
����������
�������

Citation: Hou, D.; Zhao, K.; Li, W.;

Du, S. A Realistic, Flexible and

Extendible Network Emulation

Platform for Space Networks.

Electronics 2022, 11, 1236. https://

doi.org/10.3390/electronics11081236

Academic Editor: Nurul I. Sarkar

Received: 15 March 2022

Accepted: 10 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Realistic, Flexible and Extendible Network Emulation
Platform for Space Networks
Dongxu Hou , Kanglian Zhao ∗, Wenfeng Li and Sidan Du

School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
dg1823013@smail.nju.edu.cn (D.H.); leewf_cn@hotmail.com (W.L.); coff128@nju.edu.cn (S.D.)
* Correspondence: zhaokanglian@nju.edu.cn

Abstract: Wide attention has been drawn to the application of space networks (SN) in recent years.
Compared with terrestrial networks, SN have a set of unique characteristics, e.g., a long propagation
delay, time-varying channel quality, and dynamic link connection, which causes the inapplicability of
mature terrestrial networking technologies. Therefore, the focus of SN application is to innovate and
break through a series of key networking technologies and protocols. Network emulation is critical
for evaluation and verification in the research of networking technologies and protocols. This paper
concentrates on designing an emulation platform which provides a realistic, flexible, and extensible
experimental environment for the SN. The architecture of platform includes four components, namely
the logical plane, control plane, data plane and measurement plane. Container technology is adopted
to flexibly symbolize network nodes. The emulation method of dynamic connection relationships and
time-varying link characteristics between pairwise nodes are considered so as to realize the real space
environment and arbitrary topology. Furthermore, an extensible structure is described to emulate
large-scale scenarios and access external emulation resources. Finally, experiment results show that
the proposed platform is capable of emulating diverse, dynamic, and complex SN scenarios with
high precision.

Keywords: space network; emulation platform; container technology; extensible structure

1. Introduction

With the proliferation of low cost spatial information systems, powerful on-board
processing capacity, and mature inter-satellite link techniques, space networks (SN) are
emerging as an important part of the national infrastructure and research frontier. However,
due to some unique characteristics of SN, e.g., long propagation delay, frequent link
disruption, etc., mature terrestrial networking technologies cannot be applied to SN directly.
To tackle this problem, network researchers propose various new network protocols and
technologies. Meanwhile, the process of designing and developing network protocols and
technologies is complex, in which the experiment phase plays an important role to decipher
the performance and make helpful suggestions for improvement. So it is urgent to set up a
testbed to carry out the research on basic theory and key technologies for SN.

Network emulation provides manageable and reproducible environments for de-
ploying real applications and communicating practical data flow. However, owing to the
particularity of the SN communication environment, existing emulation methods find it
difficult to balance the authenticity, flexibility and extendibility of the emulation, some lack
enough authenticity, such as NPVT [1], some lack flexibility and are only designed for a
specific protocol system, such as EmuStack [2], VITT [3], or only support some specific
network topologies, such as DEN [4], and some do not have extendibility and can only
emulate small-scale scenes, such as SCNT [5]. Therefore, the challenge in the research on
SN emulation methods is to realize the reliable emulation of dynamic network topology,
time-varying link characteristics, multiple protocol architectures and large-scale network
scenarios with the goal of authenticity, flexibility and extendibility.

Electronics 2022, 11, 1236. https://doi.org/10.3390/electronics11081236 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11081236
https://doi.org/10.3390/electronics11081236
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6430-6477
https://orcid.org/0000-0003-2352-3755
https://doi.org/10.3390/electronics11081236
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11081236?type=check_update&version=1

Electronics 2022, 11, 1236 2 of 23

This paper aims to present an SN emulation platform. When we design this platform,
following goals are taken in mind:

• Authenticity. (a) Network nodes in the platform have the same functionality as real
hardware and execute exactly the same code. (b) The network of the platform can
change automatically as does the real space communication environment.

• Extendibility. (a) The platform should have an extensible structure used to support
computing resource expansion. (b) The platform should provide access interfaces for
external physical devices to fulfil the special needs of researchers.

• Flexibility. (a) The platform should be agile enough to create any target networks,
and deploy various network protocols and upper application software conveniently.
(b) Experiments conducted on the platform could follow a workflow. For the same
experiment, any researcher can obtain identical results in the same manner.

To meet our goals, an SN emulation architecture, which consists of a logical plane,
control plane, data plane, and a measurement plane, is proposed. On the basis of the
emulation architecture, the SN emulation platform is constructed in a hierarchical star
structure to support hardware resource expansion and access external physical devices.
Integrating with software-defined networking (SDN) and a traffic control mechanism, the
platform supports the emulation of dynamic SN. Combining with container technology,
various SN protocols and communication technologies could be implemented on the
platform flexibly as real deployments. Considering changeable simulation scenarios and
different network concerns, the flexible configuration of network measurement on demand
is realized. Furthermore, the verification and analysis workflow of SN technologies based
on the platform are given.

The structure of the paper is presented as follows. Section 2 provides an overview
of related work. Section 3 describes the architecture of the emulation platform and the
physical implementation model. According to different emulation elements, the design of
this architecture is presented in Section 4. Section 5 includes the proposed experiments,
experimental results and discussion. In the last section, we conclude this paper and identify
future research directions.

2. Related Work
2.1. Research Works on Space Network

To promote the development of SN, and ensure the efficient interconnection of var-
ious SN nodes as well as full sharing of information and resources, various research
works have been conducted in fields of the network architecture, the constellation and the
network protocol.

Aiming at the problem of lacking a stable end-to-end path for data transmission, which
is caused by long transmission delay and frequent link interruption in SNs, researchers pro-
pose a Delay/Disruption-Tolerant Network (DTN) and CCSDS (Consultative Committee
for Space Data Systems).

Constellation system deployment plans have been carried out in recent years, such
as OneWeb [6] and Starlink [7] according to different constellation systems, application
requirements and optimization objectives, [8] and some other researches present multiple
inter satellite topology design algorithms.

Aiming at the problem that traditional global optimal routing strategies is only suit-
able for static network topologies, the topologically predictable routing protocol, namely
OSPF+ [9], is presented. Pointing at the problem of low data transmission efficiency, which
is caused by long transmission delay and high bit error rate in space networks, an erasure
code-based LTP (Licklider transmission protocol) protocol [10] is designed. Considering
the transmission of the video stream under the harsh communication conditions in the
deep space a BSS (Bundle Streaming Service) protocol [11] is proposed. In addition, there
are many related works in the fields of Ad-Hoc Networks [12] and 5G [13,14].

Electronics 2022, 11, 1236 3 of 23

2.2. Space Network Experimental Validation Approaches

Typical network experimental validation approaches include simulation, a live testbed,
and emulation. Discrete-event network simulation has enough flexibility, e.g., ns-2 [15]
and OPNET [16]. However, the network simulation has no real network traffic and is hard
to realize the real description of complex SN equipment and its environment through the
abstraction of various environmental parameters. An actual hardware-based testbed has
the highest emulation authenticity, e.g., ORBIT [17], UMass DieselNet [18]. However, for
the high cost and poor extendibility of SN nodes, it is difficult for the testbed to support the
requirements of changeable SN emulation scenarios.

Compared with network simulation and the live testbed, network emulation is
a hybrid approach which balances authenticity and flexibility. Typical emulators are
Mininet [19], vEmulab [20], and NEaaS [21]. However, these emulation options only sup-
port the emulation of static terrestrial networks rather than dynamic SN. Ref. [22] proposes
TUNIE which is capable of simulating reliable DTN environments and obtaining an accu-
rate system performance evaluation. Ref. [23] presents a state-of-the-art DTN testbed for
satellite and space communications. The core of the testbed relies on the Bundle Protocol
and its architecture have been designed to support multiple DTN implementations and
a variety of underlying and overlying protocols. Based on OpenStack, Ref. [2] proposes
a large-scale, real-time and distributed emulation platform for DTN, namely EmuStack.
These platforms are designed for some types of network architecture, such as DTN, and
lack support for others. Ref. [1] designs a network protocol validation testbed for inte-
grated space–terrestrial network. However, large-scale scenarios emulated on the testbed
is realized by the expansion of routing table, which lacks enough authenticity. As shown
in Table 1, comparisons among different SN emulation systems are listed. Overall, in
consideration of authenticity, flexibility and extendibility, all the emulators above focus on
limited aspects.

Table 1. Comparisons among existing space network emulation systems.

Literature
Dynamic
Topology

Connection

Dynamic Link
Characteristics

Protocol
Architecture

Supported
Various

Scenarios

Supported
Scalability

Construction
Cost

NPVT yes yes TCP/IP, CCSDS yes yes low

EmuStack yes no DTN yes yes low

VITT - - different TCP
variants - yes low

SCNT no no BP, TCP/IP no Limited
scalability low

TUNIE [22] yes yes

DTN, other new
routing

protocols and
applications

yes yes low

SPICE [23] no - CCSDS, DTN yes yes high

SCT [24] yes yes CCSDS,
TCP/IP yes - high

TATPA [25] - - different TCP
variants - yes low

MACHETE [26] - - CCSDS, DTN,
TCP/IP yes - low

DEN - yes BSP, BP, LTP no yes low

Electronics 2022, 11, 1236 4 of 23

3. Architecture of the Network Emulation Platform
3.1. Architecture

As shown in Figure 1, the proposed platform can be divided into four planes, namely
the logical plane, control plane, data plane, and measurement plane. A particular network
scenario is set at the logical plane. Corresponding settings are stored in the database.
The control plane reads these setting and procedure commands to drive emulation in
the data plane. The measurement plane serves to monitor network performances of
simulation scenarios.

Network
Management

Space-Based Backbone
Transmission Network

Space-Based
 Access Network

Minisatellite

Access Layer
Satellite

Minisatellite
Ground Station

Repeater
Satellite Ground

Station

llite
tation Sate

End-UserMission
Control
MiMiMiMiMiMissssioioioioion

Experimental Logical Plane Control Plane

Reserchers

Web UIWeWeWeWeb b b b UIUIUIUIWeb UI

Reserchers

Database

Main

Controller

in

co
n
fig

u
re an

d
 c

o
n

tro
l

m
o
n

ito
r

Emulation

Container

Capture

Container

Emulation Node1

veth1 veth2

Emulation

Container

Capture

Container

Emulation Node2

veth1 veth2

Server 1

Virtual Switch S1

port0 port1 port2 port3

eth0 eth1

Emulation

Container

Capture

Container

Emulation Node3

veth1 veth2

Emulation

Container

Capture

Container

Emulation Node4

veth1 veth2

Server 2

Virtual Switch S2
port4 port5 port6 port7

eth0 eth1

SDN Hardware

Switch Switch

......

......

......

......

Data Plane

Connecting to
external devices or

networks

veth0 veth0

veth0 veth0

Bridge

Bridge

eth2

eth2

Measurement
Plane

Me

Network

Delay

Packet Loss

Ratio

Throughput

Full Packet

......

Figure 1. Architecture of the proposed platform.

3.1.1. Logical Plane

According to the specific network scenario, a network model could be built by the
logical plane which includes a space-based backbone transmission network, satellite links,
space-based access network, ground stations, terrestrial network, and end-users. The net-
work model contains not only parameters of network nodes, but also a specific connection
plan, channel parameters, software deployments, and network protocols.

3.1.2. Control Plane

The control plane consists of two parts: the front-end service and the back-end service.
The front-end service offers a Web UI to interact with researchers. Researchers can configure
various parameters of the network model and visualize the network scenario through the
Web UI. The back-end service is backed by the main controller which is responsible for
implementing commands and parameters from the logical plane into the data plane. The
main controller is a software and operates all elements in the data plane. Researchers can
configure and control the environment parameters with different emulation scenarios, as
well as monitoring the traffic for each testing through the control plane. The emulation
architecture is thus configurable and controllable.

3.1.3. Data Plane

The data plane serves to emulate network scenarios directly, and contains SDN
switches, servers, emulation nodes, etc. These underlying network resources are con-
nected with each other in a hierarchical star network structure. Emulation nodes are
connected to the virtual switch on the server and represent SN nodes at the logical plane.
Diverse software and applications are installed in the emulation node. Servers and external
devices or networks are linked to each other by the SDN hardware switch.

Electronics 2022, 11, 1236 5 of 23

3.1.4. Measurement Plane

The measurement plane mainly has two functions, namely real-time network infor-
mation collection and full packet capture. The capture container is the basic unit of the
measurement plane. Each capture container covers a Python-based Daemon which realizes
network information collection and supports full packet capture according to the config-
uration of researchers. Measurements are stored in the database and real-time network
information is displayed by the Web UI.

3.2. Physical Implementation Model

Corresponding to the platform architecture, a typically physical implementation model
is presented, which has four principal parts: the Web UI, main controller, emulation node
and SDN switch, as shown in Figure 2.

ResearchersWeb UI

Main

Controller

SDN Hardware

Switch

Real Link

External Real

Network

Physical Server

Embedded Devices
Physical Emulation

Nodes

OVS

Virtual Emulation Nodes

Vin1

Vin2

Vout 1

Vout 1

Vout 2

Vout 2

C

R

A

B

Q

Q

Upboard

Vin1

Vin2

Vout 1

Vout 1

Vout 2

Vout 2

C

R

A

B

Q

Q

Raspbe-

rry Pi

Database

Figure 2. Physical implementation model of the proposed platform.

3.2.1. Web UI

Researchers interact with the proposed platform through the Web UI. The Web UI
stores network model parameters configured by researchers in the database, and shows net-
work models in real time to allow researchers to observe the emulation process intuitively.

3.2.2. Main Controller

The main controller interacts with the Web UI and is used for parameter calculation,
SDN switch control and node management. The calculation results are written in the
database for subsequent emulation operations.

The parameter calculation refers to the process that the main controller reads the
network model parameters, obtains the relationships of visibility and link characteristics
between nodes, filters the connection relationships, and assigns the network configuration
of emulation nodes. The SDN switch control [27] refers to the process that the main
controller sends topology control flow tables to SDN switches in real time according to
the target network topology. The node management refers to the process in which the
main controller creates emulation nodes, binds nodes with SDN switches, and allocates
emulation resources. Moreover, the main controller is also responsible for generating
the experimental start time and transmitting the operation state of the experiment to the
Web UI.

3.2.3. Emulation Node

All emulation nodes run real network protocol stacks and applications to complete
network traffic exchange. Due to the advantages of flexible configuration, easy extension

Electronics 2022, 11, 1236 6 of 23

and convenient management, virtual nodes are generally used to simulate the nodes in the
target network. For some special needs or cases where emulation can not be supported by
pure virtual nodes, physical nodes are used, including embedded devices, satellite links,
and etc.

3.2.4. Sdn Switch

According to assigned network parameters, each emulation node is linked to the
corresponding SDN switch by the main controller. The SDN software switch is responsible
for the connection of virtual nodes. Meanwhile the SDN hardware switch is in charge of
the connection of physical nodes, and provides access to external networks or links for the
emulation platform. SDN software switch and SDN hardware switch are connected with
each other to form an interconnected emulation network. Once the emulation experiment
starts, the main controller sends real-time flow tables to each SDN switch to simulate the
dynamic topology of the target network model. SDN switches can also collect and send
their own states back to the Web UI for display, or save these states for subsequent analysis.

3.3. Platform Characteristics Analysis

Through the above designs, the proposed emulation platform effectively provides a
realistic, flexible, and extensible experimental environment for SN.

Virtual emulation nodes have the same functionality as physical hardware and can
execute exactly the same code in a real deployment. Meanwhile, the proposed emulation
platform supports the joint emulation method among virtual nodes, physical nodes, real
networks and real links, bringing credible emulation results.

Integrating with SDN and traffic control mechanism, the networking of platform can
change automatically like that of a real space communication environment (especially,
time-varying link quality and dynamic link connection). In addition, various network
protocol architectures are reconstructed by container images. These realize the reliable and
flexible emulation of different SN scenarios

The platform architecture has extendibility including the horizontal extension of hard-
ware resources and the access of external physical emulation devices. The main controller
offers a novel unified control for the connection relationships between emulation nodes
under different switches through flow tables. These features allow multiple nodes with
huge individual differences to become a part of the proposed platform and to be managed.

4. Designs

In this section, the specific implementation manners of the platform are described
from three basic aspects, that is, the node, link, and network topology.

4.1. Node

The emulation node is the basic emulation element of the proposed platform which is
the actual carrier of network protocols and communication technologies.

4.1.1. Node Virtualization

Virtualization is a resource management technology, which realizes the goal of virtu-
alizing a physical computer system into multiple virtual computer systems. The virtual
computer system has a strong consistency with the real computer system. Typical virtu-
alization methods include virtual machines and containers. Compared with the virtual
machine, the container which relied on the Linux kernel features is more flexible and
lightweight. Due to these advantages, the container-based virtualization is applied to
realize the emulation node in the proposed platform. Moreover, container orchestration,
such as Kubernetes [28], is employed to achieves functions that cannot be supported by
native container-based virtualization. If needed, we can develop container orchestration
ourselves. The Pod is the basic building block of Kubernetes. A Pod contains a group of

Electronics 2022, 11, 1236 7 of 23

one or more containers, such as Docker [29]. Containers in a Pod share some resources
with each other, e.g., storage and network resources.

As shown in Figure 3, an emulation node is a Pod which comprises an emulation
container and a capture container. Network protocols or technologies which need to be
validated are deployed at the emulation container. The capture container is responsible
for real-time network measurement and full packets capture in simulation scenarios. Con-
sidering changeable simulation scenarios and different networks, researchers need to set
network measurement points as needed. Via binding to each other in the form of Pods
and sharing network resources, the capture container can measure and monitor all net-
work information of the emulation container. Thus, the flexible configuration of network
measurement on demand is realized.

Emulation
Container

Capture
Container

Python Daemon

Full Packet
Capture

Emulation Node

veth1 veth2

port0 port1

Network
Protocols

other Confs

OS

Virtual Switch

Figure 3. Emulation node.

4.1.2. Node Parameters

Each emulation node has corresponding physical parameters which are used to de-
scribe real network nodes in simulation scenarios. Physical parameters contain commu-
nication settings, location parameters, and service configurations. The web front-end in
the control plane provides interactive interfaces for researchers to set these parameters.
Corresponding settings are stored in a database.

The communication settings reflect the communication characteristics of the network
node, e.g., effective isotropic radiated power (EIRP), G/T, modulation, communication
frequency, and etc. According to the different placements of the network node in SN, the
location parameters should be discussed separately. For space-based nodes, the location
parameters contain eccentricity, period, inclination, right ascension of the ascending node,
argument of perigee, and true anomaly. For terrestrial-based nodes, the location parameters
refer to longitude and latitude. Through communication settings and location parameters,
the calculation of connection relationships and link characteristics between nodes could be
gained. The details of calculation principles would be demonstrated in Section 4.2. Service
configurations are applied to initialize the function of the emulation node, involving
protocol selection, data transmission models, node type selection, etc.

4.1.3. Multiple Network Protocols

An emulation container is created based on container images. The network protocol
implementation software and other applications would be deployed among the container
image in advance. According to different types of network protocol architecture, the

Electronics 2022, 11, 1236 8 of 23

emulation container can be divided into three types, namely the DTN node, TCP/IP node
and custom node, as shown in Figure 4. The DTN node and TCP/IP node correspond to
DTN and the TCP/IP network protocol architecture, respectively. Furthermore, custom
node provides an extension method for new or modified protocol architectures in the
proposed platform.

• DTN node. The DTN node is built by the ION-DTN container image. ION-DTN is a
software which includes the implementations of LTP, BP, CGR routing protocol and
some other DTN protocols.

• TCP/IP node. The TCP/IP node is generated by the Quagga container image. Quagga
is a software which supports various routing protocols, such as BGP, OSPF, RIP
and etc.

• Custom node. Various dependencies were installed in the custom container image
previously to provide runtime environment for the software implementation of new
or modified protocols and technologies. The virtual switch is also deployed in the
custom container image. Based on virtual switch and flow tables, the custom node
can support custom forwarding rules.

DTN Node

ION-DTN

DTN Node

ION-DTN

DTN Node

ION-DTN

DTN Node

ION-DTN

DTN Node

ION-DTN

DTN Node

ION-DTN

a. DTN Node

(a) DTN Node.

DTN NodeDTN Node IP Router

Quagga

IP Router

Quagga

IP Router

Quagga

IP Router

Quagga

IP Router

Quagga

IP Router

Quagga

b. TCP/IP Node

(b) TCP/IP Node.

IP RouterIP Router

c. Custom Node

Openflow

 Switch

OVS

Openflow

 Switch

OVS

Openflow

 Switch

OVS

Openflow

 Switch

OVS

Openflow

 Switch

OVS

Openflow

 Switch

OVS

(c) Custom Node.

Figure 4. Different types of emulation container.

4.2. Link

The dynamic behaviors, especially the time-varying connection relationship and the
dynamic link characteristic, are the main features of SN and also pose challenges to emulate
the SN environment.

4.2.1. Time Slot

In order to analyze the dynamic behaviors, a specific SN scenario is divided into
multiple time slots. The network status is regarded as static and represented by the initial
state in each slot. The more time slots are divided, the more accurate an SN environment
is emulated.

4.2.2. Implementation of a Time-Varying Connection Relationship

(1) Computation Principle
The link types in SN can be classified into three categories, namely the space-based

link, ground-based link, and space–terrestrial link. Due to the mobility of space platforms,
the time-varying connection relationship is mainly reflected in the space-based link and
space–terrestrial link. The mutual visibility between two space platforms or between a
space platform and a ground-based node determines whether there exists a corresponding
link. Relying on the location parameters of emulation nodes, the main controller calculates
the actual position of nodes, and then achieves the mutual visibility between nodes at each
time slot. The calculation principle is described as follows.

a. Space-based Link
In a space-based link, the mutual visibility is defined as the direct line of sight between

two space platforms at a certain time. Considering the geometry defined in Figure 5a, in
which Sat. 1 and Sat. 2 are visible to each other.

Electronics 2022, 11, 1236 9 of 23

o

x

y

zh

q

Sat.2

Sat.1

x2

x1

r2

r1

Earth

S

C

(a) Direct line-of-sight.

Sat.1

Sat.2

r1

r2

Earth

(b) Direct line-of-sight is impossible.

Figure 5. Geometry of two satellites in the case of direct line-of-sight.

~r1 and ~r2 are the position vectors of Sat. 1 and Sat. 2, respectively. ~S emanates from
the Earth’s dynamical center perpendicular to ~C = (~x1 + ~x2) at h and intersect the Earth’s
surface at q, where ~x1 and ~x2 are unknown vectors, ~x1 is the distance vector from Sat. 1 to
h to Sat. 2. The magnitude of ~S is divided into |~oq| = RE which is the Earth’s radius and∣∣∣~qh
∣∣∣ = RV which is the thickness of the atmosphere from the Earth’s surface to the vector

~C. From Figure 5, two fundamental vector closure equations are:

~r1 = ~S− ~x1 (1)

~r2 = ~S + ~x2 (2)

According to variables, mentioned above, the magnitude of ~C can be described by the
following equations:

C =
√

r1
2 + r22 − 2(~r1, ~r2) (3)

C = x1 + x2 =
√

r1
2 − S2 +

√
r22 − S2 (4)

Equating Equations (3) and (4) and then squaring twice, we obtain an analytical
expression for the visibility function as:

RV =

√ r1
2r22 − (~r1, ~r2)

2

r1
2 + r22 − 2(~r1, ~r2)

− RE (5)

The visibility function defined by Equation (5) can be used to predict explicitly whether
satellites are visible to one another or not. The sign of RV associated with visibility can
be obtained by constructing a case in which direct line-of-sight visibility is impossible, as
shown in Figure 5b. For this case we have:

(~r1, ~r2) = r1r2cos(180) = −r1r2 (6)

Then Equation (3) can be written as:

RV = −RE (7)

Hence, we can put this rule:

RV =

{
Positive value, Derect line-of-sight
Zero or negative value, Nonvisibility case

(8)

b. Space–terrestrial Link
In the space–terrestrial link, the mutual visibility is defined as the direct line of sight

between a space platform and a ground-based node at a certain time. Considering the

Electronics 2022, 11, 1236 10 of 23

geometry defined in Figure 6, in which a satellite and ground station are visible to each
other. The two points represent the satellite (Sat) and ground station (GS), and then the
third is the Earth’s center. The subsatellite point is indicated by T, which is the point where
the joining line of the satellite and Earth’s center intersect the Earth’s surface. Distance d
represents slant range between a satellite and ground station. This range changes over time
since the satellite flies too fast above the ground station. In Figure 6a, the radius r is:

r = RE + H (9)

RE is Earth’s radius and H is satellite’s altitude. The line crossing point GS means the
tangent plane to Earth’s surface at point GS, which by definition is in fact the ideal horizon
plane. The angle formed between the ideal horizon plane and the slant range is elevation
angle ε0. Figure 6b is the plane form of the triangle from Figure 6a.

Sat

d

r
GS

T

ε0

α0

β0

Earth

z

x

yo

(a) Geometry of the ground station.

GS

RE

orSat

ε0

α0 β0

d

Nadir

Elevation

Central

angle

(b) Geometry of the ground station in the
plan.

Figure 6. Geometry of the ground station.

Two sides of this triangle are usually known as the distance from the ground station to
the Earth’s center RE, and the distance from the satellite to the Earth’s center-orbital radius.
The angle under which the satellite sees the ground station is called the nadir angle. There
are four variables in this triangle: ε0 is the elevation angle, α0 is the nadir angle, β0 is the
central angle and d is the slant range. As soon as two quantities are known, the others can
be found with the following equations:

ε0 + α0 + β0 = 90 (10)

d cos(ε0) = r sin(β0) (11)

d sin(α0) = RE sin(β0) (12)

The most important parameter is the slant range d which represents the distance from
the ground station to the satellite. It is expressed through the elevation angle ε0. Applying
the cosines law for the triangle at Figure 6 yields:

r2 = R2
E + d2 − 2REd cos(90 + ε0) (13)

Solving Equation (5) by d yields:

d = RE

√(r
RE

)2
− cos2 ε0 − sin ε0

 (14)

Substituting, r = H + RE at Equation (14), finally we will obtain the slant range as
function of elevation angle ε0:

d = RE

√(H + RE
RE

)2
− cos2 ε0 − sin ε0

 (15)

Electronics 2022, 11, 1236 11 of 23

or elevation ε0 expressed for a known slant range d as:

sin ε0 =
H(H + 2RE)− d2

2dRE
(16)

When sin ε0 = 0⇒ ε0 = 0, the maximum slant range d is found:

d2 = H(H + 2RE) (17)

If the distance between the Sat and the GS is outside of the maximum value of d, the
two nodes are considered invisible.

Finally, on the basis of link establishment strategies set by researchers, these mutual
visibilities are filtered to obtain connection relationships in a specific scenario.

(2) Implementation Method
Connection relationships are stored in databases, which are formulated as follows.

Link_id is the link name. Srcnode_port and dstnode_port represent the connection port of

link_id srcnode_port dstnode_port start_time end_time

the source node and destination node on virtual switches separately. The srcnode field in
srcnode_port means the host name of the emulation node. It is the same for dstnode_port.
Start_time and end_time represent the beginning and ending times of a link connection,
respectively.

Emulation nodes use virtual ethernet (veth) devices [30] to access the virtual switch
on the server where it is located. Each veth represents an antenna or a communication
channel in the network scenario. Veth devices are created in pairs. One device in the pair
is assigned to the emulation node as a network interface and the other is assigned to the
virtual programmable switch as a port. When either device is down, the link state of the
pair is down. So, the variation of connection relationships between pair-wise nodes equates
to deleting/adding corresponding flow entries on virtual switches to control the port up
and down. However, a port-based flow entry can only control the one-way link. Thus, two
flow entries are needed to control a link connection, which is two-way, on or off.

The main controller later allocates corresponding network parameters for network
interfaces at the emulation node, including IP addresses, MAC addresses, interface names,
etc. The neighboring veths which are connected with each other in one hop have the same
subnetwork segment. Whenever corresponding forwarding rules between these veths are
deployed, the links between neighboring emulation nodes are working.

Upon the emulation starts, flow entities are issued by the main controller. As shown in
Figure 7, each dynamic link corresponds to a timer and two flow entities. At the start time
of emulation, several timers are activated and the on/off time points of each dynamic link
are set within them. When the timers expire, the link connection or disconnection functions
are executed to deploy corresponding connection or delete corresponding flow entities on
virtual switches.

Timer 1
Timer 2

The flow entity is

added and Link 1 is on. The flow entity is

deleted and Link 1 is off.

Entire emulation period

Figure 7. Realization of dynamic link connection.

A problem which must be taken into consideration is to emulate the dynamic link
connection at the distributed virtual server cluster. When deploying two emulation nodes
in a connection link, there are two relative position situations: two nodes located at the same

Electronics 2022, 11, 1236 12 of 23

server, and two nodes located at different servers. For the former, the main controller can
directly deploy two flow entries at the same virtual switches. Meanwhile, this deployment
method is no longer applicable when two emulation nodes are linked to different virtual
switches. To solve this issue, the placement of the emulation node in the server cluster and
the corresponding host name is recorded when creating the emulation node. Integrated
with the fields of srcnode_port and dstnode_port, the corresponding relationship between
flow entries and virtual switches can be cleared.

Figures 8 and 9 show the change of link connection in timeslots TS1 and TS2. When
Node3 disconnects with Node2 and connects with Node1 directly, the main controller
first deletes the bidirectional flow entries between S1-4 and S2-6 ports, and then adds the
bidirectional forwarding rules between S1-2 and S2-5 ports in S1 and S2 separately. Because
the forwarding rule is a map between two physical ports in the programmable switch, we
can emulate the connectivity of link connections in the physical layer easily.

Emulation

Node1

Emulation

Node3

Emulation

Node2

(a) Logical topology in TS1.

Emulation

Node1

Emulation

Node3

Emulation

Node2

(b) Logical topology in TS2.

Figure 8. Logical topology of the dynamic link connection.

S1 S2

Emulation

Node1

Emulation

Node3

Emulation

Node2

1

1

2

2

3

3

4

4

5

5

6

6

(a) Physical topology in TS1.

S1 S2

Emulation

Node1

Emulation

Node3

Emulation

Node2

1

1

2

2

3

3

4

4

5

5

6

6

(b) Physical topology in TS2.

Figure 9. Physical topology of the dynamic link connection.

4.2.3. Implementation of Dynamic Link Characteristic

(1) Computation Principle
On the basis of the signal modulation method and Eb

N0
, the bit error rate (BER) can be

gained. The modulation method is a parameter of the emulation node, including FSK, PSK,
DPSK, and etc. For example, BER of 2PSK can be expressed by (18).

BER =
1
2
× er f c

(√
Eb
N0

)
(18)

Eb
N0

is described in Formula (19), representing the received energy per bit over noise
power density.

Eb
N0

= EIRP− Lp +
G
T
− k− R (19)

Lp = 20lg(d) + 20lg(f) + 92.45 (20)

R = 10lg(Rb) (21)

Electronics 2022, 11, 1236 13 of 23

In Formula (19), EIRP is the transmitter effective isotropic radiated power, in dBW. G
T

is the receiver antenna gain divided by the receiver system noise temperature, in dB/K. Lp
is the sum of all path losses, described by Formula (20), in dB. k is a constant and equal to
−228.6 dB. R is the transmission code rate loss which can be expressed by Formula (21),
and Rb is bandwidth, in bps. As parameters of the satellite node, EIRP, G

T , f , and Rb
are known values. When calculating the mutual visibility between nodes, mentioned in
Section 4.2.2, d can also be obtained. Thus, Eb

N0
is a computable value.

(2) Implementation Method
In our emulation architecture, the SDN switch only offers the topology management

and do not support the simulation of link characteristics. So, another supplementary
method is needed to fulfill this function.

All emulation nodes installed the Linux-based operation system in advance. The link
characteristic configuration is performed via the Linux traffic control (TC) mechanism [31].
NetEm is part of TC and supports the emulation of network delay, packet loss ratio, etc.
This mechanism also includes a Token Bucket Filter (TBF) for bandwidth limitation. TC has
been evaluated in [32] and has been found to emulate most parameters accurately.

TC can classify different parts of the data packet according to its characteristics and
provide different traffic control mechanisms for these packets. The queuing rule is one
of the most important parts in TC which can be used to realize the classification function.
Before packets are sent by network interfaces, they are added to different send queues
according to the characteristics of packets. Then the kernel takes packets from these queues
and delivers packets to network interfaces to complete the process of data transmission.

The FIFO algorithm forms the basis for the default queuing disciplines (qdisc) on all
Linux network interfaces. It transmits packets as soon as it can receive and queue them,
as shown in Figure 10. A real FIFO qdisc must have a size parameter to prevent it from
overflowing in case it is unable to dequeue packets as quickly as it receives them, i.e.,
when we have a requirement to emulate a high bandwidth with a certain delay, we need
to calculate the queue size to avoid discarding packets. The size of the queue is defined
by the parameter limit, and the unit of limit is the packet in TC. We consider the value of
limit in the worst case. The limit would be greater than the average delay t multiplied by
the maximum packet rate. The maximum packet rate equals to the maximum bandwidth
B divided by the maximum transmission unit (MTU). MTU is the largest length of the
frame. Its default value is 1500 bytes and this value can be changed according to the needs
of experiments.

limit >
B× t

8×MTU
(22)

Via the formula (3), the setting value of limit in a specific network scenario can
be obtained.

FIFO

Figure 10. Default queuing disciplines in TC.

4.3. Network Topology

The network topology of the proposed platform can be divided into the lower physical
network topology and the upper logical network topology.

4.3.1. Lower Physical Network Topology

The lower physical network topology is the basis of the emulation system, which is
constructed by the main controller, switches, and servers. For each server in the data plane,
a virtual switch is implemented. Some network interfaces of the server are attached to

Electronics 2022, 11, 1236 14 of 23

the virtual switch. To communicate with other servers, other ends of attached network
interfaces are connected to a high performance SDN hardware switch in the form of Virtual
Extensible LAN. In this way, a distributed server cluster is constructed in a star structure.
The main controller is linked to virtual switches and SDN hardware switches, and it controls
them directly. When researchers create a specific network scenario in the logical plane,
the main controller, integrated with container orchestration, allocates resources and places
emulation nodes at the server cluster. Emulation nodes are linked to a virtual switch at
each server in a star network topology. Physical nodes and external emulation devices can
also be linked to the SDN hardware switch and managed by the main controller. From top
to bottom, all the switches, servers, and emulation nodes are constructed in a hierarchical
star network structure. This network topology makes the platform have high scalability.
If computing resources need to be expanded, more virtual node servers can be simply
accessed through the SDN hardware switch.

4.3.2. Upper Logical Network Topology

The upper logical network topology remains consistent with the SN emulation scenario.
With the scene information, including time-varying connection relationships, dynamic link
characteristics, emulation node parameters, etc., the main controller generates correspond-
ing commands, such as flow entities. Then the data plane is driven by these commands.
In this way, the proposed platform emulates a network scenario with the arbitrary logical
topology described in logical plane.

5. Experiments and Discussion

In this section, we present the deployment manner of the emulation platform and
conduct corresponding experiments.

5.1. Deployment

The workflow of the experiment approach is presented in Figure 11. When setting up
an experiment, researchers could follow the steps outlined below.

Design Experimental

Scenario

Network Modeling Service Modeling
Data Collection

Configuration

click the

Start Button

collect data

Export Parameters of

Network Model to

Database

Import Parameters to Main

Controller and Store the

Calculation Results

Export Parameters of

Service Model to

Database

Export Configurations

of Data Collection to

Database

Main Controller

Create Experiment

sleep until the beginning

time of emulation

1 2 3

Emulation Nodes

Initialize Automatically

Nodes Send and

Receive Data

Obtain and Analyze

Experimental Data

Figure 11. Experiment working flow.

Electronics 2022, 11, 1236 15 of 23

5.1.1. Preparatory Phase

In the preparatory phase, a particular network scenario is created and corresponding
configurations are inputted through Web UI. Researchers need to decide the network archi-
tecture, the number and the type of nodes, node parameters, as well as link establishment
strategies. According to user demands and settings, the main controller calculates connec-
tion relationships and link characteristics between nodes, as well as network parameters of
emulation nodes. Calculations are stored in the database for subsequent use. In service
modeling, a specific network service is determined. Researchers decide which network
protocol to be used, thus defining the size of packets and the scheme of data communica-
tions. Data collection configurations should also be set at this phase, covering measurement
modes and data capture modes.

5.1.2. Implementation Phase

After researchers click the Start Button at Web UI, the start signal is sent to the main
controller. Based on connection relationships and assigned network parameters recorded
in the database, the main controller creates emulation nodes, binds them to SDN switches,
and informs the start time of emulation. Then an initialization daemon is activated in
each emulation node and reads the database to fulfill automatic configurations, including
the implementation of the dynamic link characteristic, routing setting, protocol stacks
establishment, and etc. Subsequently, emulation nodes are suspended until the beginning
of emulation.

During the process of emulation, the main controller issues flow entries to SDN
switches to realize the dynamic network. Designated source nodes transfer data packets
through the emulation network and finally arrive at the destination. If researchers want to
change the network scenario, they can go back to the step of creating the network model. If
they need to change protocols and services, they can go back to the service modeling step.
It is flexible and easy to change the scenario by reconfiguring emulation parameters.

5.1.3. Data Collection Phase

In the experiment process, selected measurement nodes served for real time network
monitoring and full packet capture, respectively. The metrics of network monitoring
include throughput, end-to-end delay, and packet loss ratio. In the meantime, all the
received and forwarded data packets are captured at the designated nodes. On the basis of
these metrics and captured packets, researchers can evaluate network performances among
different simulation scenarios.

5.2. Link Characteristics Validation

To check our experimental validity partly, the performance of one single link on the
platform is tested. The required levels of the link characteristics are listed in the first
columns of Tables 2–4. In each measurements, we repeated data transmission ten times
and averaged the results. As can be seen in the tables, no matter which required level we
adopted, it achieved approximate performance.

Table 2. Results of measurement of delay.

Required Level (ms) Measured Level (ms) Absolute Deviation
(ms)

Relative Deviation
(%)

5.000 5.130 −0.130 2.600
50.000 50.135 −0.135 0.270

100.000 100.136 −0.136 0.136
500.000 500.150 −0.150 0.030
1000.000 1000.147 −0.147 0.015

Electronics 2022, 11, 1236 16 of 23

Table 3. Results of measurement of packet loss.

Required Level (%) Measured Level (%) Absolute Deviation
(%)

Relative Deviation
(%)

1.00 0.93 −0.07 7.00
5.00 5.17 −0.17 3.40
10.00 9.80 0.20 2.00

Table 4. Results of measurement of bandwidth.

Required Level
(Mbps)

Measured Level
(Mbps)

Absolute Deviation
(Mbps)

Relative Deviation
(%)

50.00 55.28 −5.28 10.56
100 108.20 −8.20 8.20
500 530.00 −30.00 6.00

1000 1085.44 −85.44 8.54
1200 1300.48 −100.48 8.37

5.3. Moon to Earth Communication Scenario
5.3.1. Experimental Scenario

In order to evaluate the reliability of the proposed platform, a DTN experiment,
described in [33], was reproduced. The aim of this experiment is to assess the ability of
BP, and test the joint use of many advanced features in ION, e.g., Contact Graph Routing
(CGR), scheduled links, etc., in a case of real practical interest.

The topology of the experimental scenario is summarized in Figure 12. It consists of
four DTN nodes: a Moon lander (Lander), a satellite orbiting the Moon (Sat), a Mission
Control Center (MCC), and an auxiliary terrestrial Gateway Station (GW). Scheduled
space links between nodes are represented by dotted lines, while continuous lines denote
continuous wired links. The contact plan excerpt is shown in Table 5. It should be noted
that the links from the satellite to Earth have a propagation delay of 1.3 s, while other links
are negligible. Moreover, losses were assumed to be negligible in all links.

Table 5. Contact plan excerpt.

Link Contact Start-Stop
Time (s)

Speed
(Downlink) Latency (s)

Lander-Sat 1 20–40 128 kbit/s 0
2 100–120 128 kbit/s 0

Sat-GW 1 70–80 1 Mbit/s 1.3
2 160–170 1 Mbit/s 1.3

Sat-MCC 150–180 1 Mbit/s 1.3
GW-MCC 0–180 10 Mbit/s 0

5.3.2. Experimental Results

In the above scenario, ten bundles of 50 kB were transferred from the Moon Lander
to the MCC. As illustrated in Figure 13, ten bundles were first generated and taken into
custody on the Lander. Upon the first Lander-Sat contact started at 20 s, therefore six bun-
dles were transferred and taken into custody at the Moon Sat. Then these six bundles were
delivered to GW when the Sat-GW contact was on at 70 s. As the GW-MCC link was con-
tinuous, these data were immediately transferred to the MCC. The remaining four bundles
were transferred to Sat during the second Lander-Sat contact, working at 100 s, and taken
into custody as before.Finally, when the Sat-MCC contact first opened at 150 s, they were
directly delivered to MCC according to CGR. The comparison of obtained experimental
results between [33] and our study indicates the reliability of the proposed platform.

Electronics 2022, 11, 1236 17 of 23

Moon Sat

Moon

Lander

GW MCC

Figure 12. Experimental scenario.

Figure 13. Bundle transfer from lander to MCC (Markers: from [33], star: emulation platform).

5.4. Ip Satellite Network Scenario
5.4.1. Experimental Scenario

An IP satellite network scenario was designed and experiments were conducted to
evaluate the performance of different network protocols. The experimental scenario, de-
scribed in Figure 14, included a Ground Station (GS), 12 LEOs, and 6 GEOs. Satellite orbit
parameters are listed in Tables 6 and 7 separately. Different right ascension of ascending
nodes represented different satellite orbits, while distinct true anomalies refer to different
initial positions of satellites in the same orbit. GEOs were evenly distributed in the geosyn-
chronous orbit above the equator which constructed a backbone link for data transmission.
LEOs served as remote sensing satellites [34] and were directly linked to GEOs. The GS
located at 116.40 deg longitude and 39.90 deg latitude only communicated with GEO3.

Electronics 2022, 11, 1236 18 of 23

Table 6. LEO satellite orbit parameters and corresponding values.

Orbit Parameter Value

Period (s) 5400
Eccentricity 0.0

Orbital Inclination (deg) 28.5
Argument of Perigee (deg) 0.0

Right Ascension of the Ascending Node 107.419/137.419/167.419/192.419/287.419/17.419
True Anomaly (deg) 0/60

GEO1 GEO2

GEO3

GEO4GEO5

GEO6

LEO1
LEO2

LEO3 LEO4

LEO5

LEO6

LEO7LEO8

LEO9

LEO10

LEO11

LEO12

Ground

Station

Figure 14. Topology of the IP satellite scenario.

Table 7. GEO satellite orbit parameters and corresponding values.

Orbit Parameter Value

Period (s) 86,400
Eccentricity 0.0

Orbital Inclination (deg) 0.113287
Argument of Perigee (deg) 0.0

Right Ascension of the Ascending Node (deg) 90
True Anomaly (deg) 0/60/120/180/240/300

Link parameters and corresponding values between nodes are presented in Table 8.

Table 8. Link parameters and corresponding values.

Link Parameter Value

Frame Length (byte) 1500
G/T (db/k) 23
Rb (Mbps) 1000

EIRP (dbm) 70
f (Ghz) 30

Modulation Type BPSK

5.4.2. Experimental Results

(1) Mobile IP
Considering the location-independent routing of IP datagrams in SN, Mobile IP (MIP)

is deployed and compared with the performance of pure IP in this scenario. Each GEO
serves as the home agent for LEOs linked directly at the beginning time. The IP address
of LEO which is assigned by the home agent is a permanent IP address. Regardless of
the change of connection relationships, LEOs could communicate with other nodes via
respective permanent IP addresses [35]. We focus on the end-to-end delay between LEO1

Electronics 2022, 11, 1236 19 of 23

and LEO2 or GS, the concrete topology is shown in Figure 15. LEO1 and LEO2 are initially
connected to GEO1 and GEO2 separately, and access to each GEO is in a clockwise direction.
Corresponding measurement results from 0 to 30 min are show in Figure 16.

GEO1 GEO2

GEO4

GEO3

GEO5

GEO6

LEO1

Ground

Station

LEO2

Figure 15. Topology of the mobile IP scenario.

(a) Delay variation between GS and LEO1. (b) Delay variation between LEO1 and LEO2.

Figure 16. Delay variation.

Figure 16a presents the bidirectional end-to-end delay between LEO1 and GS with or
without deploying MIP. Because LEO1 moves from GEO1 to GEO3 during this period, the
routing hops between LEO1 and GS are reduced. So the delay from LEO1 to GS is also
reduced. However, owing to the home agent mechanism in MIP where all packets sent to
LEO1 need to be forwarded by GEO1, the delay from GS to LEO1 is not changed. Referring
to the scheme without deploying MIP, the communication between nodes is interrupted
immediately when the access point is changed. Figure 16b describes the bidirectional
end-to-end delay between LEO1 and LEO2 with or without deploying MIP. Even though
LEO1 and LEO2 move in the same direction simultaneously, the delay between them is
increased for the home agent mechanism.

(2) Backup Routing and OSPF
The routing convergence process, caused by links variation, makes OSPF routing

unstable. In SN, the node mobility and the instability of channel quality cause the uncertain
communication connections between nodes which further aggravate OSPF’s shortcoming.
Our lab proposes a OSPF-based backup routing. Compared with OSPF, except for the
optimal path, backup routing saves a sub-optimal path. When links change and the
optimal path cannot work, the sub-optimal path takes effect immediately. After the links
are restored, backup routing switches to the optimal path again. This process omits
the convergence process in OSPF and improves the stability of routing. To verify the
performance of this routing strategy, OSPF and backup routing are deployed on GEOs
respectively. The experimental scenario is presented in Figure 17. We choose the time
period from 0 to 500 s. LEO1 is connected to GEO1, and GS is connected to GEO3 at the start.
A 60 s interrupt is inserted between GEO2 and GEO3 every 60s, and repeats four times.

Electronics 2022, 11, 1236 20 of 23

GEO1 GEO2

GEO4

GEO3

GEO5

GEO6

LEO1

Ground

Station

Figure 17. Topology of the IP routing scenario.

(a) End-to-end delay between
GS and LEO1.

(b) End-to-end packet loss ratio
between GS and LEO1.

Figure 18. Network performance parameters between GS and LEO1.

First, LEO1 continuously sends UDP packets to GS at a rate of 100 Mbps during this
period. Figures 17, 18a and 19, respectively, give the receive throughput at GS, end-to-end
link delay, and connection variation between LEO1 and GS in different routing strategies
which show backup routing has a better link connectivity. When the transmission path
has no burst interruption, the performance of OSPF and backup routing has no significant
difference. When the link is interrupted, OSPF triggers the process of discovering the
interruption and routing reconvergence as presented in Figure 18a. While the backup
routing directly switches to the sub-optimal path, it switches back to the original optimal
path when the interrupted link is restored.

Figure 19. Receive throughput at GS.

Electronics 2022, 11, 1236 21 of 23

Then, the effect of bandwidth on the routing convergence time, which could be
reflected by packet loss ratio, is taken into consideration. We configure the maximum
bandwidth to 10 Mbps, 100 Mbps, and 1000 Mbps, respectively, while other link relation-
ships and parameters remain unchanged. The end-to-end packet loss ratio in different
maximum bandwidth is shown in Figure 20. The bandwidth variation has little effect on
backup routing. However, it has a great impact on OSPF, and the impact increases with the
decrease in bandwidth. Because OSPF monitors the link status through the Hello packet,
less bandwidth increases the transmission time of the Hello packet. Backup routing selects
the sub-optimal path directly, thus avoiding this problem.

Figure 20. Packet loss ratio at different bandwidths.

6. Conclusions

In this study, we propose a laboratory testing platform, which consists of logical plane,
control plane, data plane, and measurement plane, for the fundamental problems with SN
and its applications. Based on the SDN and traffic control mechanism, the networking of
the platform can change automatically like that of a real space communication environ-
ment. In addition, integrating with container technology, various emulation scenarios are
reconstructed flexibly with the same deployment as real target networks. Furthermore, the
platform has an extensible structure which supports the horizontal extension of hardware
resources and the access of external physical emulation devices. Lastly, we reproduce the
Earth–Mars communication scene. The experimental results and the comparison results
are nearly the same, which verifies the reliability of the proposed platform. Furthermore,
more emulation experiments are carried out for different network protocol architectures,
network scenarios, and improved protocol technologies to prove the flexible emulation
ability of the platform. Compared with existing SN emulation methods, the proposed
platform effectively balances the authenticity, flexibility and extendibility of the emulation.
Hopefully, the proposed platform can provide a reliable basis for accurately grasping the
future development direction of the key technologies in SN.

Author Contributions: Conceptualization, D.H.; data curation, D.H.; funding acquisition, K.Z.;
methodology, D.H.; supervision, S.D.; visualization, D.H.; writing—original draft, D.H.; writing—
review and editing, K.Z. and W.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 62131012 and the Fundamental Research Funds for the Central Universities under Grant
021014380187.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronics 2022, 11, 1236 22 of 23

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Z.; Li, H.; Wu, Q.; Wu, J. NPVT: Network Protocol Validation Testbed for Integrated Space-Terrestrial Network. IEEE Access

2019, 7, 46831–46845. [CrossRef]
2. Li, H.; Zhou, H.; Zhang, H.; Feng, B. EmuStack: An OpenStack-Based DTN Network Emulation Platform. In Proceedings of the

International Conference on Networking and Network Applications, Hokkaido, Japan, 23–25 July 2016 .
3. Caini, C.; Firrincieli, R.; Davoli, R.; Lacamera, D. Virtual integrated TCP testbed (VITT). In Proceedings of the 4th International

Conference on Testbeds and Research Infrastructures for the Development of Networks & Communities, Innsbruck, Austria,
18–20 March 2012.

4. Birrane, E. The Delay-Tolerant Networking Experimental Network Constructing a Cross-agency Supported Internetworking
Testbed. In Proceedings of thr SpaceOps 2012 Conference, Stockholm, Sweden, 11–15 June 2012; p. 1290363.

5. Wang, R.; Xuan, W.; Wang, T.; Taleb, T. Experimental Evaluation of Delay Tolerant Networking (DTN) Protocols for
Long-Delay Cislunar Communications. In Proceedings of the Global Telecommunications Conference, Honolulu, HI, USA,
30 November–4 December 2009.

6. Radtke, J.; Kebschull, C.; Stoll, E. Interactions of the space debris environment with mega constellations—Using the example of
the OneWeb constellation. Acta Astronaut. 2017, 131, 55–68. [CrossRef]

7. McDowell, J.C. The low earth orbit satellite population and impacts of the SpaceX Starlink constellation. Astrophys. J. Lett. 2020,
892, L36. [CrossRef]

8. Li, Y.; Wang, Y.; Zhang, Q.; Yang, Z. TCDS: A time-relevant graph based topology control in triple-layer satellite networks. IEEE
Wirel. Commun. Lett. 2019, 9, 424–428. [CrossRef]

9. Mingwei, X.; Anqing, X.; Yuan, Y.; Yuliang, W.; Meng, S. Intra-domain routing protocol OSPF+ for integrated terrestrial and space
networks. J. Tsinghua Univ. (Sci. Technol.) 2017, 57, 12–17.

10. de Cola, T.; Marchese, M. Joint use of custody transfer and erasure codes in DTN space networks: Benefits and shortcomings.
In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM, Miami, FL, USA, 6–10 December 2010;
pp. 1–5.

11. Zhang, X.J.; Peng, X.H. A testbed of erasure coding on video streaming system over lossy networks. In Proceedings of the 2007
International Symposium on Communications and Information Technologies, Sydney, Australia, 17–19 October 2007; pp. 535–540.

12. Kazmi, S.A.A.; Iqbal, M.S.; Coleri, S. Total transmission time minimization through relay selection for full-duplex wireless
powered cooperative communication networks. In Proceedings of the International Conference on Ad-Hoc Networks and
Wireless, Bari, Italy, 19–20 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 257–268.

13. Lin, X.; Rommer, S.; Euler, S.; Yavuz, E.A.; Karlsson, R.S. 5G from space: An overview of 3GPP non-terrestrial networks. IEEE
Commun. Stand. Mag. 2021, 5, 147–153 . [CrossRef]

14. Martian, A.; Craciunescu, R.; Vulpe, A.; Suciu, G.; Fratu, O. Access to RF white spaces in Romania: Present and future. Wirel.
Pers. Commun. 2016, 87, 693–712. [CrossRef]

15. The Network Simulator—Ns-2. Available online: https://www.isi.edu/nsnam/ns (accessed on 1 March 2022).
16. OPNET Network Simulator—Opnet Projects. Available online: https://opnetprojects.com/opnet-network-simulator (ac-

cessed on 1 March 2022).
17. Ivancic, W.; Eddy, W.M.; Stewart, D.; Wood, L.; Northam, J.; Jackson, C. Experience with delay-tolerant networking from orbit.

Int. J. Satell. Commun. Netw. 2010, 28, 335–351. [CrossRef]
18. Balasubramanian, A.; Levine, B.; Venkataramani, A. DTN routing as a resource allocation problem. In Proceedings of the

2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Kyoto, Japan,
27–31 August 2007; pp. 373–384.

19. Handigol, N.; Heller, B.; Jeyakumar, V.; Lantz, B.; Mckeown, N. Reproducible Network Experiments Using Container-Based Emulation;
ACM: New York, NY, USA, 2012; p. 253.

20. Hibler, M.; Ricci, R.; Stoller, L.; Duerig, J.; Guruprasad, S.; Stack, T.; Webb, K.; Lepreau, J. Large-scale virtualization in the
emulab network testbed. In Proceedings of the 2008 USENIX Annual Technical Conference (USENIX ATC 08), Boston, MA, USA,
22–23 June 2008.

21. Lai, J.; Tian, J.; Zhang, K.; Yang, Z.; Jiang, D. Network Emulation as a Service (NEaaS): Towards a Cloud-Based Network
Emulation Platform. Mob. Netw. Appl. 2020, 26, 766–780. [CrossRef]

22. Yong, L.; Li, S.; Jin, D.; Zeng, L. TUNIE: A virtualized platform for network experiment on programmable infrastructure. In
Proceedings of the IEEE International Conference on Network Protocols, Vancouver, BC, Canada, 17–20 October 2011.

23. Komnios, I.; Alexiadis, I.; Bezirgiannidis, N.; Diamantopoulos, S.; Lenas, S.A.; Papastergiou, G.; Tsaoussidis, V. Spice testbed: A
dtn testbed for satellite and space communications. In Proceedings of the International Conference on Testbeds and Research
Infrastructures, Guangzhou, China, 5–7 May 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 205–215.

24. Rieser, J.; Berry, K.; Clare, L.; Slywczak, R. The NASA Space Communications Testbed (SCT). In Proceedings of the Aerospace
Conference, Big Sky, MT, USA, 4–11 March 2006.

http://doi.org/10.1109/ACCESS.2019.2906397
http://dx.doi.org/10.1016/j.actaastro.2016.11.021
http://dx.doi.org/10.3847/2041-8213/ab8016
http://dx.doi.org/10.1109/LWC.2019.2960682
http://dx.doi.org/10.1109/MCOMSTD.011.2100038
http://dx.doi.org/10.1007/s11277-015-2638-1
https://www.isi.edu/nsnam/ns
https://opnetprojects.com/opnet-network-simulator
http://dx.doi.org/10.1002/sat.966
http://dx.doi.org/10.1007/s11036-019-01426-0

Electronics 2022, 11, 1236 23 of 23

25. Caini, C.; Firrincieli, R.; Lacamera, D.; Tamagnini, S.; Tiraferri, D. The TATPA testbed; A testbed for advanced transport
protocols and architecture performance evaluation on wireless channels. In Proceedings of the 2007 3rd International Conference
on Testbeds and Research Infrastructure for the Development of Networks and Communities, Lake Buena Vista, FL, USA,
21–23 May 2007; pp. 1–7.

26. Jennings, E.H.; Segui, J.S.; Woo, S. Machete: Environment for Space Networking Evaluation; Jet Propulsion Laboratory, National
Aeronautics and Space: Pasadena, CA, USA, 2010.

27. Stancu, A.L.; Halunga, S.; Vulpe, A.; Suciu, G.; Fratu, O.; Popovici, E.C. A comparison between several software defined
networking controllers. In Proceedings of the 2015 12th International Conference on Telecommunication in Modern Satellite,
Cable and Broadcasting Services (TELSIKS), Nis, Serbia, 14–17 October 2015; pp. 223–226.

28. Kubernetes. Available online: https://kubernetes.io (accessed on 1 March 2022).
29. Docker. Available online: https://docs.docker.com (accessed on 1 March 2022).
30. Introduction to Linux Interfaces for Virtual Networking. Available online: https://developers.redhat.com/blog/2018/10/22

/introduction-to-linux-interfaces-for-virtual-networking (accessed on 1 March 2022).
31. Traffic Control. Available online: https://wiki.linuxfoundation.org/networking/netem (accessed on 1 March 2022).
32. Jurgelionis, A.; Laulajainen, J.P.; Hirvonen, M.; Wang, A.I. An Empirical Study of NetEm Network Emulation Functionalities. In

Proceedings of the 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN),
Maui, HI, USA, 31 July–4 August 2011.

33. Caini, C.; Fiore, V. Moon to earth DTN communications through lunar relay satellites. In Proceedings of the 2012 6th Advanced
Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC), Vigo,
Spain, 5–7 September 2012.

34. Earth Observation Satellite. Available online: https://en.wikipedia.org/wiki/Earth_obser-\vation_satellite (accessed on
1 March 2022).

35. Shahriar, A.Z.M.; Atiquzzaman, M.; Rahman, S. Mobility management protocols for next-generation all-IP satellite networks.
IEEE Wirel. Commun. 2008, 15, 46–54. [CrossRef]

https://kubernetes.io
https://docs.docker.com
https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking
https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-for-virtual-networking
https://wiki.linuxfoundation.org/networking/netem
https://en.wikipedia.org/wiki/Earth_obser-\vation_satellite
http://dx.doi.org/10.1109/MWC.2008.4492977

	Introduction
	Related Work
	Research Works on Space Network
	Space Network Experimental Validation Approaches

	Architecture of the Network Emulation Platform
	Architecture
	Logical Plane
	Control Plane
	Data Plane
	Measurement Plane

	Physical Implementation Model
	Web UI
	Main Controller
	Emulation Node
	Sdn Switch

	Platform Characteristics Analysis

	Designs
	Node
	Node Virtualization
	Node Parameters
	Multiple Network Protocols

	Link
	Time Slot
	Implementation of a Time-Varying Connection Relationship
	Implementation of Dynamic Link Characteristic

	Network Topology
	Lower Physical Network Topology
	Upper Logical Network Topology

	Experiments and Discussion
	Deployment
	Preparatory Phase
	Implementation Phase
	Data Collection Phase

	Link Characteristics Validation
	Moon to Earth Communication Scenario
	Experimental Scenario
	Experimental Results

	Ip Satellite Network Scenario
	Experimental Scenario
	Experimental Results

	Conclusions
	References

