hidden in the data. In each epoch,
the same training data is repeatedly fed to the neural network to make the model learn
the features of the data. The training set should have a diverse input set so that the model
is trained on all scenarios and can predict any unseen data samples that may arise in the
future. The validation set is used to validate our model performance during training. This
validation process provides information that can help us tune the model’s hyperparameters
and configuration accordingly, like a trainer telling us whether the training is going in the
right direction. The algorithm is trained on the training set, while the model is evaluated
on the validation set after each epoch. The main idea of the validation set is to prevent
the model from overfitting. The algorithm becomes very good at classifying samples in
the training set but fails to generalize and accurately classify data it has never seen before.
The test set, training set, and validation set are separated. After the algorithm is trained
and validated, the test set is used to evaluate the algorithm’s performance objectively.
The training, validation, and testing process of the entire dataset in the object detection
algorithm is shown in Figure 2.

3.1.2. Train/Val Split Based on Class Balance

Usually, the division ratio of the training set, validation set, and test set is randomly
assigned to 60%, 20%, and 20% or 70%, 20%, and 10%, and other combinations according to
the number of photos. If the proportion of the training set is too small, the obtained model
is likely to be very different from the model obtained from the total data; if the ratio of
the training set is too large, the reliability of the test results will be reduced. At the same
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time, the number of sample classes in the data set is naturally imbalanced, and the split of
the dataset should maintain the consistency of the data distribution as much as possible
to avoid the impact on the final result caused by the introduction of additional bias in the
data split process. Therefore, after first determining the test set, if the remaining data set is
divided into the training set and validation set, the proportion of each class is very different.
The error estimation will be biased due to the difference in the distribution of Train/Val.
To avoid the problem of large feature learning bias caused by the large difference in the
proportion of each class during division, this paper proposes a Train/Val split method
based on sample class balance. Figure 3 shows the method proposed in this paper and
the conventional method of randomly dividing the Train/Val according to the ratio of the
photo’s number.

Figure 2. The execution process of the training set, validation set, and test set in object detection algorithm.

Figure 3. Class-balanced Train/Val split and random Train/Val split according to the number of
photos. (a) Train/Val Split based on Class-Balanced. (b) Train/Val Randomly Split based on the
Radio of Photos Number.

In Figure 3a, we use C1, C2 · · ·CN to represent N class samples in the dataset, Pti ·nc1 ,
Pti ·nc2 · · · Pti ·ncN which means the number of samples with classes C1, C2 · · ·CN on the i-th
photo in the training set. Pvj ·nc1 , Pvj ·nc2 · · · Pvj ·ncN represents the number of samples with
classes C1, C2 · · ·CN on the j-th image in the validation set. We define (train_cb)Cx

the sum
of the number of samples with class Cx in the class-balanced training set (val_cb)Cx

as the
sum of the number of samples with class Cx in the class-balanced validation set. For a
class-balanced Train/Val, the following formula holds:

(train_cb)Cx
= ∑ (Pt1 ·ncx + Pt2 ·ncx + . . . +Pti ·ncx ) (1)

(val_cb)Cx
= ∑ (Pv1 ·ncx + Pv2 ·ncx + . . . +Pvj ·ncx ) (2)
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Cx : (train_cb)Cx
/(val_cb)Cx

train− val(cb)_radio,x ∈ [1, · · · , N] (3)

In Figure 3b, the result of random training set-validation set division according to the
proportion of photos, N represents the total number of classes in the dataset, F represents
the total number of photos in the training set, G represents the total number of photos
in the validation set. Pt1 , Pt2 · · · PtF represents the 1st, 2nd—F-th photo in the training
set, Ci ·nPt1

, Ci ·nPt2
· · ·Ci ·nPtF

represents the number of samples of the i class in the training
set Pt1 , Pt2 · · · PtF ,Pr1 , Pr2 · · · PrG represents the 1st, 2nd—the G photo in the validation set.
For the random Train/Val split method based on the proportion of photos, we define
(train_random)Cx

as the sum of the number of samples with class Cx in the training set and
(val_random)Cx

as the sum of the number of samples with class Cx in the validation set.
The following formula is established:

F/G = train− val_radio o f the number o f photos (4)

(train_random)Cx
= ∑ (Cx ·nPt1

+ Cx ·nPt2
+ . . . +Cx ·nPtF

) (5)

(val_random)Cx
= ∑ (Cx ·nPr1

+ Cx ·nPr2
+ . . . +Cx ·nPrG

) (6)

Cx : (train_random)Cx
/(val_random)Cx

= radom number, (7)

The above analysis shows that, in general, the number of samples of different classes
in the entire dataset present a long-tailed class imbalance. The ratio of the numbers in the
training set and the validation set must be random, and the ratio of different classes is
very different, which will inevitably lead to the problem of large model learning deviation
and reduce the detection performance of the model. However, in the Train/Val split result
based on the balance of sample classes, the ratio of the number of training set samples to
the number of the validation set samples for all classes is a fixed value. The split result can
maintain the Train/Val class balance. The consistency of the data distribution avoids the
introduction of additional bias due to the large difference in the proportion of each class.
Finally, an object detection model with superior performance can be trained. Algorithm 1
gives the Train/Val split method based on the balance of sample classes and shows how
the data set is divided into the Train/Val. The whole process does not contain the test set.

Algorithm 1: Train/Val Split based on Class-Balanced

Input: All photos and XML files containing label information for all class samples.
Output: Photos and XML files of the training set. Photos and XML files of the validation set.
1: Create a list<map> corresponding to each XML file, including the name of the xml file and the
number of each class in the XML.
[{

“name”: “xxx.xml”,
“C1”: number1,
“C2”: number2,
——
“CN”: numberN,

}]
2: shuffle list<map>
3: Sum the number of classes in all list<map>
4: Find the class with the smallest sum: objectMinName
5:Pick xml files and photos that contain objectMinName, List<objectMinName>
6: Sort List<objectMinName> in descending order
7: Split according to a predefined ratio of class balance List<objectMinName> => train_List:
val_List
8: Aggregate zongtrain_List: zongval_List
9: Repeat the class number times of step3–step8
10: Get the final zongtrain_List: zongval_List
11: end
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3.2. An Addition Fusion Strategy for Multi-Scale Imbalanced Features

As an emerging feature extractor, CNN’s forward convolution, pooling, and other
processes are the feature extraction process, especially the image features in the visual task
can be extracted. At the terminal of CNN, the mapping function of the task will be linked,
and the feature will be mapped to the predicted results. The back propagation process is to
update the weight parameters of CNN according to the chain derivation rule. There are two
main reasons for feature fusion as an essential means to achieve multi-scale object detection
in CNN. First, the receptive fields of feature maps of different sizes are different. When the
image undergoes the convolution operation, the feature map will become smaller as the
convolution deepens. In reducing the feature map, each pixel combines the information of
multiple feature points in the original feature map. That is, the receptive field will become
larger. To detect objects of different sizes, we need to fuse the receptive fields of various
sizes. Second, the feature maps of different depths contain different information. Low-level
features have higher resolution and contain more location and detail information, but they
have lower semantics and more noise due to less convolution. High-level features have
stronger semantic information, but the resolution is low, and the perception of details is
poor. The problem we face is how to make the two better complement each other to achieve
the best detection effect.

3.2.1. Concatenation and Addition Feature Fusion Methods

The commonly used feature fusion methods mainly include concatenation and ad-
dition. The concatenation operation links together feature maps with different channel
numbers. That is to say, the features describing the image itself are increased, but the infor-
mation under each feature is not improved. The addition operation is the superposition
between the same level feature map information, and the number of channels does not
change. The addition means that the amount of information describing the feature map
of the image increases, but the dimension representing the image itself does not increase,
but the amount of information in each dimension increases. Whether it is concatenation
or addition, the deep network contains the information of the shallow network, so it can
reach the shallow network through different branches during backpropagation, increasing
the generalization ability and feature expression ability of the network. The most apparent
difference between concatenation and addition is the change in data dimension. The ad-
dition operation requires that the data dimensions are precisely the same, and the added
dimension is the same as before. The concatenation operation requires that the data have a
different dimension, generally the number of channels. The dimension, height, and width
of the image are the same, and the number of channels after merging is the sum of the
number of data channels participating in the merging.

Suppose Xi ∈ RHi×Wi×Ci (i ∈ {1, 2 . . . L}) and Yj ∈ RHj×Wj×Cj(j ∈ {1, 2 . . . J}) are the
two sets of inputs before feature fusion, and each feature map has N objects. Taking the
Xi feature map as an example, the feature map contains the semantic information of all
objects Xi·s = s1 + s2 + · · ·+ sn(n ∈ {1, 2 . . . N}) and the location information of all objects
as Xi·l = l1 + l2 + · · ·+ ln(n ∈ {1, 2 . . . N}).Wi and Wj are the convolution kernels of the
corresponding channels. The symbol ∗ represents the convolution operation. The formulas
for defining concatenation and addition, respectively, are shown in Equations (8) and (9):

Zl·concat =
{

Xi ∗Wi, Yj ∗Wj
}

, l ∈ {1, 2 . . . L + J} (8)

Zl·add = {(Xi + Yi) ∗Wi}, l ∈ {1, 2 . . . L} (9)

3.2.2. Invariance of Semantic Information

The so-called invariance means that for a function, if the transformation you apply
to it does not affect the output at all, then the function is invariant to the transformation.
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Assuming that the input is x and the function is f , if we first transform the input g, g(x) = x′

if there is
f (x) = f (x′) = f (g(x)) (10)

Then the f is said to be invariant to the transformation g.
In the convolutional neural network, any feature map of the two inputs Xi and Yj

before feature fusion comes from the original image. If there are N objects in the original
image, then the semantic information of any feature map in Xi and Yj can be expressed as:

Zi(s) = s1 + s2 + · · ·+ sn(n ∈ {1, 2 . . . N}) (11)

For the feature fusion method of concatenation, because it is only a stack of input
feature maps, the semantic information of any feature map after concatenation can be
expressed as:

Zi·concat(s) = s1 + s2 + · · ·+ sn(n ∈ {1, 2 . . . N} (12)

Zi(s) = Zi·concat(s) (13)

The feature fusion method of addition is the superposition of the corresponding input
feature maps. The feature map obtained after superposition does not increase the number
of objects in the original image and change the class, so the semantic information of the
feature map after addition can be expressed as:

Zi·add(s) = s1 + s2 + · · ·+ sn(n ∈ {1, 2 . . . N} (14)

Zi(s) = Zi·add(s) (15)

According to Equations (13) and (15), we can find that the concatenation and addition
transformations applied to the semantic information of the input feature map will not affect
the original semantic information at all. Therefore, whether it is concatenation or addition,
these two feature fusion methods can maintain the invariance of semantic information.

3.2.3. Equivariance of Location Information

The so-called equivariance means that for a function, if the transformation you apply to
its input will also reflect on the output, then the function is equivariant to the transformation.
That is, for function f and transformation g, if there is

f (g(x)) = g( f (x)) (16)

Then it is said that f is equivariant to the transformation g.
In the CNN, the position information of any one of the two input Xi and Yj before

feature fusion can be expressed as:

Zi·concat(l) = l1 + l2 + · · ·+ ln(n ∈ {1, 2 . . . N}) (17)

For the feature fusion method of concatenation, the two input features are first concate-
nated. Then the position information of any feature map after feature fusion is extracted,
which can be expressed as:

Zi·concat(l) = l1 + l2 + · · ·+ ln(n ∈ {1, 2 . . . N}) (18)

First, extract the position information of any one of the input feature maps of the two
inputs. The location information after concatenating the feature maps from which location
information is extracted can be expressed as:

concat(Zi(l)) = l1 + l2 + · · ·+ ln(n ∈ {1, 2 . . . N}) (19)

Zi·concat(l) = concat(Zi(l)) (20)
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For the feature fusion method of addition, first, add the two input features correspond-
ingly, and then extract the position information of any feature map after the features are
added, which can be expressed as:

Zi·add(l) = l1 + l2 + · · ·+ ln(n ∈ {1, 2 . . . N}) (21)

First, extract the position information of any one of the input feature maps of the two
inputs. Then, add the corresponding positions to the feature maps of the extracted position
information. The position information can be expressed as follows:

add(Zi(l)) = l1 + l2 + · · ·+ ln(n ∈ {1, 2 . . . N}) (22)

Zi·add(l) = add(Zi(l)) (23)

According to Equations (20) and (23), the concatenation or addition transformation
applied to the position information of the input feature map is equivalent to the position
information extracted after concatenating or adding the input feature map first. Therefore,
whether it is concatenation or addition, these two feature fusion methods can maintain the
equivariance of position information.

3.2.4. YOLOv3 Based on Addition Feature Fusion Strategy

Although the two feature fusion methods of concatenation and addition can maintain
the invariance of semantic information and the equivariance of position information, the
concatenation operation saves important detailed information by increasing the number of
channels. The calculation amount of addition is much smaller than that of concatenation,
which holds more parameters and calculation amount. At the same time, for small-sized
objects, the deeper the layers of the CNN, the smaller the feature map, and the less semantic
and location information is retained. When fused with the feature map of the shallow net-
work, the addition operation can strengthen the object semantics and location information.
In contrast, the concatenation operation cannot make up for the gradually disappearing
target information of the deep network. Therefore, for the problem of small size in object
detection in assembly scenes, this paper designs an addition fusion strategy based on
multi-scale imbalanced features of the backbone network, as shown in Figure 4:

Figure 4. Addition fusion strategy for multi-scale imbalanced features based on YOLOv3.

To further verify the effect of the addition fusion strategy in object detection in PCB
assembly scenes, this paper also changed the concatenation fusion in YOLOv3-SPP to
addition fusion, as shown in Figure 5:
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Figure 5. Addition fusion strategy for multi-scale imbalanced features based on YOLOv3-SPP.

Whether it is Figure 4 or Figure 5, we can observe that in the concatenated feature
fusion mode of YOLOv3 and YOLOv3-SPP, the 52 × 52 × 256 in the shallow layer, and the
up-sampled 52 × 52 × 128 in the middle layer are concatenated after stacking, the output
is 52 × 52 × 384, and the number of channels becomes 384. After the 26 × 26 × 512 in
the middle layer and the up-sampled 26 × 26 × 256 in the deep layer are concatenated
and stacked, the output is 26 × 26 × 768, and the number of channels becomes 768. In
the addition feature fusion mode, the corresponding feature maps of 52 × 52 × 256 in the
shallow layer and the up-sampled 52 × 52 × 256 in the middle layer are superimposed,
and the output is 52 × 52 × 256, and the number of channels is 256. After the feature map
26 × 26 × 512 of the middle layer and the up-sampled feature map 26 × 26 × 512 of the
deep layer are superimposed, the output is 26 × 26 × 512, and the number of channels
becomes 512. The addition fusion strategy can speed up the learning process of CNN
parameters and reduce the amount of calculation by lowering the dimension of the channel.
The point-by-point addition operation of the feature map increases the information content
of the feature map. It makes up for the information loss defect of small-sized targets caused
by the deepening of the network layers.

3.3. Efficient Anchor Design to Alleviate the Imbalance of Positive/Negative Samples

Current anchor-based object detection relies heavily on learning from a large sample
of data. Most detectors place many anchors at each pixel on the image or a partitioned
dense network and then calculate the IoU (Intersection over Union) between each anchor
and its adjacent ground truth. The anchor is a positive sample if the value is higher than
the pre-set threshold. Otherwise, the anchor is a negative sample. Then the entire CNN
continuously learns the features of positive/negative samples. Finally, the bounding box
regression and loss function are used to learn network parameters. If there is a severe
imbalance between positive/negative samples, the learning of network parameters will be
severely skewed. CNN ignores the feature information of positive samples and over-learns
the bias information of negative samples, which reduces the network learning efficiency
and improves the detection error rate. Beginning with Faster R- CNN, researchers have
improved detection performance by increasing the number of anchors. Many dense anchors
of different scales and aspect ratios are placed in the center of a receptive field. Although
the use of dense anchors can improve the detection effect of some dense objects, it brings
three problems simultaneously. One is that too many anchors will affect the speed of model
training. Second, because the anchors are too dense, most of the anchors are distributed
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in the background area, resulting in too many negative samples, a serious imbalance of
positive/negative samples, and can’t play a positive role in the loss function of the object
bounding box regression. Third, the allocation of dense anchors often adopts a rough and
straightforward average allocation method, which does not consider the difference between
the actual sample size and the allocated anchor size, resulting in the problem of limited
detection accuracy improvement.

In this paper, the concept of the efficient anchor is proposed by calculating the distribu-
tion of the ground truth labels in the dataset at three scales, using two K-means clustering.
Efficient anchors get the total number of anchors adapted to the target size and distribution
of the dataset. While obtaining the number of effective anchors, the effective allocation of
anchors in the three output ports of the detection head is realized. Anchors are a certain
number of boxes with different aspect ratios drawn at the center of each pixel. These boxes
are not real but preset boxes that the model artificially sets for prediction. Under the idea
of dense anchor prediction, the number of anchors is often determined by empirical values,
such as 9, 5, 4, 6, etc. The concept of an efficient anchor essentially refers to an anchor that
plays an actual role. In the object detection dataset, we used the sum of the maximum
times that each object’s center of the ground truth appears in the grid corresponding to
the output detection port. The preset box generated by clustering is the efficient anchor.
The generation and allocation method of efficient anchors proposed in this paper is shown
in Figure 6. As shown in Figure 6, the generation and allocation of effective anchors are
mainly composed of two k-means clustering in the dataset and the statistics of the number
of object mapping regions. The k of the first k-means clustering is determined by the output
number of the YOLOv3 detection head because the YOLOv3 detection head has three scale
outputs, so the first clustering produces three regions. These three regions are arranged
from small to large, corresponding to sizes 52 × 52, 26 × 26, and 13 × 13, respectively. One
statistic is that when each grid of the three output ports is mapped back to the original
image, we count the maximum number of center points of the object ground truth in the
dataset that falls within the grid of the three output ports. The second clustering is to
cluster the corresponding numbers of the three regions according to the respective objects
of the three output ports. The generation and allocation steps of the whole efficient anchor
are as follows:

Figure 6. Generation and allocation of efficient anchors.

Step 1: Load the label data of all objects in the training set, and normalize the width, height,
and center point of the label data according to the size of the image where the object is
located;
Step 2: It is known that the YOLOv3 detection head has three output ports, and the K-means
clustering algorithm is used to cluster the normalized label data of all objects to generate
three sets of object data;
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Step 3: Sort the cluster center point sizes of the three data groups. The group of data to
which the largest size belongs corresponds to the 13 × 13 output port, the group of data to
which the middle size belongs corresponds to the 26 × 26 output port, and the group of
data to which the smallest size belongs Corresponding to 52 × 52 output port;
Step 4: Resize all original images in the training set to 416 × 416, and adjust all object sizes
on the original image in equal proportions. For the three output ports 13 × 13, 26 × 26, and
52 × 52 divide the adjusted images respectively 169 grids of 32 × 32, 676 grids of 16 × 16,
and 2704 grids of 8 × 8;
Step 5: For the group of sample labels with the largest size in Step 3, corresponding to the
grid of size 32 × 32, the center points of the ground truth of these samples are randomly
distributed in various positions of the picture. We count the number of sample center
points that fall into each grid and take the maximum number of center points that appear
in each grid nal as the number of assigned anchors for this output port;
Step 6: According to Step 5, count the number of anchors nam and nas assign them to the
output port corresponding to the two groups of data of medium size and minimum size;
Step 7: Perform the second K-means clustering on the three data sets in Step 2. The statistics
nal nam and nas determined the number of clusters of the three data sets, and the three sets
of data are clustered. The result is the final effective anchor;
Step 8: The anchors clustered from the three sets of data are the allocated anchors of the
corresponding output ports.

The generation and allocation of efficient anchors are obtained based on the statistical
analysis of the historical data of the training set samples. By summarizing the spatial
location distribution information of the samples, the anchors that are suitable for the scene
and work are generated. Compared with dense anchors, efficient anchors are small in
number and contain the output distribution information of most detection objects. While
improving the preset effect of anchors, the proportion of positive samples corresponding to
anchors is increased, and the proportion of negative samples is increased and reduced to
alleviate the problem of positive/negative sample imbalance.

4. Experimental Verification and Analysis

We evaluate the proposed method on the PCB assembly scene object detection dataset.
The dataset contains two images of size 818× 600 and 4092× 3000, with 21 detection object
classes. We will first introduce the experimental comparison effect of the three innovation
points proposed in Section 3 and then use the subjective and objective evaluation indicators
to comprehensively evaluate the Balanced-YOLOv3 proposed in this paper. Then we will
compare Balanced-YOLOv3 with other current object detection algorithms for detection
accuracy and computational complexity, and finally, we will analyze and discuss the
method in this paper.

4.1. Class-Balanced and Random Photo-Number Ratio Train/Val Split Results

The object detection dataset of PCB assembly scene is a self-built dataset that simulates
the whole scene of PCB through-hole electronic component assembly, including three
scenarios before assembly, during assembly, and after assembly, involving PCB, some SMD
electronic components on PCB, through-holes of inserted and to-be-inserted, and electronic
components before and after assembly. There are 21 classes of objects, with 1000 photos
and 9725 objects.

We first randomly divided the test set from the whole dataset for the entire PCB
assembly scene dataset according to 10% of the photos. The remaining data was used as a
combination of Train/Val. Then, according to the class-balanced Train/Val split method
and the image number ratio Train/Val random split method, the entire dataset is split into
cb_82 and random datasets. The number of different classes in the test set and the ratio of
Train /Val in the two datasets are shown in Figure 7:
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Figure 7. Statistics chart of the number of classes in two ways of splitting the dataset. (a) Randomly
split Train/Val (train_picture_number:val_picture_number = 8:2). (b) Class-balanced Train/Val split
(train_calss_number:val_calss_number = 8:2).

In the stacked bar chart in Figure 7, green, yellow, and blue represent the distribution
of the 21 classes in the test set, training set, and validation set, respectively. The height of
the total column of each class represents the total number of objects in that class. From
Figure 7, we can see that the number of different classes is highly imbalanced. The numbers
on the green column represent this class’s specific number of objects in the test set. The
numbers in the yellow and blue areas represent the ratio of objects of this class in the
Train/Val under the two split methods. It can be seen from Figure 7a that in the Train /Val
randomly split according to the ratio of the picture’s number of 8:2, the corresponding
ratios of different classes are also random. Figure 7b is the Train/Val split according to the
class-balanced of 8:2. The corresponding proportions of other classes in the figure are close
to 8:2. We name the dataset corresponding to Figure 7a as a random dataset and the dataset
corresponding to Figure 7b as the cb_82 dataset. Section 4.4 will verify in experiments that
the model trained on the cb_82 dataset has better object detection performance than the
random dataset for the same test set.
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4.2. Contrastive Analysis of Concatenation Feature Fusion and Addition Feature Fusion

The objects in the object detection dataset of the PCB assembly scene have imbalanced
scale distribution. Figure 8 shows the area ratio of all samples in the dataset to their pictures.
The symbol ‘5’ in Figure 8 represents the ratio of the area of each object to the total area
of the image where the object is located, and the blue error bar represents the size of the
error in the distribution of the area ratio class. The longer the error bar, the more dispersed
the distribution of the class area ratio. The shorter the error bar, the more concentrated
the distribution of the class area ratio. From Figure 8, we can see that an object such as
PCB occupies a large area, accounting for about 25–35% of the entire picture area. The area
ratios of the other 20 classes of objects are all below 10%, indicating that the object size
distribution of the dataset is imbalanced, and most of the objects are small-sized objects.

Figure 8. Statistics chart of the normalized area ratio of all objects.

After the object with imbalanced size distribution and small size is extracted through
the backbone network at multiple scales, there is the problem of imbalance between shallow
and deep features and the phenomenon of feature disappearance in the deep network.
We represent C© and A© for the concatenation and addition strategies in feature fusion,
respectively. Figure 9 shows the results of two feature fusions under the four algorithms of
YOLOv3-concat, YOLOv3-add, YOLOv3-spp-concat, and YOLOv3-spp-add after adopting
concatenation and addition, respectively.

Figure 9a shows two apparent objects in the input picture. Figure 9b,d,f,h shows the
feature fusion effect diagrams of the deep backbone and the intermediate layer network
after up-sampling in the four models. Figure 9c,e,g,i shows the feature fusion effect
diagrams after the up-sampling of the backbone intermediate layer network and the
shallower network in the four models. Figure 9b,f shows whether the input image is passed
through YOLOv3 or YOLOv3-spp. Even if the deep network features are concatenated,
part of the semantics information will be lost. The corresponding Figure 9d,h belongs to the
addition fusion of the deep network. It can be seen that the fused feature map retains the
semantics information of two objects in the original image. Figure 9c,g shows that after the
input image passes through YOLOv3 and YOLOv3-spp, the concatenation fusion feature
maps of the middle layer and the shallower layer retain some position information of the
two objects. The corresponding Figure 9e,i belong to the addition fusion of the intermediate
layer and the shallower network. In addition, it can be seen that the feature map retains
the two objects in the original image. The contour and detail features make recognizing
and locating the object easier. Compared with the concatenation, the addition can solve
the problem of losing object semantic and position information caused by the imbalance of
multi-scale features to improve the detection effect. It can reduce the number of channels
after fusion, reduce the number of model parameters, and improve the detection speed.
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Figure 9. Concatenation and addition feature fusion effect diagram based on YOLOv3 (a) Input
Picture. (b) YOLOv3 first-level concatenation output feature map (YOLOv3:26 × 26 × 512 C©
26 × 26 × 256 = 26 × 26 × 768). (c) YOLOv3 second-level concatenation output feature map
(YOLOv3:52 × 52 × 256 C© 52 × 52 × 128 = 52 × 52 × 384). (d) YOLOv3-add first-level addition
output feature map (YOLOv3-add:26 × 26 × 512 A© 26 × 26 × 512 = 26 × 26 × 512). (e) YOLOv3-add
second-level addition output feature map (YOLOv3-add:52× 52× 256 A© 52× 52× 256 = 52× 52× 256).
(f) YOLOv3-spp first-level concatenation output feature map (YOLOv3-spp:26 × 26 × 512 C©
26 × 26 × 256 = 26 × 26 × 768). (g) YOLOv3-spp second-level concatenation output feature map
(YOLOv3-spp:52 × 52 × 256 C© 52 × 52 × 128 = 52 × 52 × 384). (h) YOLOv3-spp-add first-level
addition output feature map (YOLOv3-spp-add:26 × 26 × 512 A© 26 × 26 × 512 = 26 × 26 × 512).
(i) YOLOv3-spp-add second-level addition output feature map (YOLOv3-spp-add:52 × 52 × 256 A©
52 × 52 × 256 = 52 × 52 × 256).

4.3. Comparative Analysis of Dense Anchors and Efficient Anchors

In the traditional YOLOv3 algorithm, to solve the object’s multi-scale problem, the
K-means clustering method is directly used to generate nine anchors without considering
the spatial position distribution of the object in the dataset. For the three scale outputs of the
detection head, each output is equally allocated three anchors as a preset box, and the grids
of the three outputs are mapped back to the original image. The algorithm achieved training
and prediction by densely placing nine anchors in the center of each grid of the original
image. We call the traditional YOLOv3 method of generating and allocating anchors dense
anchors. The efficient anchor concept proposed in this paper fully absorbs the historical
information of the spatial distribution and size of objects in the dataset. The number of
efficient anchors is small, which can alleviate the imbalance of positive/negative samples.
The allocation of anchors at the corresponding scale is more targeted to the scale object. In
Figure 10, the comparison results for the generation and allocation of dense anchors and
efficient anchors for the object detection dataset for PCB assembly scenes.
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Figure 10. Comparative analysis of the generation and allocation of 9 dense anchors and efficient
anchors. (a) Generation and allocation of 9 dense anchors in original YOLOv3. (b) Generation and
allocation of efficient anchors.

Figure 10a is a schematic diagram of the generation and allocation of anchors in
traditional YOLOv3. The whole process is divided into three steps. 1© Divide the width
and height of all objects in the training set by the width and height of the image to normalize
and use the K-means clustering algorithm to generate nine anchors. 2© Arrange the nine
anchors generated by clustering from small to large. 3© The nine anchors are equally
divided into three groups, blue, green, and red, representing the anchors allocated to the
13 × 13, 26 × 26, and 52 × 52 outlets, respectively.

Figure 10b is a schematic diagram of the generation and allocation of efficient anchors.
1© Because the detection head has three output ports, the K-means clustering method

divides the normalized objects into three regions. 2©Map each grid of the three output
ports back to the original image and count the maximum number of object centers in the
three areas that fall in the three sizes of grids as [1,1,1]. 3© Use the K-means clustering
method to cluster the data of each area to generate the corresponding number of anchors.
4© Generate efficient anchors. 5© The statistical result is the number of anchors that should

be allocated to each output port. Blue, green, and red represent the efficient anchors
allocated to the 13 × 13, 26 × 26, and 52 × 52 output ports.

Once the number of anchors for each output port is determined, the proportion of
positive/negative samples for the entire object detection is also determined. For YOLOv3,
we use psn to represent the number of positive samples, nsn to represent the number of
negative samples, pn to represent the number of photos, and apn to represent the number
of anchors on a photo. IoU(anchor, groud_truth) is the intersection over the union of
anchor and object ground truth, IoUt is the threshold for distinguishing positive and
negative samples.

IoU(anchor, groud_truth) =
|anchor ∩ groud_truth|
|anchor ∪ groud_truth| (24)
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We count the intersection over the union results between all anchors and objects
ground truth in the dataset. As long as the result is greater than or equal to the threshold
for distinguishing positive and negative samples, the anchor is positive. Otherwise, the
anchor is a negative sample.

psn= number[IoU(anchor, groud_truth) ≥ IoUt] (25)

For a photo, the number of anchors assigned to the three output ports is known to be
nal , nam, and nas, respectively, then the total number of anchors for this photo is:

apn = 13× 13× nal + 26× 26× nam + 52× 52× nas (26)

The number of negative samples in the entire dataset is:

nsn = apn × pn − psn (27)

Using the above determination method of positive/negative samples, for the PCB
assembly object detection dataset, we calculated the IoU(anchor, groud_truth) based on
nine dense anchors and three effective anchors of all objects, then we set IoUt = 0.20. The
positive/negative samples of dense and efficient anchors are counted in Table 1.

Table 1. Positive/negative sample statistics table for dense anchors and effective anchors.

9 Dense Anchors 3 Efficient Anchors

The total number of anchors 10,647,000 3,549,000
psn 88,079 39,894
nsn 10,558,921 3,509,106
psn

(psn+nsn)
0.8273% 1.1241%

nsn
(psn+nsn)

99.1727% 98.8759%

From Table 1, in terms of absolute quantity, the number of positive samples generated
by nine dense anchors is 2.2 times the number of positive samples generated by three
efficient anchors, and the number of negative samples generated by nine dense anchors
is three times the number of negative samples generated by three efficient anchors. From
the ratio of positive and negative samples to the sum of samples, compared with nine
dense anchors with three efficient anchors. However, the number of anchors is reduced,
the proportion of positive samples increases, and the proportion of negative samples
decreases. From the above analysis, it can be concluded that the efficient anchors designed
in this paper can not only realize the generation and distribution of anchors at the same
time, alleviate the problem of imbalance of positive/negative samples, but also reduce the
number of algorithm parameters and speed up the training process of the algorithm.

4.4. Balanced-YOLOv3 Algorithm Testing and Evaluation
4.4.1. Experimental Platform and Parameter Settings

The algorithm designed in this paper is tested on a deep learning workstation with
Intel® Xeon® Gold 6132 CPU @ 2.60 GHz dual processor and 192 GB memory, the graphics
card is NVIDIA® Titan RTX with 24 G graphics ram size, the operating system is Ubuntu
18.04 LTS, the program development tool is Python3.7, and the machine learning function
library is PyTorch1.10. The baseline of YOLOv3 is written in the Ultralytics PyTorch
framework. Table 2 shows the setup parameters for the algorithm experiments:
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Table 2. Parameter settings for algorithm experiments.

Parameter Value

Train image size in pixels (height × width) 416 × 416
Number of categories 21

Training epochs 200
Train warmup epochs 3

lr0 (initial learning rate) 0.01
lrf (final learning rate) 0.1

SGD momentum 0.8
iou_t 0.2

Train batch size 16

To better illustrate the effectiveness of Balanced-YOLOv3, we use the concatenation
and addition strategies based on YOLOv3 and YOLOv3-spp. Sixteen sets of algorithm
experiments are conducted using dense and efficient anchors for randomly split and class-
balanced split datasets. Table 3 gives the names of these 16 groups of algorithms and the
details of specific method combinations.

Table 3. Algorithm naming statistics for the two Train/Val split datasets and proposed methods.

Algorithm Name Train/Val Split Feature Fusion 52 × 52 26 × 26 13 × 13

YOLOv3-9-random

Train/Val Randomly Split
based on the Radio of
Photos Number (8:2)

concatenation [22, 13]
[14, 25]
[24, 49]

[40, 34]
[32, 62]
[55, 49]

[47, 78]
[70, 83]

[233, 205]

YOLOv3-spp-9-random

YOLOv3-sppadd-9-random
addYOLOv3-add-9-random

YOLOv3-3-random
concatenation

[22, 23] [42, 60] [233, 205]
YOLOv3-spp-3-random

YOLOv3-sppadd-3-random
addYOLOv3-add-3-random

YOLOv3-9-cb82

Train/Val Split based on
Class-Balanced (8:2)

concatenation [20, 12]
[14, 25]
[25, 15]

[24, 49]
[40, 34]
[32, 64]

[55, 50]
[58, 81]

[234, 207]

YOLOv3-spp-9-cb82

YOLOv3-sppadd-9-cb82
addYOLOv3-add-9-cb82

YOLOv3-3-cb82
concatenation

[21, 18] [39, 57] [234, 207]

YOLOv3-spp-3-cb82

YOLOv3-sppadd-3-cb82
addBalanced-YOLOv3

(YOLOv3-add-3-cb82)

* YOLOv3 and YOLOv3-spp in the algorithm name represent two baseline algorithms, respectively. The appear-
ance of add in the name means that the additional feature fusion strategy is adopted, and the absence of add
means that the concatenation feature fusion strategy is adopted. 9 and 3 represent dense anchors and efficient
anchors, respectively. The random at the end of the name represents the Train/Val generated by randomly
splitting according to the radio of photos number, and cb82 represents the Train/Val using class-balanced.

4.4.2. Objective Analysis of Experimental Results

For the PCB assembly scene containing 21 classes of detection objects, we use AP
(Average Precision) to represent the probability of correct detection of a single class in the
algorithm and mAP (mean Average Precision) to represent the average detection accuracy
of all classes in the algorithm. The higher AP and mAP of an algorithm, the better the
recognition performance of the algorithm to the object. For the object detection problem,
the detection algorithm will output a prediction box to identify the position of the detected
object. The IoU between the prediction box and the ground truth of the object can indicate
the accuracy of the detection. Usually, a fixed IoU threshold of 0.5 is used to calculate the
AP value. At the same time, to quantify the accuracy of the prediction box positioning, the
AP average value is calculated for multiple IoU thresholds. Specifically, 10 IoU thresholds
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between 0.5 and 0.95 (0.5, 0.55, 0.6, . . . 0.9, 0.95) to calculate the mean value of mAP. In
this paper, mAP@.5 and mAP@.5:.95 represent the recognition accuracy and positioning
accuracy. Based on the randomly split Train/Val ratio on the photo number (8:2), Table 4
counts the AP, mAP@.5, and mAP@.5:.95 tested for 21 classes of the test set after eight
groups of algorithms are trained.

Table 4. AP, mAP@.5, and mAP@.5:.95 of eight algorithms based on Train/Val random.

Class

AP of Eight Algorithm

YOLOv3-9-
random

YOLOv3-
spp-9-

random

YOLOv3-
sppadd-9-
random

YOLOv3-
add-9-

random

YOLOv3-3-
random

YOLOv3-
spp-3-

random

YOLOv3-
sppadd-3-
random

YOLOv3-
add-3-

random

30CTQ 99.56% 99.55% 99.55% 99.56% 99.56% 99.54% 99.55% 99.55%
AUIRFR 92.52% 98.29% 93.14% 96.37% 91.87% 95.69% 95.68% 96.98%
BUK7608 99.54% 99.55% 99.55% 99.55% 99.55% 99.55% 99.55% 99.55%
Cap100uF 86.37% 90.64% 90.28% 88.33% 91.46% 89.96% 91.92% 90.43%
Cap220uF 93.78% 93.75% 91.63% 95.24% 94.85% 95.12% 93.63% 92.81%
Cap22uF 89.46% 91.55% 89.62% 89.12% 85.94% 89.67% 90.34% 91.05%
Cap470uF 92.91% 94.43% 94.85% 93.22% 95.21% 92.74% 94.64% 93.01%
GK835 85.97% 99.52% 99.52% 88.11% 99.52% 99.52% 99.52% 99.53%
Inductance 89.75% 90.63% 91.79% 89.88% 92.65% 91.75% 92.46% 93.86%
Inserted100uF 76.85% 77.23% 80.69% 72.84% 80.97% 78.13% 78.39% 79.38%
Inserted220uF 99.55% 99.55% 99.55% 99.44% 99.54% 99.54% 99.44% 99.54%
Inserted22uF 91.87% 90.95% 91.01% 86.13% 87.73% 80.45% 93.91% 90.01%
Inserted470uF 82.32% 89.63% 92.04% 92.39% 99.53% 89.27% 99.54% 99.53%
InsertedInd 39.20% 28.63% 85.85% 83.51% 61.55% 87.20% 85.04% 94.80%
PCB 99.52% 99.52% 99.52% 99.52% 99.53% 99.53% 99.53% 99.52%
Pin100uF 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.51%
Pin220uF 93.69% 92.92% 93.31% 93.38% 93.36% 93.03% 93.47% 93.06%
Pin22uF 99.51% 99.51% 85.51% 99.51% 99.51% 99.51% 99.51% 99.51%
Pin470uF 99.52% 99.52% 99.52% 99.52% 99.52% 99.52% 99.52% 99.52%
PinInd 92.39% 97.76% 72.72% 73.85% 88.89% 97.76% 77.38% 72.52%
SSG8 81.51% 81.51% 81.51% 81.51% 82.28% 82.70% 83.16% 82.89%

mAP@.5 89.78% 91.15% 91.94% 91.45% 92.50% 93.32% 93.60% 93.65%

mAP@.5:.95 49.54% 49.87% 50.68% 51.17% 50.41% 51.48% 50.39% 52.47%

* The bold indicates that this algorithm’s result is better than or equal to other algorithms. The YOLOv3-add-3-
random algorithm achieved the best results in 9 out of 23 detection indicators. Among the eight algorithms based
on Train/Val random, the YOLOv3-add-3-random was the best for recognition and position performance.

As can be seen from Table 4, under the preset box of 9 anchors, the algorithm using the
addition feature fusion strategy is superior to the concatenation feature fusion strategy of
the corresponding algorithm in both recognition accuracy and positioning accuracy. At the
same time, the object detection effect of the preset box of 3 anchors is generally better than
that of the algorithm corresponding to 9 anchors. YOLOv3-add-3-random with addition
feature fusion and three anchors achieves the best detection accuracy.

Based on class balance (8:2) Train/Val, Table 5 counts the AP, mAP@.5, and mAP@.5:.95
under eight groups of algorithms for 21 classes in the test set. Comparing Tables 4 and 5,
we find that the detection performance based on Train/Val cb82 is always better than
Train/Val random when using the same feature fusion or anchor for the same test set.
The Balanced-YOLOv3 proposed in this paper achieves the best object recognition and
position accuracy.
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Table 5. AP, mAP@.5, and mAP@.5:.95 of eight algorithms based on Train/Val cb82.

Class

AP of Eight Algorithm

YOLOv3-9-
cb82

YOLOv3-
spp-9-cb82

YOLOv3-
sppadd-9-

cb82

YOLOv3-
add-9-
cb82

YOLOv3-3-
cb82

YOLOv3-
spp-3-
cb82

YOLOv3-
sppadd-3-

cb82

Balanced-
YOLOv3
(YOLOv3-

add-3-cb82)

30CTQ 99.56% 99.55% 99.55% 99.55% 99.56% 99.56% 99.55% 99.55%
AUIRFR 95.68% 96.37% 93.14% 97.60% 95.68% 95.06% 93.14% 96.38%
BUK7608 99.55% 99.55% 99.54% 99.55% 99.55% 99.54% 99.54% 99.54%
Cap100uF 91.35% 90.36% 84.54% 87.67% 90.98% 91.20% 87.03% 91.08%
Cap220uF 92.64% 94.45% 90.53% 92.50% 92.75% 93.58% 90.61% 93.83%
Cap22uF 92.18% 90.33% 90.49% 90.20% 89.26% 88.54% 89.40% 88.71%
Cap470uF 93.47% 95.59% 93.88% 93.47% 94.91% 92.21% 94.57% 93.35%
GK835 99.52% 86.59% 99.52% 99.52% 99.52% 99.52% 99.52% 99.53%
Inductance 93.71% 91.82% 91.44% 91.06% 91.98% 93.31% 92.22% 89.32%
Inserted100uF 59.76% 77.33% 82.97% 74.37% 80.88% 76.60% 78.51% 77.88%
Inserted220uF 99.55% 99.54% 99.55% 99.54% 99.54% 99.55% 99.55% 99.54%
Inserted22uF 82.44% 91.01% 87.67% 91.60% 85.65% 86.26% 92.35% 92.03%
Inserted470uF 92.39% 99.53% 99.53% 93.09% 99.54% 99.53% 93.10% 99.53%
InsertedInd 92.24% 67.13% 90.90% 97.23% 88.31% 89.16% 90.90% 97.23%
PCB 99.53% 99.52% 99.52% 99.52% 99.52% 99.53% 99.52% 99.53%
Pin100uF 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50% 99.50%
Pin220uF 92.57% 93.03% 92.98% 93.07% 93.75% 93.65% 93.03% 92.92%
Pin22uF 99.51% 99.51% 99.51% 99.51% 99.51% 99.51% 99.51% 99.51%
Pin470uF 99.52% 99.52% 99.52% 99.52% 99.52% 99.52% 99.52% 99.52%
PinInd 90.64% 92.39% 96.40% 88.26% 73.85% 88.89% 90.26% 88.89%
SSG8 82.47% 81.51% 81.51% 81.51% 81.51% 83.29% 81.51% 81.98%

mAP@0.5 92.75% 92.58% 93.91% 93.71% 93.11% 93.69% 93.47% 94.25%

mAP@.5:.95 51.17% 51.82% 51.59% 52.28% 52.63% 53.76% 51.14% 54.20%

* The bold indicates that this algorithm’s result is better than or equal to other algorithms. Among the eight
algorithms based on Train/Val cb82, the Balanced-YOLOv3 was the best for recognition and position performance.

4.4.3. Analysis of the Experimental Process

To further compare the advantages and disadvantages of the above 16 algorithms, we
draw six curves for comparative analysis, as shown in Figure 11:

Figure 11a,b shows the variation of the recognition and localization indicators of the
validation set with the training epoch of the 16 algorithms during model training. The
mAP is used as the real bounding box and the predicted box to compare and return the
score value. The higher the score, the higher the model’s object recognition accuracy.
The mAP@.5:.95 is taken as the average value of mAP under 10 IoU thresholds. Also,
the higher the score, the higher the accuracy of the model’s localization of the object.
Figure 11a,b shows that Balanced-YOLOv3 can obtain the best performance of recognition
and localization for different validation sets under the split of two Train/Val.

Figure 11c,d shows the variation of the loss function values of the training set and the
validation set with the training epoch, respectively, during model training for 16 algorithms.
The faster the loss value decreases, the more stable the convergence value is. It shows that
the lower the complexity of the algorithm, the shorter the training time of the algorithm.
In Figure 11c, the training loss value is naturally divided into three regions during the
training process. The algorithm with three anchors declines the fastest, with nine anchors
having a higher final loss value. In Figure 11d, the validation loss value is naturally
divided into four regions during the validation process. The loss value of the validation
set based on the class-balanced decreases rapidly, and the loss value of the validation set
randomly decreases slowly. Under the same validation set, the algorithm with three anchors
descends faster than with nine anchors. Regardless of training set loss or validation set loss,
Balanced-YOLOv3 is the algorithm with the fastest drop and the lowest numerical value.

Figure 11e is the precision-recall curve; the precision is the probability that the pre-
dicted bounding box matches the actual ground-truth box, also known as the positive
predicted value. The value ranges from 0 to 1, and high precision means most detected
objects match the real objects. The recall represents the probability of correctly detecting the
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true object. Similarly, the recall value ranges from 0 to 1, and a high recall means that many
real objects were detected. The higher the precision-recall curve, the more towards the
upper right corner, which means the algorithm has high precision and high recall and can
detect most real objects correctly. The Balanced-YOLOv3 algorithm has the highest position
in Figure 11e and is closest to the upper right corner, and the detection effect is good.

The F1 metric in Figure 11f considers both the precision and recall of the classification
model and can measure the balance between the recall and the precision. The core idea of
F1 is to improve the precision to recall as much as possible and hope that the difference
between the two is as small as possible. When the value of F1 is high, it means that
both precision and recall are high. A low F1 score means a significant imbalance between
precision and recall. It can be seen from Figure 11f that Balanced-YOLOv3 has the highest
F1 value, indicating that the algorithm can take into account both high precision and
high recall.

Figure 11. Sixteen sets of algorithm experiment process curve diagrams. (a) mAP@0.5-Epoch change
trend curve. (b) mAP@.5:.95-Epoch change trend curve. (c) Ttain_loss-Epoch change trend curve.
(d) Val_loss-Epoch change trend curve. (e) Precision-Recall curve. (f) F1 curve.

4.4.4. Trade-Off Analysis of Algorithmic Reasoning Time and Parameter Amount

For the object detection algorithm, we hope that it has a high detection accuracy rate
and a fast detection speed, and a small number of parameters. We visualize the scatter
plots of inference time and parameters for the above 16 algorithms, as shown in Figure 12.
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Figure 12. Parameter-Inference Time diagram.

The horizontal axis of the scatter plot is the algorithm parameter, and the vertical axis
is the inference time of a single photo when the photo in the test set is resized to 416 × 416,
and the batch size is 16. A lightweight and efficient object detection algorithm should have
low parameters and low inference time and should be located in the bottom left corner of
the scatter plot. Figure 12 shows that YOLOv3-3-random and YOLOv3-3-cb82 have the
fewest parameters; they are the lightest. YOLOv3-add-3-random has the shortest inference
time for test set pictures and the most efficient detection. Balanced-YOLOv3 ranks third in
the lightweight and efficiency metrics.

4.5. Ablation Experiment

Aiming at Balanced-YOLOv3 proposed in this paper to solve the problem of imbal-
anced object detection in PCB assembly scenes, there are three modules of class-balanced
Train/Val, addition feature fusion, and efficient anchors. We pass the ablation experiments
in Table 6 to investigate the contribution of these modules to the Balanced-YOLOv3. The
symbol 5 means not to use this module, and the symbol

√
means to use this module.

Table 6. Effectiveness of each module in Balanced-YOLOv3.

Algorithm Class-Balanced Train/Val Add Efficient Anchor mAP@.5 mAP@.5:.95

YOLOv3-9-random 5 5 5 89.78% 49.54%
YOLOv3-9-cb82

√
5 5 92.75%+2.97% 51.17%+1.63%

YOLOv3-add-9-random 5
√

5 91.45%+1.67% 51.17%+1.63%

YOLOv3-3-random 5 5
√

92.50%+2.72% 50.41%+0.87%

YOLOv3-add-3-random 5
√ √

93.65%+3.87% 52.47%+2.93%

YOLOv3-add-9-cb82
√ √

5 93.71%+3.93% 52.28%+2.74%

YOLOv3-3-cb82
√

5
√

93.11%+3.33% 52.63%+3.09%

Balanced-YOLOv3
√ √ √

94.25%+4.47% 54.20%+4.66%

Here we use mAP@.5 and mAP@.5:.95 as the evaluation metric to measure the degree
of contribution. As shown in Table 6, for the effectiveness of a single module, the class-
balanced Train/Val has the most significant contribution to mAP@.5, followed by efficient
anchors, the smallest contribution is the added feature fusion strategy. Class-balanced
Train/Val and addition feature fusion strategy contribute equally to mAP@.5:.95, with
a relatively small contribution from efficient anchors. For the combined use of pairwise
modules, we find that the combined use of class-balanced and addition feature fusion
contributes the most to mAP@.5. The combined use of addition feature fusion and efficient
anchors contribute the most middle. The combined use of class-balanced and efficient
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anchors contributes the smallest. It can also be seen that the combined use of class-balanced
and efficient anchors contributes the most to mAP@.5:.95, followed by the combined use of
added feature fusion and efficient anchors, and the smallest contribution is the combined
use of addition feature fusion and class-balanced. The combined use of the three modules
can increase the mAP@.5 and mAP@.5:.95 of YOLOv3-9-random by 4.47 and 4.66 percentage
points, respectively, which improves the recognition accuracy and the positioning accuracy
of the object in PCB assembly scenarios.

4.6. Example of Object Detection Results Based on Balanced-YOLOv3

Balanced-YOLOv3 improves multi-object recognition accuracy and positioning accu-
racy by solving three imbalance problems in PCB assembly scenes. Based on Balanced-
YOLOv3, we tested 100 PCB assembly scene images. Here we selected the detection results
of 6 images to illustrate the effect of the algorithm. These six images include a photo of
electronic components out of order before assembly, one before PCB assembly, two during
PCB assembly, and two after PCB assembly. The objects to be detected include PCB, elec-
tronic components to be inserted and inserted, through-holes to be inserted and inserted,
and some mounted electronic components on the PCB.

As shown in Figures 13–15, each group of images contains four pictures. The left is the
ground truth of the object class and position box to be detected, and the right is the detection
result based on the Balanced-YOLOv3. The upper left corner of the rectangular box
represents the class and confidence of the object. As can be seen from the detection results on
the right, the Balanced-YOLOv3 algorithm has high accuracy in identifying the object class,
and each object class has a high degree of confidence. At the same time, the positioning
accuracy is high, and the overall algorithm has excellent object detection performance.

Figure 13. Object detection result before PCB assembly based on Balanced-YOLOv3 (a) Ground
truth of disordered electronic components before assembly (b) Object detection result of disor-
dered electronic components before assembly (c) Ground truth of original image1 before assembly
(d) Object detection result of original image1 before assembly.
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Figure 14. Object detection result during PCB assembly based on Balanced-YOLOv3 (a) Ground truth
of original image1 during assembly (b) Object detection result of original image1 during assembly
(c) Ground truth of original image2 during assembly (d) Object detection result of original image2
during assembly.

Figure 15. Object detection result after PCB assembly based on Balanced-YOLOv3 (a) Ground
truth of original image1 after assembly (b) Object detection result of original image1 after assembly
(c) Ground truth of original image2 after assembly (d) Object detection result of original image2
after assembly.
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4.7. Performance Comparison of Balanced-YOLOv3 and Other Object Detection Algorithms

To further compare the performance of the algorithms, we compare and analyze
Balanced-YOLOv3 with other current state-of-the-art anchor-based object detection meth-
ods, including Faster R-CNN, SSD [51], YOLOv4 [52], and YOLOv5, for the Train/Val with
class-balanced. The indicators of comparison are detection accuracy and computational
complexity. The detection accuracy is represented by mAP, and the computational com-
plexity is represented by the algorithm’s parameter and GFLOPs (1 billion floating-point
operations per second). The number of algorithm parameters defines the storage space
required to store the algorithm model, and GFLOPs represents the algorithm’s computa-
tional power. The lower the complexity of the CNN, the less the number of parameters
required and the lower the computing power.

Table 7 summarizes the numerical values of Balanced-YOLOv3 and other current
object detection algorithms on mAP, parameter, and GFLOPs. It can be seen from the
table that the mAP values of the YOLO series of algorithms are higher than those of the
traditional Faster-RCNN and SSD. At the same time, the mAP of the YOLO algorithm
based on three anchors is higher than that of the YOLO algorithm based on nine anchors.
Moreover, the complexity of the YOLO algorithm based on three anchors is lower than
the YOLO algorithm based on nine anchors in the same series. At the same time, we
also tested that after adding the added feature fusion to YOLOv5 using three anchors,
their computational complexity is reduced, the mAP of YOLOv5-L-add(3_anchor) and
YOLOv5-m-add(3_anchor) increased. Compared with other algorithms, Balanced-YOLOv3
has the highest mAP, and the algorithm complexity is close to the lowest. Table 7 means the
Balanced-YOLOv3 is a high-precision, low-complexity object detection algorithm suitable
for the PCB assembly scene.

Table 7. Statistics of accuracy and complexity of eleven algorithms.

Model mAP Params GFLOPs

Faster R-CNN
(Resnet50) 67.71% 43.44 742.47

SSD(VGG16) 75.18% 28.52 91.55
YOLOv4(9_anchor) 87.83% 64.05 90.74
YOLOv4(3_anchor) 88.80% 63.17 90.49

YOLOv5-s(9_anchor) 78.04% 7.07 16.0
YOLOv5-s(3_anchor) 91.02% 7.02 15.8

YOLOv5-s-add(3_anchor) 88.27% 6.84 15.4
YOLOv5-m(9_anchor) 87.72% 20.93 48.2
YOLOv5-m(3_anchor) 93.18% 20.86 48.0

YOLOv5-m-add(3_anchor) 93.14% 20.46 47.0
YOLOv5-l(9_anchor) 91.52% 46.22 108.1
YOLOv5-l(3_anchor) 93.44% 46.12 107.8

YOLOv5-l-add(3_anchor) 93.54% 45.40 106.2
Balanced-YOLOv3 94.25% 61.59 32.69

* The bold indicates that this algorithm’s result is better than or equal to other algorithms.

4.8. Discuss

We have proved that the Train /Val with the balanced-class split for PCB assembly
scene object detection functions. However, it cannot directly solve the class imbalance
phenomenon in the dataset, and it can guarantee that each class object is in the training
set and validation set. The number ratio is roughly equal to avoid missing classes in the
Train/Val based on the number ratio of photos. Missing classes or imbalanced class ratios
will directly lead to the deviation of CNN parameter learning. Our proposed addition
feature fusion strategy enhances the multi-scale imbalanced features of the object through
adding. Compared with the traditional concatenation feature fusion strategy, it strengthens
the location information of the CNN deep network and the semantic information of the
shallow network, and the number of channels is reduced, reducing the parameters. The
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efficient anchor we designed considers the object’s size and combines the multi-scale
spatial distribution characteristics of the object. Two clusters generate it. Compared with
the traditional nine dense anchors, the efficient anchor reduces redundant anchors and
alleviates the imbalance of positive/negative samples. Based on the dataset split by two
Train/Val, we compared the sixteen algorithms’ objective statistics and training process
trend graphs and compared mAP and algorithm complexity with other anchor-based object
detection algorithms. We found that Balanced-YOLOv3 is an excellent performance in the
PCB assembly scene object detection.

It should be noted that class imbalance, multi-scale feature imbalance, and posi-
tive/negative sample imbalance exist not only in PCB assembly scene object detection
tasks but also in other object detection tasks, such as pedestrian detection, face detection,
object detection in optical remote sensing images, and vehicle detection, etc. Therefore,
our proposed Balanced-YOLOv3, combined with the data characteristics of other detection
objects, can also bring some inspiration to improve the detection effect for other object
detection tasks.

Although Balanced-YOLOv3 has the advantages of high detection accuracy and low
computational complexity, there are still some potential limitations and challenges to im-
proving its effectiveness further. First of all, for the problem of object class imbalance, the
class-balanced Train/Val split method proposed in this paper starts from the perspective
of fair learning of different classes of objects in training and verification. Still, it does not
consider the size of the object. If we use the size as the weight of the Train/Val split, CNN
can better learn the features of small-sized objects that are difficult to detect. However,
quantifying the contribution of different size objects to the Train/Val is a problem. Secondly,
for the imbalance problem of multi-scale features, the additional feature fusion strategy
proposed in this paper starts from the perspective of strengthening the deep object location
information and shallow object semantic information, completely abandoning the concate-
nation feature fusion method and the combined use of concatenation and addition feature
fusion methods is not considered. The embedding position and order of dual feature fusion
in CNN is a complex problem to improve object detection. Finally, the proposal of effi-
cient anchors reduces the redundant information brought by dense anchors and alleviates
the imbalance of positive/negative samples but does not consider the affiliation between
the object and the object in the PCB assembly scene. It is difficult to strengthen positive
samples and weaken negative samples as a knowledge guiding condition. Fortunately,
based on recent experience, the current state of research on uniform distribution alignment
strategies [53], cascaded hourglass feature fusion [54], and knowledge graphs [55] can
all bring inspiration to address the above problems. Therefore, future research related to
the imbalance problem in object detection will deepen in establishing a unified method
to adapt to different objects, the in-depth study of specific imbalance problems, and the
improvement of detection results and detection speed.

5. Conclusions

In this paper, the object detection in the PCB assembly scene includes large-sized PCBs,
medium-sized plug-in electronic components, and small-sized through-holes, comprising
29 classes of objects. The scenarios faced include before, during, and after the assembly of
through-hole electronic components. Aiming at the problem of imbalanced object classes
in the dataset, the Train /Val balanced split method proposed in this paper, without adding
any data to the dataset, splits all classes of objects into the training set and the validation
set in a balanced manner. The CNN can learn the features of all classes during the training
process and find the model parameter combination with the best performance during
the verification process. This Train/Val balanced split method establishes a new idea
for solving the problem of class imbalance. Aiming at the imbalance of object feature
scales extracted by the backbone, this paper proposes a fusion method that uses feature
addition instead of feature concatenation, which strengthens the features of object location
information and semantic information, and reduces the amount of data in the model.
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The problem of disappearing or weakening object features in the propagation process
due to feature scale imbalance is solved. Because of the imbalance of positive/negative
samples, this paper proposes the concept of the efficient anchor. The number of efficient
anchors for each detection head is determined starting from the detection dataset, taking
into account the object size and the spatial position of the three output scales. It avoids
the data redundancy problem caused by dense anchors and fundamentally solves the
imbalance problem of positive/negative samples. The Balanced-YOLOv3 object detector
that integrates these three contributions can well handle the imbalance problem in object
detection in PCB assembly scenes. Experiments show that compared with other anchor-
based object detection benchmarks, Balanced-YOLOv3 has the highest detection accuracy
and low computational complexity, which provides ideas for the future research direction
of intelligent perception problems in electronic manufacturing.
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