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Abstract: This paper presents a fault detection method in three-phase induction motors using Wavelet
Packet Transform (WPT). The proposed algorithm takes a frame of samples from the three-phase
supply current of an induction motor. The three phase current samples are then combined to generate
a single current signal by computing the Root Mean Square (RMS) value of the three phase current
samples at each time stamp. The resulting current samples are then divided into windows of
64 samples. Each resulting window of samples is then processed separately. The proposed algorithm
uses two methods to create window samples, which are called non-overlapping window samples and
moving/overlapping window samples. Non-overlapping window samples are created by simply
dividing the current samples into windows of 64 samples, while the moving window samples are
generated by taking the first 64 current samples, and then the consequent moving window samples
are generated by moving the window across the current samples by one sample each time. The new
window of samples consists of the last 63 samples of the previous window and one new sample.
The overlapping method reduces the fault detection time to a single sample accuracy. However, it
is computationally more expensive than the non-overlapping method and requires more computer
memory. The resulting window samples are separately processed as follows: The proposed algorithm
performs two level WPT on each resulting window samples, dividing its coefficients into its four
wavelet subbands. Information in wavelet high frequency subbands is then used for fault detection
and activating the trip signal to disconnect the motor from the power supply. The proposed algorithm
was first implemented in the MATLAB platform, and the Entropy power Energy (EE) of the high
frequency WPT subbands’ coefficients was used to determine the condition of the motor. If the
induction motor is faulty, the algorithm proceeds to identify the type of the fault. An empirical setup
of the proposed system was then implemented, and the proposed algorithm condition was tested
under real, where different faults were practically induced to the induction motor. Experimental
results confirmed the effectiveness of the proposed technique. To generalize the proposed method,
the experiment was repeated on different types of induction motors with different working ages and
with different power ratings. Experimental results show that the capability of the proposed method
is independent of the types of motors used and their ages.

Keywords: electrical fault detection; electrical fault classification; three-phase induction motor;
wavelet packet transform; wavelet power energy; and moving window technique
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1. Introduction
Literature Review and Motivation

The application of induction motors in the industry is crucial due to their unique
features, e.g., their simple construction, high reliability, and the low maintenance that
they need [1,2]. However, the induction motors are subject to various types of electrical
faults. The immediate detection of the fault could save the induction motor from disastrous
damages. Even the early detection of the fault could reduce the required maintenance
time. Electrical faults of induction motors can be detected by extracting features from
motor’s current signal. Many techniques are used for fault diagnosis in induction motors,
such as Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT). All these
techniques are useful for analyzing non-stationary signals. However, these techniques
may not provide the required time-frequency information from the signal needed to locate
the fault, particularly sharp signals in a nonlinear system such as induction motor [3–6].
Hence, researchers have focused on developing new fault detection and classification
techniques, e.g., using signal processing algorithms to extract features from motor’s current
signal such as frequency components of its current [7–9]. Signal processing algorithms
are mathematical tools that are used to analyze electrical signals and extract their specific
features, e.g., frequency components and time-frequency information [10]. The application
of FFT in fault diagnosis is limited as it provides some information about the frequency
components of the signal, but it does not provide any information about the timing of the
signal frequency components. Short-Time Fourier Transform (STFT) generates a window
with two dimensions named time and frequency [11,12]. The window has a predefined
size, which is moved along the signal, enabling to analyze of the section of the signal within
the window. This method limits the problem of identifying the time of the occurrence of
a frequency component to the size of the STFT window and provides information about
the frequency components of the signal within the STFT window time slot. Hence, if a
fault takes a longer or shorter time duration than the STFT window size, the STFT-based
fault detection method’s accuracy is significantly affected. Wavelet Transform (WT) can be
used to mitigate the time limitation of the STFT by using different wavelet scales, implying
window sizes, where the wavelet scale is inversely proportional to the frequency contents
of the signal. Hence, WT provides more time–frequency localized information about the
signal [13,14].

In this paper, Wavelet Packet Transform is used to perform two level WT on the induc-
tion motor’s current window frame samples, extracting its features (‘sym5’ wavelet was
used to generate experimental results). The WT divides the input current samples into their
four wavelet subbands, called aa2, ad2, da2, and dd2. The information in the resulting high
frequency wavelet subbands is used for fault detection and recognition. Several threshold
values have been empirically determined using the entropy energy of the resulting high
frequency wavelet subbands’ of the signal and are used for the detection and classification
of the faults of the induction motors. In this research, a window size of 64 samples was
used, and two types of windows were used named: non-overlapping window samples
and moving/overlapping window samples. The proposed technique using the two types
of windows for the detection and classification of faults in induction motors was first
simulated in MATLAB platform and then implemented using real induction motors and
test equipment. Experimental results were consistent with the theory.

In the last few years, various techniques have been reported in the literature for fault
detection and diagnosis in induction motors, aiming at improving their efficiency in terms
of accuracy and the time they need to detect and classify the fault. Some of these techniques
are Wigner-Ville Distribution (WVD) [15], Discrete Wavelet Transform (DWT) and Power
Density Entropy (PDE) [16], Support Vector Machine (SVM), MUltiple SIgnal Classification
(MUSIC) and Shannon Entropy (SE) ([17–19]), DWT, and Hilbert Transform (HT) [20].

Recently, the application of signal processing-based fault detection and classification
methods in inductive motors has received significant interests amongst researchers [15–20].
This includes analyzing the frequency components of the current signal of the induction
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motor using various signal processing algorithms. However, the application of the WPT
along with the entropy power energy of different wavelet high frequency subbands for
detection and then the classification of the type of the fault in induction motors has neither
been theoretically investigated and nor practically demonstrated.

In this research, the application of wavelet packet transform for electrical fault detec-
tion, classification, and the protection of the inductor motor against electrical faults in its
stator and rotor is investigated. The proposed method utilizes two level WPT to decompose
the motor’s overall current samples to their wavelet subbands and then computes the
entropy energy of the resulting fine WPT subbands. The calculated entropy energy is used
as the measure to check the state of the motor. If it was found that the motor is faulty,
the calculated entropy energy value is checked against a range of empirically calculated
threshold values to identify the type of motor fault. Moreover, the implemented system
activates a trip signal to disconnect the motor from the power supply to protect the motor
against further damages, which can occur due to the fault. Due to the nature of the WPT,
which uses two digital filters to decompose the input signal to its wavelet subbands, the
proposed method to some extent is robust to noise.

The contributions of this paper are as follows:

• Development of a real-time fault detection algorithm for induction motors using
wavelet packet transform;

• Use of Entropy Power Energy (EE) of high frequency subbands of the current signal to
determine the condition of the induction motor and, moreover, to classify the type of
the fault;

• Calculation of threshold values to differentiate different faults from EE energy signal;
• The real-time implementation and test of the algorithm on real equipment;
• Generalizing the algorithm by testing the algorithm on several induction motors of

the same power rating with different parameters.

Comparative analyses between Stockwell transform, Hilbert transform, and WPT are
given in Table 1. The state-of-the-art fault detection methods and the proposed technique’s
features have been tabulated in Table 2. This provides the reader a clear understanding of
the proposed and other state-of-the-art methods’ features.

Table 1. Comparative analysis between Stockwell, Hilbert, and wavelet packet transform.

Wavelet Packet Transform
(Used in the Proposed Method) Stockwell Transform Hilbert Transform

The wavelet packet transform generates a
time and frequency representation of the
signal at different scales.
In this paper, the entropy power Energy
of detailed WPT subbands of the
induction motor is used to detect and
classify the induction motor’s faults.
Accurate fault detection in less than
a second.

It splits the input signal into a number of
sections. Each resulting section is first
smoothed using a Gaussian filter. It then
determines the frequency components of
each section using Fourier transform.
It provides a good time-frequency
representation of the signal, but there is
always a trade-off between its time and
frequency accuracy. Moreover, its
performance is limited to the size of the
window. Authors reported good
performance in terms of accuracy in the
detection of the faults in a certain section
of the motor, e.g., rotors.

It provides a representation of the signal
in the same domain (frequency domain).
Therefore, it does not provide
information about the time of the fault
occurrence. However, the focus of the
presented research in this paper is on the
speed and accuracy of fault detection and
classification.
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Table 2. Key features of the proposed and state-of-the-art methods.

Authors Used Techniques Key Features

V.Climente-Alarcon et al. [15]
It uses Wigner–Ville distribution
techniques to study rotor asymmetry and
mixed eccentricities.

It splits the stator current into several time-frequency
components.

Syed Kamruddin Ahamed
et al. [16]

It uses DWT, Root Mean Square (RMS),
and Power Density Entropy (PDE) index.

It analyses the window current signal in the
steady-state operation of the motor. It determines
the PDE of the high frequency wavelet of the motor
current to detect faults in the stator winding of the
induction motor.

R. Hammo [17] It uses the Support Vector Machine
(SVM), which is a learning-based method.

Results show that the application of SVM is
alleviating some of the limitations of the Artificial
Neural Network (ANN) based methods. Moreover,
the SVM based method is more effective than ANN
based method in detecting faults in terms of
accuracy, where SVM uses the Radial Bases Function
kernel.

J. Lu, P. Wang et al. [18]

It uses the MUltiple SIgnal Classification
(MUSIC) technique and least-squares
magnitude estimation to detect the
frequency and amplitude of the faults.

Because the research of step travel produces lower
efficiency, they proposed a method to improve
MUSIC method using Niche Bare-bones Practical
Swarm Optimization (NBPSO), which was used to
detect broken bars in an induction motor.

A. Mejia-Barron et al. [19] It uses both Shannon Entropy (SE) index
and artificial intelligence fuzzy logic.

To diagnose faults in the stator of an induction
motor, it applies brick-will band-pass filters at
multiple levels on induction motor’s current signal
and then calculates SE.

M. Nemec et al. [21]
It uses the frequency components of
inductor motor’s current signal to
diagnose faults in the rotor of the motor.

The existence of certain frequency components in the
current signal of the induction motor indicates the
fault in the motor. This method was applied to two
different models of induction motor in MATLAB
platform.

Proposed method It uses wavelet packet transform and
Shannon Entropy (SE) criteria

It uses performs 2 level WPT on induction motor
current signal decomposes it into its wavelet
subbands. It then determines EE of the fine WPT of
the current as a feature to determine the status of the
motor. If it was found faulty, it uses some empirically
pre-determined thresholds to classify the fault.

The rest of this paper is organized as follows. Section 2 discusses the wavelet packet
transform and entropy power energy. Section 3 discusses the modeling of a 3-phase
induction motor with its different possible electrical faults. Section 4 presents the simulink
model and real time data collection of the current signal from an induction motor. The
proposed fault detection and diagnosis algorithm will be discussed in Section 5. Section 6
discusses the calculation of threshold values for the proposed method. Section 7 presents
simulation results for the detection and classification of faults and power supply isolation.
Experimental results are provided in Section 8, and the paper will be concluded in Section 9.

2. Wavelet Packet Transform and Wavelet Energy

Wavelet packet transform is a linear transform, which is widely used in signal pro-
cessing and offers a much richer signal analysis [22,23]. WPT has a binary tree structure,
where at the jth WPT decomposition level, there are 2j WPT subbands. The relationship
between the scale (frequency components) and the time (duration) in each level is inversely
proportional [24]. For example, by performing one level WPT on a signal with N samples,
WPT divides the signal into two subbands, where the length of the resulting subband
signals is N/2. The resulting subbands are called approximation and detailed subbands, in
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consequence, the approximate subband carries information about low-frequency compo-
nents, and the detailed subband contains information about high-frequency components of
the signal. By applying two level WPT on the signal, four WPT subbands of length N/4
are generated. Figure 1 shows the structure and names of the resulting subbands for the
three-level WPT of a signal.
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The Shannon Entropy (wavelet energy) is a mathematical tool that can be used to
describe the energy content of a signal. The general form of the total Shannon Entropy of a
signal is given by the following: H(X) = −K

∫ ∞
−∞ p(x). log(p(x))dx [25], where p(x) is the

probability density of the signal, K is the proportionality constant, and x is the signal. The
information content of the signal x can be determined by calculating its Shannon Entropy.
Hence, the expression of Shannon entropy H(X) can be written as follows [26,27].

H(X) = ∑X∈R p(x) log2 p(x) (1)

3. Modeling of a 3-Phase Induction Motor with Electrical Faults

In this research, the MATLAB Simulink platform has been used to model the induction
motor. This includes the modeling of an induction motor, both its healthy and faulty
conditions.

3.1. Modelling the Healthy Condition

Based on the conventional theory of machines, using the dynamic equation, the flux,
current, and speed equations of an induction motor can be written as follows [28–30]:

dΨd1
dt

= vd1 − id1·R1 +ωk·Ψq1 (2)

dΨq1

dt
= vq1 − iq1·R1 +ωk·Ψd1 (3)

dΨd2
dt

= −id2·R2 + (ωr −ωk)·Ψq2 (4)

dΨq2

dt
= −iq2·R2 + (ωr −ωk)·Ψd2 (5)

id1 =
1

L1
·(Ψd1 − Lh·id2) (6)

iq1 =
1

L1
·
(
Ψq1 − Lh·iq2

)
(7)

id2 =
1

L2
·(Ψd2 − Lh·id1) (8)

iq2 =
1

L2
·
(
Ψq2 − Lh·iq1

)
(9)
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dωr

dt
=

P
J
·
[
P·
(
Ψd1·iq1 −Ψq1·id1

)
− TL

]
(10)

where vd1,q1 is the stator voltage in the d-q axis, vd2,q2 is the rotor voltage in the d-q axis, R1
is stator resistance, R2 is rotor resistance, id1,q1 is stator current in d-q axis, id2,q2 is rotor
current in the d-q axis, ωr is rotor speed, ωk is the synchronous speed, Ψd1,q1 is stator flux
linkage in the d-q axis, Ψd2,q2 is rotor flux linkage in d-q axis, L1, L2 , and Lh are the stator,
rotor, and mutual inductance, respectively, P is the number of pole pairs, J is the moment of
inertia, and TL is the load torque.

3.2. Modeling the Faulty Condition
3.2.1. Fault in the Stator of the Motor

The stator’s faults in an induction motor can be modeled as a new winding added to
the stator’s original winding. This new winding has two parameters, which can provided
information about the location and ratio of the winding. We can model any type of electrical
fault that occurs in the stator winding by using these parameters. To represent faults in the
stator, the following points are must be considered:

1. The localization parameter (θcc): This represents the angle between the new winding,
which is generated by the fault, and the first phase winding (a). The value of this
angle can be 0◦, 120◦, or 240◦ according to the three phases, called a, b, and c.

2. The detection parameter (ηcc) represents the percentage of inter-turn short circuit
winding, where this ratio is obtained by dividing the number of inter-turn short
circuit winding by the total number of the stator winding in one phase. The short
circuit current under d-q axis frame can be represented as shown in the following
equations [31]:

icck =
2
3
·ηcck

R1
·p(−θ)·Q(θcck)·p(θ)· vdqs (11)[

cos(θ) cos(θ+ 90)
sin(θ) sin(θ+ 90)

]
(12)

Q (θcc) =

[
cos(θcc)2 sin(θcc)· cos(θcc)

sin(θcc)· cos(θcc) sin(θcc)2

]
(13)

where p(θ) is the rotational matrix, and θ is the rotor angle. The equation of the stator
faults (11) is for the case of one phase. To represent faults in two or three phases, the
following equation can be used:

idqs = ίdqs + ∑3
k=1 icck for k = 1, 2, 3 (14)

where ίdqs (symbols must be the same) represents the stator current in its normal condition.

3.2.2. Fault in Rotor Part

The rotor’s faults in an induction motor can be represented as a new winding added
to the rotor’s electrical winding, as shown in Equation (15). When representing a fault in
the rotor, two important points should be considered: (1) the fault localization, which is
represented by the angle (θo); this is the angle between the rotor axis of a broken bar and
the first phase axis in the rotor (ar); and (2) the ratio of fault, which gives the amount of fault
( ηo), which is equal to the number of inter-turns of the fault divided by the full number of
inter-turns of the healthy phase. Equation (16) represents current in a faulty winding:

0 = ηo· R2io +
d
dt

Ψo (15)

ĩdqo = Ro·
dΨdqm

dt
=

2
3
· ηo

R2
·Q(θo)·

dΨdqm

dt
(16)
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where io is the faulty rotor current, Ψo is the faulty rotor flux, Ro is the faulty rotor
resistance, and dΨdqm is magnetizing flux. According to Equation (16), the fault winding
can be represented as a resistance element connected in parallel to the rotor’s resistance
and magnetizing inductance; hence, we have the following:

1
Req.

=
1

R1
+

1
Ro

Req.
−1 = R1

−1 +
2
3
·ηo ·R1

−1·Q(θo) (17)

where Q(θo) is the localization matrix. Then, the equivalent resistance can be written
as follows:

Req. = R1 + Rfault

Req. = R1 −
α

1− α ·R1 ·Q(θo) where α =

(
2
3

)
· ηo (18)

4. Simulink Model of the Proposed Technique and Real Time Data Collection

The Simulink model of an induction motor including its stator and rotor faults can
be represented as shown in Figures 2–10. Figure 2 represents a healthy induction motor.
While Figures 3 and 4 represent a motor with the fault in its stator and rotor, respectively,
where its inputs are vd1, vq1, ωk, and Tm. Figure 3 expands the block diagram of Figure 2.
Figure 2 is divided into five blocks: The first two blocks represent converting three phase
voltages to d-q axis frame voltage; the main block in this figure is the three-phase induction
motor in d-q axis, where the implementation of this block depends on the above equations
(Equations (2)–(10)), while the last two blocks represent converting motor’s current from
d-q current axis frame to current in three phase ia, ib, and ic.
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The Simulink model of an induction motor with faults in its stator can be implemented
in MATLAB Simulink, as shown in Figure 4. This figure represents the MATLAB Simulink
implementation of inter-turn stator faults block. Figure 5 shows the sub-block of the stator
faults, which is implemented based on Equations (11)–(13), while Figure 4 represents a
healthy induction motor, as shown in Figure 2. Adding the inter-turn stator fault block,
which is implemented in Figure 5, has been performed according to Equation (14), where
Equation (14) represents the normal stator current combined with current that results
from a stator’s fault. The Simulink model of the induction motor with rotor faults can be
implemented in MATLAB Simulink, as shown in Figure 6. Like stator faults, rotor faults
can be implemented according to Equation (18), which represent rotor faults and then
added to the system provided in Figure 2.

The sub-block “rotor faults” in Figure 6 represents the effect of a broken bar in the
rotor of an induction motor according to Equation (18) and as illustrated in Figure 7.
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The collected data from the Simulink induction motor model are shown in Figures 8–10.
These figures represent the current signal for 25% short circuit fault in phase c, phase a to
ground fault, and line a to line b fault, respectively.

5. Proposed Fault Detection and Diagnosis Algorithm

To study the proposed technique and determine its effectiveness in detecting electrical
faults in induction motors, the proposed algorithm is applied to data gathered from the
simulation model of the induction motor in the MATLAB Simulink platform. Two algo-
rithms are presented in this paper. The first algorithm is a moving window frame technique,
where each new window frame current samples overlaps 63 out of its 64 samples with its
previous window samples, and the window frame movement is one sample at each step;
and the second algorithm is a non-overlapping window frame method, where a window of
64 samples size is taken from the motor’s combined current signal and processed, as shown
in Figures 11 and 12. In the non-overlapping method, the maximum delay between the oc-
currence of a fault and its detection is 64 samples (a quarter of the cycle) and its processing
time. The block diagram of this method is illustrated in Figure 12. The disadvantage of the
second algorithm is its slower response in fault detection. To overcome the disadvantage of
the non-overlapping window frame algorithm and to speed up the fault detection process,
the moving frame algorithm is proposed, where the condition of the motor is assessed for
possible fault after every new current sample is arrived, as shown in Figure 11.

If the proposed method detects a fault in the induction motor, it activates a trip signal,
which is sent to the circuit breaker of the motor to disconnect the motor from its power
supply, and an alarm window will be activated on the PC screen. The proposed algorithm
is then moved to its next stage to classify the type of electrical fault in the induction motor.
The diagnosis algorithm’s block diagram is shown in Figure 13.
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Proposed Fault Detection Threshold

The three current signals of the motor stator, ia, ib, and ic are combined to generate a
single current signal called S by computing their root mean square value. The resulting
current signal, S, is then sampled at sampling rate of 12.8 kHZ, generating a discrete signal,
which is used for fault detection and recognition. The proposed method then takes 64
samples of the resulting signal in each of its processing stages using either of its window
frame sampling methods, as explained in the previous section. It then applies two level
WPT on the window samples, decomposes the window samples to their wavelet subbands
using ‘sym5’ mother wavelet, and generates four wavelet subbands called aa2, ad2, da2,
and dd2. The wavelet energies for the samples of a healthy and a faulty induction motor are
shown in Figures 14 and 15, respectively. The proposed method uses the total energy value
of all coefficients in the second level of the WPT subbands as a feature for fault detection
and diagnosis in the induction motor.
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As shown in Figures 14 and 15, the energy values for a health condition are equal
to zero in all WPT high frequency subbands, ad2, da2, and dd2, while aa2 subband has
a constant value, which is proportional to the energy conversion rate of the motor. It is
common knowledge that aa2, the approximation subband, provides an approximation
representation of the motor total current, and theWPT high frequency subbands, ad2, da2
and dd2, demonstrate the ac behavior of the current signal. In a healthy motor, the energy
in its high frequency subbands is low. However, faults in an induction motor results in
fluctuation in its current signal, which can be monitored and assessed using the information
in its current WPT high frequency subbands’ signal. Empirical investigation in this research
showed that the EE value of the da2 subband can be used to detect and classify the fault
within the motor. As the information in this WPT subband demonstrates the ac behavior of
the motor total current signal, the combined current signal is first smoothed by filtering the
input current using the WPT low-pass filter and then its high-frequency components are
extracted by passing the smoothed signal via the wavelet high-pass filter. Several empirical
threshold values are determined to identify the type of fault in the motor using information
presented in Figure 16. Experimental results show that the EE value in the da2 WP subband
has a direct link with the type of the fault in the motor as follows: (a) A healthy induction
motor has a small EE value of almost zero; (b) when a fault occurs in the motor’s rotor, the
effect of this fault on the current signal will create an EE value higher than zero; and (c)
when the stator is faulty, the EE value will be higher than the EE value of the motor with a
fault in its rotor, and as the number of faulty coils increase, the EE value of the da2 signal is
increased too.
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The EE values of all four WPT subbands of the motor for different types of faults are
calculated and tabulated in Table 3.
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Table 3. Entropy Energy values for different operating conditions of the induction motor at its four
WPT second level subbands.

Fault

Entropy
aa2 ad2 da2 dd2

Healthy no load −5.08 × 105 7.41 × 10−5 4.30 × 10−4 8.37 × 10−5

Healthy full load −2.65 × 106 2.78 × 10−4 1.30 × 10−3 2.85 × 10−4

No load to full load healthy −1.52 × 107 0.0014 7.06 × 10−4 9.30 × 10−4

10% fault phase-b −2.13 × 106 −0.5372 0.1605 −3.4479

15% fault phase-b −2.39 × 106 −6.6746 0.2593 −20.04

25% fault phase-c −3.28 × 106 −1.36 × 102 0.5235 −3.14 × 102

25% fault phase-b −3.29 × 106 −48.5216 0.4773 −121.5733

50% fault phase-b −7.83 × 106 −446.9326 0.2243 −1.02 × 103

50% phase-b and 10% phase-a −8.08 × 106 −448.9294 0.2169 −1.02 × 103

25% phase-b and 10% phase-a −3.43 × 106 −48.5382 0.4742 −121.5034

Loss phase-a −1.48 × 108 −3.13 × 103 −7.15 −6.64 × 103

Phase-c to ground −3.16 × 107 −3.04 × 103 −8.88 −6.65 × 103

Three-phase fault −1.88 × 107 −17.2076 0.1901 0.5652

Line-a to line-b fault −3.91 × 107 0.5976 −2.6355 −78.3431

Line-a to line-b to ground fault −1.55 × 108 −3.55 × 104 −1.63 × 103 −2.97 × 104

rotor broken 1-bar fault −2.07 × 106 0.0025 0.0704 6.44 × 10−4

rotor broken 2-bars fault −1.97 × 106 3.08 × 10−4 0.068 2.69 × 10−4

From Table 3, the EE value of da2 can be used to empirically determine threshold
values for the recognition of different faults in an induction motor, as also shown in
Figure 16.

6. Proposed Fault Diagnosis Method—Threshold Values

In this research, the Energy power Entropy (EE) of the da2 subband’s coefficients is
used to determine if the motor is faulty or not. Then, the EE values of the dd2 and ad2
subbands are used to determine the type of the fault. The entropy power energy threshold
values for diagnoses of different types of faults in an induction motor have been determined
and tabulated in Table 4.

Table 4. Entropy power energy threshold values for diagnoses of different types of faults in an
induction motor.

Type of Fault
Entropy Power Threshold Value for WPT Subband

ad2 dd2

Broken one bar 0.0011 3.43 × 10−5

Broken two bars 0.0019 7.11 × 10−5

Line-a to line-b fault 0.7054 0.0764
Loss phase-a 18.3 0.9424
10% inter turn fault phase-b 21.9939 27.0078
25% ph. (b) and 10% ph. (a) inter turn fault 31.7595 125.079
25% inter turn fault phase-b 32.74 125.168
50% inter turn fault phase-b 446.3932 1.02 × 10−3

25% ph. (b) and 10% ph. (a) inter turn fault 446.611 1.02 × 10−3

The entropy power energy curves for WPT dd2− and ad2 subband’s coefficients are
shown in Figure 17a,b. In these, the range of EE values linked to different motor faults has
been annotated on the curves.
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Figure 17. Entropy power energy curve for (a) WPT dd2− and (b) ad2 subband’s coefficients, where
the regions representing different types of faults have been annotated on the curves.

7. Simulation Results for Detection, Diagnosis and Activating the Trip Signal

To assess the performance of the proposed technique on the transition from no load
to full load motor, the simulation results are shown in Figure 18. From this screen shot,
the system illustrates the normal operation of the motor, despite the no load to full load
disturbance (no trip signal and normal operating condition of the motor can be seen on the
PC screen).
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window.

The proposed method when using its moving window frame algorithm takes less time
compared to the method when it uses its non-overlapping window frame algorithm in
detecting faults. However, the proposed method, when using its moving window frame
algorithm, is computationally more expensive and requires more compute memory to be
executed than the proposed algorithm when using the non-overlapping window frames.
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The simulation results for the application of the proposed method when it uses its
non-overlapping window frame are shown in Figures 19 and 20, where these figures show
the stator current before and after the instant fault is being induced and before and after the
activation of the trip signal. Figure 19 shows the current signals before and after isolating
the supply after a trip signal has been initiated by making a 10% short circuit in phase-b,
and in Figure 20, the induced fault is 25% in phase b and 10% in phase a. In both cases,
the trip signal has a delay of 64 samples, because the fault cannot be detected in the first
64 samples.

The simulation results for the application of the proposed method when it uses its
moving window frame are shown in Figures 21 and 22, where these figures show the stator
current before and after the instant fault is being induced and before and after the activation
of the trip signal.
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Figure 21 shows the current signals before and after isolating the supply after a trip
signal has been initiated by making a 10% short circuit in phase-b, and in Figure 22, the
induced fault is 25% in phase b and 10% in phase a. In both cases, the trip signal has a
delay of one to two sample/s. This almost immediate detection and classification of the
fault has significantly improved the efficiency of the system and reduces the damage to the
motor due to the fault.

8. Experimental Results

All the steps of the proposed method, which were simulated in the above theoretical
sections, will be experimentally implemented in this section. The setups of the experimental
equipment are shown in Figure 23. The system includes an induction motor winding in
a special way to allow the implementation of inter-turn short circuit by pulling out three
wires from each phase. Detailed specifications of the system utilized in this experiment are
as follows:

• Induction motor: 1 hp, rated current 2 A, 3-phase 380 V;
• PC specifications: Core i5, RAM 4GB, hard SSD256GB, windows 7, and the proposed

algorithm is implemented in MATLABE 2019B platform and when generating experi-
mental results, no other programs are running on the PC;

• LABJACK UD-U3 is used to capture current samples from the power current lines of
the induction motor.
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Figure 23. The implemented system (a) Block diagram, and (b) practical implementation of the
protection system.

The second stage involves gathering sample data experimentally when different types
of faults are introduced to the induction motor and assessing the proposed threshold values
for detection and classification of the faults. Samples of current signals from a real induction
motor are shown in Figures 24 and 25. Figure 24 shows the current signals for the no-load
condition of the motor, when phase (b) has been disconnected. This resulted in an increase
in the current of phase-a and phase-b. The signals were taken via the current lines, which
feed the stator coils. A special circuit, which can feed the motor without affecting the shape
of voltage/current due to being overloaded, as shown in Figure 23a, is used.
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Figure 25. Stator current signals for no-load with 25% fault in phase (a).

Figure 25 shows the no-load scenario of the motor with a 25% inter-turn fault in
phase (a) as its fault condition. As shown in Figure 25, the current values of phase-a and
phase-b have been increased and harmonic has also appeared on the current signals.

The entropy power energy of the captured signal for all four second level WPT
subbands’ coefficients for healthy and different types of faults in the induction motor has
been calculated from its captured current signals and tabulated in Table 5.
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Table 5. Entropy power energy values of all four second level WPT subbands’ coefficients for different
practical conditions of the induction motor.

Motor Condition
WPT Subbands’ Entropy Power Energy

aa2 ad2 da2 dd2

No-load healthy −189.674 0.1468 0.0831 0.0995
Loaded healthy 781.5769 0.1725 0.0963 0.1224
No-load 25% fault (b) −1.13 × 103 2.0998 0.4176 0.9368
No-load 50% fault (c) −2.56 × 103 6.2222 3.1577 3.0059
No-load with loss ph. (b) −437.3249 0.5828 0.1027 0.1329
Load condition with 10%fault (a) −856.3741 0.6139 0.2703 0.4808
Load condition with 25%fault (b) −2.08 × 103 4.9796 1.2152 2.0776
Load condition with 50% fault (c) −3.14 × 103 11.3992 4.1454 5.4373
Load condition with loss ph. (b) −1.02 × 103 0.7889 0.1922 0.2736
Phase to ground fault −1.27 × 103 2.2173 0.6971 1.259

Entropy power energy of WPT subband da2’s coefficients, which are used to determine
thresholds in practical cases, have been calculated and illustrated in Figure 26 in the form
of a curve.
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By comparing the theoretical and practical curves shown in Figures 17 and 26, it
can be observed that the EE values for current signal in an induction motor increases as
damage to the motor increases. The experiments were repeated with a couple of inductor
motors with the same power rating and feeding system but different motor parameters.
The results confirmed the generality of the findings and computed thresholds. Moreover,
the characteristics of the filters that were used for fault diagnosis show that the entropy
value is close to zero in healthy conditions, but it increases as the fault is induced to the
motor. Therefore, the proposed technique can be used to detect fault in induction motors
in general. In this study, two motors with different parameters but the same power rating
were applied, and similar results were obtained. The generality of the proposed algorithm
was further investigated with MATLAB Simulink simulation on several induction motors
with the same power rating but different motor parameters; the results were in consistent
with our previous findings. From the achieved consistency of the experimental results with
real induction motors with the MATAB Simulink simulation results, it can be concluded that
the proposed method can be used for fault detection and the classification of other types of
motors and expect similar results. However, our experimental results were generated on
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two available motor types with the same power rating. From the theoretical side, the dd2
and ad2’s coefficients were used to determine the diagnosis thresholds to classify the type
of fault in the motor, as shown in Table 6.

Table 6. Computed Entropy power energy threshold values for the classification of the faults using
experimental data.

Type of Fault
WPT Subbands’ Entropy Power Energy

ad2 dd2

10% no load fault-a 0.5016 0.2338
40% no load fault-b 1.3107 1.1831
50% no load fault-c 1.5828 1.3086

Loss phase fault 1.6341 0.8724
Phase to ground 1.7612 1.4303

50% loaded-c 1.3877 0.9955

Experimental results for the application of the proposed method using the computed
threshold values to detect and classify the faults and activate the trip signal to protect the
induction motor by disconnecting it from the power supply are shown in Figures 27–29.
Figure 27 shows the current signals of a healthy induction motor, when it starts to its steady
state. As observed, the trip signal has not been activated, which shows the robustness of
the proposed algorithm.
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Figure 29. Stator current signals and trip signal waveforms for phase (c) to ground fault with load
condition.

Figure 28 shows the stator current signals and the trip signal waveforms for 50%
stator fault in phase (c) on a no-load motor condition. From this figure, the system has
immediately detected the fault in the motor, activated the trip signal, and the breaker has
disconnected the motor from the power supply.

Figure 29 illustrates the stator current signals and trip signal waveforms for phase (c)
to ground fault with load condition. From this figure, the system has immediately detected
the fault in the motor, activated the trip signal, and the breaker has disconnected the motor
from the power supply.

Figure 30 shows a current signal with phase loss fault condition and the detection
signal that is generated from the WPL energy algorithm.
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Figure 30. Stator current signal and trip signal for phase loss fault.

To generalize the validity of the proposed motherhood, the practical experiments and
simulation results were generated using a 1 hp induction motor. The experiments were
repeated with a 3 hp induction motor, when different faults were induced to the motor. The
captured current signals were then processed using the proposed technique. Hence, the
Entropy power Energy (EE) values of all four second level WPT subbands’ coefficients for
different practical conditions of the induction motor were calculated, tabulated in Table 7,
and used as features for determining the condition of the motor. It was already demon-
strated in this paper that the calculated EE value of the motor’s current high frequency
WPT subbands’ coefficients can be used as an indicator to diagnose the condition of the
induction motor. The results presented in Table 7 support the above findings. The results
also show a clear link between the motor power rating and the selection of the threshold
values for distinguishing different conditions of the motor. This can be further studied to
determine a method to normalize the threshold values and make them independent of the
power rating of the motors, which required significant resources but can be beneficial to
the research community.
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Table 7. Entropy power energy values of all four second level WPT subbands’ coefficients for different
practical conditions of the induction motor.

Motor Condition
WPT Subbands’ Entropy Power Energy

aa2 ad2 da2 dd2

No-load healthy −3.8914 × 105 1.7736 × 10−4 0.0191 1.2729 × 10−4

Loaded healthy −7.9257 × 105 3.1433 × 10−4 0.0334 2.2519 × 10−4

No-load 25% fault(b) −2.9841 × 107 −2.2918 × 104 −1.5434 × 103 −256.4051
No-load 50% fault(c) −1.1857 × 108 −1.5737 × 105 −1.0024 × 104 −2.4242 × 103

No-load with loss phase(b) −437.3249 0.5828 × 107 0.1027 0.1329 × 104

Load condition with 10% fault (a) −6.1115 × 106 −1.6653 × 104 −1.0147 × 103 −191.9537
Load condition with 25% fault (b) −3.0647 × 107 −1.1116 × 104 −735.9312 −107.2747
Load condition with 50% fault(c) −1.1952 × 108 −1.7314 × 105 −1.1123 × 104 −2.6732 × 103

Load condition with loss phase (b) −1.02 × 103 0.7889 × 107 0.1922 0.2736 × 104

Phase to ground fault −1.27 × 103 2.2173 × 107 0.6971 1.259 × 105

Figures 31–35 show the current signal of a 3hp induction motor under its different
conditions. The results presented in these Figures are inconsistent with the present results
for a 1 hp induction motor.
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Figure 31. Current signals for 25% short circuit fault in phase b.
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pendent of the power rating of the motors, which required significant resources but can 

be beneficial to the research community. 

Table 7. Entropy power energy values of all four second level WPT subbands’ coefficients for dif-

ferent practical conditions of the induction motor. 

Motor Condition 
WPT Subbands’ Entropy Power Energy 

aa2 ad2 da2 dd2 

No-load healthy −3.8914 × 105 1.7736 × 10−4 0.0191 1.2729 × 10−4 

Loaded healthy −7.9257 × 105 3.1433 × 10−4 0.0334 2.2519 × 10−4 

No-load 25% fault(b) −2.9841 × 107 −2.2918 × 104 −1.5434 × 103 −256.4051 

No-load 50% fault(c) −1.1857 × 108 −1.5737 × 105 −1.0024 × 104 −2.4242 × 103 

No-load with loss phase(b) −437.3249 0.5828 × 107 0.1027 0.1329 × 104 

Load condition with 10% fault (a) −6.1115 × 106 −1.6653 × 104 −1.0147 × 103 −191.9537 

Load condition with 25% fault (b) −3.0647 × 107 −1.1116 × 104 −735.9312 −107.2747 

Load condition with 50% fault(c) −1.1952 × 108 −1.7314 × 105 −1.1123 × 104 −2.6732 × 103 

Load condition with loss phase (b) −1.02 × 103 0.7889 × 107 0.1922 0.2736 × 104 

Phase to ground fault −1.27 × 103 2.2173 × 107 0.6971 1.259 × 105 

Figures 31–35 show the current signal of a 3hp induction motor under its different 

conditions. The results presented in these Figures are inconsistent with the present results 

for a 1 hp induction motor. 

 

Figure 31. Current signals for 25% short circuit fault in phase b. 

 

Figure 32. Current signals for 25% short circuit fault in phase c. Figure 32. Current signals for 25% short circuit fault in phase c.

Electronics 2022, 11, x FOR PEER REVIEW 25 of 27 
 

 

 

Figure 33. Current signals for 10% short circuit fault in phase a and phase b. 

 

Figure 34. Current signals for 25% short circuit fault in phase a. 

 

Figure 35. Current signals for 50% short circuit fault in phase a. 

The maximum scan rate of labjack is equal to 50 k samples/s per the number of chan-

nels used. In this experiment, three channels of the labjack were used. Therefore, the max-

imum sampling rate is 16.67 k samples/s per channel. Using a scan rate of 2500 samples 

per channel per second, the number of samples for each cycle can be calculated as follows. 

sample⁡rate = scan⁡rate × number⁡of⁡channels⁡ × time⁡for⁡one⁡cycle  (19) 

Therefore, for 50 Hz supply, the number of samples in one cycle will be: 

sample⁡rate = 2500 × 3 × 0.02 ⁡ = 150⁡sample⁡in⁡one⁡cycle⁡   

As it can be seen from Figure 30, the time between the occurrence of a fault and the 

system to activate the trip signal is five samples, which equals to 
0.02

150
× 5 = 0.00066⁡s. 

These experimental results confirm the capability of the proposed technique in detecting 

and identifying the type of the fault in a very short period of time. The achieved perfor-

mance is due to the wavelet time-scale decomposition property of the ‘sym5’ mother 

wavelet. 

  

Figure 33. Current signals for 10% short circuit fault in phase a and phase b.



Electronics 2022, 11, 1253 24 of 26

Electronics 2022, 11, x FOR PEER REVIEW 25 of 27 
 

 

 

Figure 33. Current signals for 10% short circuit fault in phase a and phase b. 

 

Figure 34. Current signals for 25% short circuit fault in phase a. 

 

Figure 35. Current signals for 50% short circuit fault in phase a. 

The maximum scan rate of labjack is equal to 50 k samples/s per the number of chan-

nels used. In this experiment, three channels of the labjack were used. Therefore, the max-

imum sampling rate is 16.67 k samples/s per channel. Using a scan rate of 2500 samples 

per channel per second, the number of samples for each cycle can be calculated as follows. 

sample⁡rate = scan⁡rate × number⁡of⁡channels⁡ × time⁡for⁡one⁡cycle  (19) 

Therefore, for 50 Hz supply, the number of samples in one cycle will be: 

sample⁡rate = 2500 × 3 × 0.02 ⁡ = 150⁡sample⁡in⁡one⁡cycle⁡   

As it can be seen from Figure 30, the time between the occurrence of a fault and the 

system to activate the trip signal is five samples, which equals to 
0.02

150
× 5 = 0.00066⁡s. 

These experimental results confirm the capability of the proposed technique in detecting 

and identifying the type of the fault in a very short period of time. The achieved perfor-

mance is due to the wavelet time-scale decomposition property of the ‘sym5’ mother 

wavelet. 

  

Figure 34. Current signals for 25% short circuit fault in phase a.

Electronics 2022, 11, x FOR PEER REVIEW 25 of 27 
 

 

 

Figure 33. Current signals for 10% short circuit fault in phase a and phase b. 

 

Figure 34. Current signals for 25% short circuit fault in phase a. 

 

Figure 35. Current signals for 50% short circuit fault in phase a. 

The maximum scan rate of labjack is equal to 50 k samples/s per the number of chan-

nels used. In this experiment, three channels of the labjack were used. Therefore, the max-

imum sampling rate is 16.67 k samples/s per channel. Using a scan rate of 2500 samples 

per channel per second, the number of samples for each cycle can be calculated as follows. 

sample⁡rate = scan⁡rate × number⁡of⁡channels⁡ × time⁡for⁡one⁡cycle  (19) 

Therefore, for 50 Hz supply, the number of samples in one cycle will be: 

sample⁡rate = 2500 × 3 × 0.02 ⁡ = 150⁡sample⁡in⁡one⁡cycle⁡   

As it can be seen from Figure 30, the time between the occurrence of a fault and the 

system to activate the trip signal is five samples, which equals to 
0.02

150
× 5 = 0.00066⁡s. 

These experimental results confirm the capability of the proposed technique in detecting 

and identifying the type of the fault in a very short period of time. The achieved perfor-

mance is due to the wavelet time-scale decomposition property of the ‘sym5’ mother 

wavelet. 

  

Figure 35. Current signals for 50% short circuit fault in phase a.

The maximum scan rate of labjack is equal to 50 k samples/s per the number of
channels used. In this experiment, three channels of the labjack were used. Therefore, the
maximum sampling rate is 16.67 k samples/s per channel. Using a scan rate of 2500 samples
per channel per second, the number of samples for each cycle can be calculated as follows.

sample rate = scan rate× number of channels × time for one cycle (19)

Therefore, for 50 Hz supply, the number of samples in one cycle will be:

sample rate = 2500× 3× 0.02 = 150 sample in one cycle

As it can be seen from Figure 30, the time between the occurrence of a fault and the
system to activate the trip signal is five samples, which equals to 0.02

150 × 5 = 0.00066 s. These
experimental results confirm the capability of the proposed technique in detecting and
identifying the type of the fault in a very short period of time. The achieved performance is
due to the wavelet time-scale decomposition property of the ‘sym5’ mother wavelet.

9. Conclusions

A fault detection technique for three-phase induction motors using wavelet packet
transform was detailed in this paper. The proposed algorithm combines sample three phase
current signals of the induction motor and combined them using their mean Squair values
creating a single current signal, which is used to determine the health of the motor and
to check if a fault occurred and to identify the type of the fault. The proposed algorithm
splits the current samples into window frame samples. Two methods were proposed to
generate window samples: non-overlapping window frames and moving window frame
methods. Each resulting window frame samples was then processed separately as follows.
It performed two level WPT on the window frame samples, extracting its four wavelet
subbands. It then calculates the entropy power energy of the resulting high frequency
subband coefficients. The resulting da2’s EE value is used to determine the condition
of the motor. If it was found that the motor is faulty, ad2 and dd2’s EEs are used to
identify the type of the fault. Threshold values for fault detection and classification are
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first determined using MATLAB Simulink simulations, and then they were empirically
verified using real equipment under induced faults. The proposed system was capable of
activating a trip signal after detecting a fault and disconnecting the induction motor from
the power supply to protect the motor against further electrical damage. Moreover, it was
shown that one-sample moving window could detect the fault much faster than the non-
overlapping method at the price of higher computational cost and computer memory usage.
The proposed method was first simulated in MATLAB platform and then implemented
using a real motor and test equipment. Experimental results on a range of motors were
consistent with the simulation results. To the authors’ knowledge, Stockwell and Hilbert
transform and their combination have been widely used for fault detection in transmission
lines. However, their applications for fault detection and classification in induction motors
can be investigated as an extension to the proposed method in the future.

Author Contributions: Conceptualization, A.M.H. and A.A.O.; methodology, A.M.H., A.A.O., A.L.S.
and R.H.A.Z.; software, A.M.H. and A.A.O.; validation, A.M.H., A.A.O., Y.I.A.A.-Y., H.F., A.L.S. and
G.M.; formal analysis, A.M.H. and A.A.O.; investigation, A.M.H. and A.A.O.; resources, A.M.H.
and A.A.O.; writing—original draft preparation, A.M.H., A.A.O., R.H.A.Z., Y.I.A.A.-Y., H.F., G.M.,
R.A.A.-A., A.L.S. and A.S.-A.; writing—review and editing, A.M.H., A.A.O., R.H.A.Z., Y.I.A.A.-Y.,
H.F., G.M., R.A.A.-A. and A.S.-A.; visualization, A.M.H., A.A.O., R.H.A.Z., Y.I.A.A.-Y., H.F., G.M.,
R.A.A.-A. and A.S.-A.; supervision, A.A.O.; Y.I.A.A.-Y., G.M. and R.A.A.-A. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported in-part by British Academy under Grant GCRFNGR3/1541.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chavhan, K.B.; Ugale, R.T. Automated Test Bench for an Induction Motor using Lab VIEW. In Proceedings of the 1st IEEE

International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 4–6 July 2016; pp. 1–6.
2. Ramasamy, P.; Krishnasamy, V. SVPWM control strategy for a three-phase five level dual inverter fed open-end winding induction

motor. ISA Trans. 2020, 102, 105–116. [CrossRef] [PubMed]
3. Bacha, K.; Salem, S.B.; Chaari, A. An improved combination of Hilbert and Park transforms for fault detection and identification

in three-phase induction motors. Int. J. Electr. Power Energy Syst. 2012, 43, 1006–1016. [CrossRef]
4. Bouzid, M.B.K.; Champenois, G.; Tnani, S. Reliable stator fault detection based on the induction motor negative sequence current

compensation. Int. J. Electr. Power Energy Syst. 2017, 95, 490–498. [CrossRef]
5. Zaggout, M.; Ran, L. Detection of rotor electrical asymmetry in wind turbine doubly-fed induction generators. Renew. Power

Gener. IET 2014, 8, 878–886. [CrossRef]
6. He, W.; Zi, Y.; Chen, B.; Wu, F.; He, Z. Automatic Fault Feature Extraction of Mechanical Anomaly on Induction Motor Bearing

Using Ensemble Super-Wavelet Transform. Mech. Syst. Signal Process. 2014, 54, 1–24. [CrossRef]
7. Asad, B.; Vaimann, T.; Belahcen, A.; Kallaste, A.; Rassõlkin, A.; Iqbal, M.N. Broken rotor bar fault detection of the grid and

inverter-fed induction motor by effective attenuation of the fundamental component. IET Electr. Power Appl. 2019, 13, 2005–2014.
[CrossRef]

8. Campos-Delgado, D.U.; Espinoza-Trejo, D.R.; Palacios, E. Fault-tolerant control in variable speed drives: A survey. IET Electr.
Power Appl. 2008, 2, 121–134. [CrossRef]

9. Sapena-Bano, A.; Martinez-Roman, J.; Riera-Guasp, M. Induction machine model with space harmonics for fault diagnosis based
on the convolution theorem. Int. J. Electr. Power Energy Syst. 2018, 100, 463–481. [CrossRef]

10. Mehala, N.; Dahiya, R. A Comparative Study of FFT, STFT and Wavelet Techniques for Induction Machine Fault Diagnostic
Analysis. In Proceedings of the International Conference on Computational Intelligence, Haryana, India, 10–12 December 2008;
pp. 203–206.

11. Espinoza-Trejo, D.R.; Campos-Delgado, D.U.; Bossio, G.; Bárcenas, E.; Hernández-Díez, J.E.; Lugo-Cordero, L.F. Fault diagnosis
scheme for open-circuit faults in field-oriented control induction motor drives. IET Power Electron. 2013, 6, 869–877. [CrossRef]

12. Shi, P.; Chen, Z.; Vagapov, Y.; Davydova, A.; Lupin, S. Broken Bar Fault Diagnosis for Induction Machines Under Load Variation
Condition Using Discrete Wavelet Transform. In Proceedings of the IEEE East-West Design & Test Symposium (EWDTS 2014),
Kiev, Ukraine, 26–29 September 2014; Volume 1, pp. 1–4.

13. Roshanfekr, R.; Jalilian, A. Wavelet-based index to discriminate between minor inter-turn short-circuit and resistive symmetrical
faults in stator windings of doubly fed induction generators: A simulation study. IET Gener. Transm. Distrib. 2016, 10, 374–381.
[CrossRef]

14. Yahia, K. Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal
under non-stationaryoperating conditions. ISA Trans. 2014, 53, 603–611. [CrossRef] [PubMed]

http://doi.org/10.1016/j.isatra.2020.02.034
http://www.ncbi.nlm.nih.gov/pubmed/32169292
http://doi.org/10.1016/j.ijepes.2012.06.056
http://doi.org/10.1016/j.ijepes.2017.09.008
http://doi.org/10.1049/iet-rpg.2013.0324
http://doi.org/10.1016/j.ymssp.2014.09.007
http://doi.org/10.1049/iet-epa.2019.0350
http://doi.org/10.1049/iet-epa:20070203
http://doi.org/10.1016/j.ijepes.2018.03.001
http://doi.org/10.1049/iet-pel.2012.0256
http://doi.org/10.1049/iet-gtd.2015.0545
http://doi.org/10.1016/j.isatra.2013.12.002
http://www.ncbi.nlm.nih.gov/pubmed/24461376


Electronics 2022, 11, 1253 26 of 26

15. Climente-alarcon, V.; Antonino-daviu, J.; Member, S. Induction Motor Diagnosis by Advanced Notch FIR Filters and the
Wigner-Ville Distribution. IEEE Trans. Ind. Electron. 2014, 61, 4217–4227. [CrossRef]

16. Ahamed, S.K.; Sarkar, A.; Mitra, M.; Sengupta, S. Induction Machine Stator Inter-Turn Short Circuit Fault. Innov. Syst. Des. Eng.
2014, 5, 75–82.

17. Hammo, R. Faults Identification in Three-Phase Induction Motors Using Support Vector Machines. In Master of Technology
Management Plan II Graduate Project; Bowling Green State University: Toledo, OH, USA, 2014.

18. Lu, J.; Wang, P.; Duan, S.; Shi, L.; Han, L. Detection of Broken Rotor Bars Fault in Induction Motors by Using an Improved MUSIC
and Least-Squares Amplitude Estimation. Math. Probl. Eng. 2018, 2018, 1–12. [CrossRef]

19. Mejia-barron, A.; De Santiago-perez, J.J.; Granados-lieberman, D.; Amezquita-sanchez, J.P.; Valtierra-rodriguez, M. Shannon
Entropy Index and a Fuzzy Logic System for the Assessment of Stator Winding Short-Circuit Faults in Induction Motors. Electronic
2019, 8, 90. [CrossRef]

20. Bessam, B.; Menacer, A.; Boumehraz, M.; Cherif, H. DWT and Hilbert Transform for Broken Rotor Bar Fault Diagnosis in
Induction Machine at Low Load. Energy Procedia 2015, 74, 1248–1257. [CrossRef]
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