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Abstract: The car industry is entering a new age due to electric energy as a fuel in the contemporary
era. Electric batteries are being more widely used in the automobile sector these days. As a result,
the inner workings of these battery systems must be fully comprehended. There is currently no
accurate model for predicting an electric car battery’s state of health (SOH). This study aims to use
machine learning to develop a reliable SOH prediction model for batteries. A correct optimal method
was also constructed to drive the modeling process in the right direction. Extensive simulations
were performed to verify the accuracy of the suggested methodology. A state of health method for
data processing was developed. The method involves a complex data-driven model combining Big
Data, Artificial Intelligence (A.I.), and the Internet of Things (IoT) technologies. To establish the most
effective technique for certifying the actual condition of real-life battery health, researchers compared
the accuracy and performance of several states of health models. For improved understanding
and prediction of the condition of health behavior, data-driven modeling has certain significant
advantages over older methodologies. The methods used in this study can be seen as a revolutionary
low-cost, high-accuracy, and dependable approach to understanding and analyzing the state of health
of batteries. At first, an intelligent model was created using a data-driven modeling strategy. Secondly,
the concurrent battery data are qualified using the data-driven model. The machine learning (ML)
method creates a very accurate and dependable model for forecasting battery health in real-world
scenarios. Third, the previously established ML model was used to develop a knowledge-based
online service for battery health. This web service can be used to test battery health, monitor battery
behavior, and perform a variety of other tasks. A variety of similar solutions for diverse systems can
be derived using the same technique. The default efficiency of the ML algorithmic module, R-Squared
(R2), and Mean Square Error (MSE) were also utilized as performance measures. The R2 as a standard
is used to examine the effectiveness of a fit. The result is a value between 0 and 1, with 1 indicating a
better model fit. MSE stands for mean squared error. A lower MSE number implies superior model
performance, since it reflects how close the parameter estimates are to the actual values. The training
set of the battery model had a score of 0.9999, whereas the testing set had a score of 0.9995. The R2
score was one, with an M.S.E. of 0.03. As a result of these three indicators, the data-driven ML model
used in this study proved to be accurate.

Keywords: electric vehicle battery; state of health; machine learning; robust modeling;
intelligent monitoring

1. Introduction

The environment is facing major challenges, such as global warming, exacerbated by
the widespread use of conventional gasoline in automobiles, which releases tons of CO2
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each year [1]. Furthermore, the rising price of crude oil is creating a serious hindrance
to the automobile sector, necessitating the development of alternative fueled vehicles.
Understanding these challenges and implementing EVs has received a lot of attention and
is quickly becoming a useful solution among academic researchers and automotive experts,
because they have the potential to lower greenhouse gas (GHG) emissions [2]. The mode
of transportation is changing as the number of electric vehicles (EVs) on the road grows.
EVs are gaining a lot of popularity due to their success and efficiency in recent years. As
many electric car models have only been on the road for a few years, gaining driver trust
will take time. Research into the underlying technology of battery management systems
(BMSs) has garnered a lot of attention, as electric cars (EVs) have risen in popularity. A
battery management system (BMS) was developed to prevent malfunctions and, eventually,
catastrophic failures in batteries [3]. The complicated physical–chemical process, on the
other hand, is preventing BMSs from being widely used. To improve battery efficiency, the
state of charge (SOC), the state of operation (SOF), and the state of health (SOH) should
all be continuously monitored in the BMS [4]. Estimating battery capacity is without a
doubt one of the most crucial duties for BMS. [5]. Range anxiety, which is induced by the
battery’s variable state of health (SOH) and remaining useful life (RUL), is one of the key
factors limiting the adoption of electric cars (EVs). In the BMS, these two components
are crucial. To begin with, the BMS should be able to estimate battery state-of-charge
(SOC), swift power availability, and battery state-of-health (SOH) metrics, such as power
fade, energy decline, and response to changing cell characteristics when the battery cells
package change.

A battery management system requires an accurate assessment of battery states.
SOH has been defined in various ways, including calendar life, cycle life, power fading,
and so on [6]. The SOH of the battery is affected by several factors. The magnitude
of the charge/discharge current, ambient temperature, discharge depth, charge control
system, over-charge and over-discharge, storage type, and length are all considered. A
few experiments have been conducted to determine the battery SOH in the literature. In
some research, the impedance calculation approach was used [7], whereas, in others, the
battery power was calculated to evaluate the battery SOH [8]. The usage of rechargeable
batteries in EV applications has gained popularity in recent years [9]. Lithium-ion batteries
are believed to be the most promising energy source due to their high capacity and energy
density [10]. In addition to their high energy density (23–70 Wh/kg), Li-ion batteries have
very high performance (about 90%) and a reasonable cycle life (3000 cycles at 80 percent
depth of discharge). During both cycling and storage, battery capacity fades, and resistance
increases as happens with most battery systems. This technology, however, is still fragile
and is impeded by a host of aspects, including protection [11], cost [12], recycling, and
infrastructure charges. Understanding battery aging mechanisms, as well as safety concerns,
is critical for more accurate lifetime forecasts and increased battery efficiency [13]. The most
difficult task is to discover aging mechanisms. Many influences from the environmental
atmosphere, as well as the charge and discharge modes, interact to produce different aging
results. This makes aging comprehension a great challenge, and several studies have
attempted to investigate the evidence over the years [14].

The most common method is “coulomb counting,” which involves a simple integration
of current over time to estimate SOH [15]. It necessitates periodic calibration, which cannot
be accomplished in real time [16]. The aging estimation problem was modeled with
Equation (1), with an input ‘u’ (state vector) and an output ‘y’ (voltage), both dependent on
variables ‘x’. {

x′ = Ax + Bu
y = Cx

}
(1)

This research focuses on applying an optimal Machine Learning (ML) technique to
create and develop a robust model based on experimental battery data. This study’s method
is sufficient to demonstrate the suggested battery model’s accuracy and robustness over
existing models. Contributions include the following:
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I. The electric battery’s SOH model is resilient as a result of this research.

II. The model behavior is accurate.

III. Real-world battery systems can be analyzed and monitored using the model.

The rest of the study is organized as follows.
In Section 2, we present the proposed method in detail. Discussions of the comparative

results are provided in Section 3. Section 4 concludes the study and suggests options for
future research.

2. An Overview of the Proposed Method

This study helps to identify a novel approach toward rapid data modeling employing
a data-driven ML-based approach. With experimental, realtime, or simulated results, the
output models are reliable in robust battery state of health prediction. Resources including
a high-end computer, battery testing data, and ML systems were used to construct the
SOH model for the battery system. The schematic of the ML modeling procedure is shown
in Figure 1. The algorithm guided the overall process, and the following is a complete
description of the implementation approach.
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2.1. Hardware

A computer with an i5 7th generation processor with 8 CPUs, NVIDIA GeForce G.T.X.
850Ti GPU, and 8 G.B. of RAM was used to conduct the ML process. This computer acted
as the data accumulator server and data processor.

2.2. Battery Arrays

The battery arrays mentioned in this study were retrieved from the data source
[University of Michigan]. In this study, battery 25, 26, and 27 data were used to build
the model. A respective model was created to understand their behavior in the battery
systems. A compact model was also developed to understand their combined behavior in
the system.

2.3. Machine Learning (ML) Domain

The ML domain represented the whole ML system. The ML system consisted of a built-
in data preprocessing unit and ML algorithmic module. This study used the optimized
algorithm from a set of algorithms available in the ML module. The algorithm optimization
system found the algorithm to create the model from battery data.

2.3.1. Data Preprocessing

A customized data preprocessing system was also developed in this study. The SOH
data were not experimentally generated. A relevant script was written to derive SOH
data from the charging capacity of the experimental data. The SOH was calculated using
Equation (2), given below.

SOHj =
Qmaxj

Qrated
(2)
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where SOHj, Qmaxj and Qrated are the state of health, the maximum capacity in specific
cycle j, and the rated capacity, respectively.

2.3.2. ML Algorithm Optimization

To use algorithms on a trial and test basis from the ML algorithmic domain, it is wise
to test the algorithm’s performance capability against the data available before using it.
This study used algorithmic optimization techniques to obtain the best algorithm from
the ML module. The optimization process is an online process for model development. A
proper script was written by the author to find the optimum algorithm. The optimization
process yielded Classification and Regression Trees (CART) [17] as the optimum algorithm
against the battery data used in this study. Thus, the CART algorithm was used to build
a model and further the prediction of battery data. The formal definition of the CART
algorithm can be given as follows:

Given training vectors xi ∈ Rn, i = 1, . . . , I, and a label vector y ∈ Ri, a decision
tree recursively partitions the feature space such that the samples with the same labels or
similar target values are grouped together.

Let the data at node m be represented by Qm and Nm samples. For each candidate
split θ = (j, tm) consisting of a feature j and threshold tm, we partition the data into Qle f t

m (θ)

and Qright
m (θ) subsets.

Qle f t
m (θ) =

{
(x, y)

∣∣xj <= tm
}

(3)

Qright
m (θ) = Qm\Qle f t

m (θ) (4)

The quality of a candidate split of a node m was then computed using an impurity
function or loss function H( ), the choice of which depended on the task being solved
(classification or regression)

G(Qm,θ) =
Nle f t

m
Nm

H(Qle f t
m (θ)) +

Nright
m
Nm

H(Qright
m (θ)) (5)

We selected the parameters that minimized the impurity

θ∗ = argminθG(Qm, θ) (6)

We recursed for subsets Qle f t
m (θ∗) and Qright

m (θ∗) until the maximum allowable depth
was reached, Nm < minsamples or Nm = 1.

2.4. ML Battery Model

After successful execution of the algorithm written for ML battery data, the respective
ML model for each battery was produced. These ML models were the logical counterpart
of the real battery. This model had the capability to show the same behavior as the same
battery used in the experiment. The prediction capability was tested and assessed, as
described in the following sections.

2.4.1. Prediction

This module tested the prediction capability for the newly built ML battery models.
Several prediction tests were performed to obtain the visualization of different criteria.
Both SOH and charging capacity were visualized to show their relationship.

2.4.2. Comparison

This module compared the experimental results with the ML model predicted results.
A thorough comparison was conducted to assess the error and accuracy of the prediction
results. The following Equations (2) and (3) were used to calculate the accuracy and errors
involved in each cycle.

CA = 100% −modulus (mean (EMLBat)) % (7)
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EMLBat = DExp − DPred (8)

where the CA is the comparative accuracy-related the ML battery model, EMLBat is the
error involved in the ML battery model, DExp are the battery data taken from the source
experiment, and DataPred are the predicted data by the ML battery mode.

2.5. The Operational Algorithm

The proposed data-driven alternative model was based on experimental data from the
batteries CH25, CH26, and CH27, and it learned from the data using the machine learning
approach. The ML procedures in this work were carried out using Algorithm 1. The
machine learning procedure began with loading new datasets into the machine learning
application and finished with the export of the ML model and results. Several machine
learning algorithms were accessible, but none of them were acceptable for a particular
dataset. The algorithm’s suitability and applicability depended on the dataset’s intrinsic
values. As a result, before using an algorithm, it was necessary to choose one that would be
efficient. A variety of linear and nonlinear techniques, ranging from Linear Regression (LR)
to Extra Trees (ET), were investigated in this study. The Boosting Method (BM) was shown
to have the best performance versus the experimental datasets, which is why it was chosen
for further processing of experimental data. The optimum approach for battery datasets
was the Decision Tree Regress (DTR), which was obtained using the BM method.

It was necessary to divide the dataset into two parts, the training set, and the test set,
to conduct machine learning. Using the test set, the computer learned from the training set
and assessed its learning performance. In this study, 80 percent of the data was utilized for
training, and the remaining 20% was used for testing. After that, data were scaled to make
them more regular in nature, and the model was generated using the specified technique.
Therefore, the model was fitted to the test set to determine accuracy and error rates. Finally,
the developed model was applied to forecast new data points for CH25, CH26, and CH27.
The constructed model accurately predicted data points identical to CH25, CH26, and CH27
experimental data. The data prediction reliability was so good that the error score was in
the range of 10−2. This minimal score in data prediction validated the output data.

The whole operation of the ML modeling process was pivoted by Algorithm 1. This
algorithm tied the custom scripts written for this study together with a built-in ML algo-
rithmic module. The details of the algorithm are given below.

Algorithm 1

1: obtain (battery data)
2: calculate (SOH from Charge Capacity)
3: while (data in each datasets) do
4: divide (data)
5: invoke (best ML algorithm)
6: create (model), verify (model)
7: return (model)
8: print (results)
9: end while
10: end of execution

2.6. In-Field Vehicle Testing

To obtain battery performance data from a vehicle, a field test was conducted. We
used an electric A0 class car with 32,000 km on the odometer and over 300 charge cycles
under its belt. The traction batteries were lithium nickel manganese cobalt oxide batteries
with a graphite anode.

The nominal capacity of the battery cell was 52 Ah, and the typical voltage measure-
ment was 3.7 V, according to the datasheet. The lower and upper cutoff voltages were 3.0
V and 4.1 V, respectively. An estimated 18.5 kWh of energy could be stored in the battery
package, which was made up of 97 batteries.
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For battery cells, the BMS voltage measurement precision was one mV, while the
current sensing precision was 0.1 percent. Signals such as cell voltage, current, and temper-
ature were monitored and sent to a CAN data recorder with a 2 Hz sampling rate through
CAN (Controller Area Network). The only criterion was that the car stopped intermittently
to deliver a charging pulse to the batteries, which were driven by three different test drivers.

This work used three driving cycles of three different batteries with identical battery
temperatures to assess battery properties identified from distinct driving cycles. There are
some cycle statistics shown in Table 1.

Table 1. A comparison of several machine learning methods for estimating SOH.

Method #Variants Ref. Battery Chemistry Training Data Size Estimation Error

LR Huang et al. [17] 1.1 Ah LCO 1/4 cells Multiple <2.6% RMSE

LR Lee et al. [18] 2.0 Ah NCA 1/12 cells Multiple <1% AE

SVM Liu et al. [19] 2 Ah NMC 120/168 cycles Single 0.24% RMSE

LS-SVM Deng et al. [20] 10 Ah LFP 75% cycles Single 0.6% RMSE

ANN #FFNN Dai et al. [21] LFP 135/168 Cycles Single <1.7% MaxE

ANN #ELM Pan et al. [22] NMC All cycles Multiple 2.22% MaxE

DL #DNN Wu et al. [23] LFP 60% cycles Single <5% MAE

DL #DNN Khumprom et al. [24] NMC All cycles Multiple 3.43% RMSE

EL #RF Xu et al. [25] NMC 75% cycles Multiple 2% RMSE

EL #RF Chen et al. [26] NMC All cycles Multiple 2% MaxARE

Cell 01′s measured terminal voltage was the lowest of the 97 cells while in operation,
owing to the fact that cell 01′s state of charge was slightly lower than the other batteries
after 32,000 miles of service without equalization. Because cell 01 was always the first to
reach the lower cutoff voltage of 3.0 V, other batteries were not allowed to totally discharge;
hence, cell 01 was chosen for analysis and for SoH estimation in the next section. Table 1
indicates that different driving techniques and random factors affected the energy recovery
rate and mileage. Despite this, the difference between the charged capacity from the power
grid after the driving cycle and the discharged capacity during the driving cycle was
relatively constant.

That means that around 99 percent of the charged capacity could be discharged
during driving, resulting in a charging and discharging efficiency of about 99.5 percent.
Additionally, it indicated a vital fact: ampere-hour counting within a single driving cycle
was exceptionally precise and reliable, in spite of 0.5 s time steps, and with a great deal of
dynamic current. Table 2 illustrates the battery driving cycle information.

Table 2. Driving cycle information.

Battery Data Current (A) Voltage (V) Charge Capacity (Ah) Discharge Capacity (Ah) Cycles

CH data 25 1.1002 2.5133 0.98862 1.9706 122

CH data 26 1.0999 2.5047 0.97738 1.9557 122

CH data 27 1.1003 2.5131 0.9819 1.5356 118

The impedance test equipment, which included a data recording device for signal
generation and data acquisition, a power amplifier for signal amplification, and two Series
resistors for current measurement, was used to record the battery’s impedance performance
at various excitation frequencies. Excitation employing sinusoidal voltage was used to
measure impedance. Recording and storing with a DC bias, sinusoidal voltages and
currents were generated, and their complex quotients were computed to determine the
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battery’s impedance. To decrease measurement noise, a convolution-based approach was
used to determine impedance phase delay, which was paired with Parseval’s theorem for
amplitude computation [27]. The sinusoidal input’s DC bias was accurately controlled
to avoid charging or discharging the battery during the impedance test. The sinusoidal
input’s DC bias was accurately controlled to avoid charging or discharging the battery
during the impedance test. The sampling frequency was connected to the input signal
frequency and varied from 0.025 to 5 kHz. The following were some of the most essential
aspects of an impedance test system: sinusoidal voltage excitation frequency range: 0.025
to 5 kHz, sinusoidal voltage excitation DC compensation range: −5 V to 5 V, and sinusoidal
voltage excitation AC amplitude: 100 mV. Figure 2 depicts the physical layout of the battery
testing system.
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3. Results and Discussion

This section provides the complete visualizations of ML battery model outcomes. For
fair representation, results were categorized as ML model predicted, error estimation, and
accuracy results.

3.1. Findings from the ML Method

The results showed an impressive agreement between the experimental data and the
data produced by the ML battery model. The capacity and SOH prediction results OF bat-
tery 25, battery 26 and battery 27 are shown in Figure 3, Figure 4 and Figure 5, respectively.
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3.2. Results Related to Derived Capacity

As mentioned above, the charging capacity was derived from the aging data. The
respective capacity data and model-predicted data are visualized below.

As shown in Figures 3–5, for each case of capacity prediction, the ML battery model
had a fine prediction capability to reproduce and trace the experimental behavior of the
battery. There was a tiny deviation from the capacity trend, so the result was expected to
be reasonably accurate.

3.3. Results Related to SoH

The comparative plots of calculated SOH and battery model predicted SOH are
presented in Figures 6–8. The ML model prediction findings agreed with the experimental
results. The results mean that the battery model is reasonably accurate. Vehicle batteries
can be studied experimentally or in real time using these results. As seen in Figures 6–8,
the battery model had a higher agreement with the calculated SOH from experimental data
for every snap of SOH prediction.

Error Estimation Results

Equation (3) was used to assess the modeling error. The ML battery error involved
the prediction of experimental values using the ML battery model. Errors are shown in
Figures 9–11.
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As seen from Figures 9–11, for every scenario of SOH error calculation, the minimum
error ranged from 0 to 0.10, and the height error was 0.10 to 0.24. These error calculation
results mean that the model was fairly accurate. This minimum error in the SOH prediction
is the key to the finer agreement with the experimental data.

The battery ML model had healthier agreement due to learning from the data and
adjusting to new data. This showed the power of ML-based modeling.

3.4. Accuracy Results

Two different methods were used to define accuracy. The first was the accuracy
formula defined in this study in Equation (2), and the second was the accuracy metrics
related to the default ML algorithmic domain. All of the accuracy metrics showed that the
ML-based battery model was accurate.

It is seen from Figures 12–14 for every scenario of SOH prediction, the ML battery
model had the lowest accuracy of 99.8%, along with the highest possible accuracy of 99.99%.
Whatever accuracy it had was above 99%.
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Secondly, the ML algorithmic module’s default accuracy, R-Squared (R2) and Mean
Square Error (MSE) were used as another accuracy metric. The R2 metric measures the
goodness of a fit. The value ranges from 0 to 1; 1 indicates a better model fit. MSE is the
mean of the squared errors. The MSE indicates how close the predicted values are to the
actual values; hence, a lower MSE value signifies good model performance. The accuracy
score of the training set of the battery model was 0.9999, and the testing set was 0.9995.
The overall R2 score was one, and the MSE was 0.03. Hence, these three measures implied
that the data-driven ML model used in this study was accurate. Furthermore, the built-in
accuracy results were consistent with the calculated accuracy results.

4. Conclusions and Future Work

Throughout this paper, an ML-based battery model was built, compared, and verified.
The results showed that the created model could well predict the variation of capacity and
SOH during the working process of electric vehicle batteries as in the experiment. The
comparative analysis also showed the battery model’s ultimate accuracy of 99.98% and the
bottom average error of 0.02. In summary, the following contributions were made:

1. An accurate SOH prediction model was successfully demonstrated.
2. The ML-based battery model was accurate and error-free.
3. The created model had the same quality of data; it can be substituted for the costly

experimental process. It can act as an intelligent monitoring system for vehicle battery
health. The above discussion and graphical representation conclude that the ML-
based battery model to predict SOH from capacitive data was successful, and it was
an accurate model. This work is a novel specimen in predicting battery SOH.
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Nomenclature
I Current
U Voltage
Q Battery capacity
Qnom Nominal capacity
Qact Actual capacity
LIB Lithium-ion battery
SOC State of charge
SOH State of health
BMS Battery management system
EV Electric vehicles
RC Resistance-capacitance
C-rate Charge- and discharge rate
OCV Open circuit voltage
CC-CV Constant current-constant voltage
ECM Equivalent circuit mode
EM Electrochemical model
IR Internal resistance
J Cost or error function
m Size of the data set
θ Vector containing model parameter
y Denotes the cycle number
x1 and x2 Vectors representing
ANN Artificial neural networks
n Positive integer
Uoc (SOC) Internal voltage of battery
Up1 and Up2 Voltage across RC parallel
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