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Abstract: FPGAs can provide application-specific acceleration for computationally demanding tasks.
However, they are rarely considered general-purpose platforms due to low productivity of software
development and long reconfiguration time. These problems can be mitigated by implementing a
coarser overlay atop the FPGA fabric. Combining this approach with partial reconfiguration allows
for the modification of individual processing elements (PEs) of the virtual architecture without alter-
ing the rest of the system. Module relocation can be used to share implementation details between
functionally equivalent PEs that use identical sets of resources, thus eliminating redundant place-
ment and routing runs. Proper floorplanning is crucial for virtual Coarse-Grained Reconfigurable
Architectures (CGRAs) with relocatable PEs considering their tendency to use nearest-neighbor
connection patterns. It requires solving two problems—finding identical regions in the FPGA fabric
and assigning individual partitions to certain locations. This article presents minor improvements
of a state-of-the-art solution for the first and proposes a novel technique for solving the other. The
proposed automated floorplanner uses modified breadth-first search with direction-based penalties to
create initial floorplan consistent with geometry of logical array, then improves the result with 2-opt
local optimization. Compared to simulated annealing solutions, the proposed approach allows for
the reduction in the floorplanning time by two to three orders of magnitude without compromising
the quality of the results.

Keywords: Reconfigurable Computing; FPGA; partial reconfiguration; virtual architectures; CGRA;
design methodology; floorplanning; productivity

1. Introduction

The breakdown of Dennard scaling [1] made satisfying the ever-growing demand on
computational power increasingly difficult. The limited range of further performance im-
provements (power wall, multicore bottleneck) and relatively low energy efficiency of General-
Purpose Processors (GPP) has caused a great interest in alternative computing approaches.

1.1. Coarse-Grained and Fine-Grained Reconfigurable Logic

The idea of the Reconfigurable Computing (RC) [2] paradigm is to adjust hardware
architecture to fit application requirements. Instead of decomposing a function into a series
of basic operations performed on fixed hardware, custom temporary data-paths optimized
specifically for this purpose are generated. In theory, such an approach combines perfor-
mance and energy efficiency of hardware with flexibility of software.

Field Gate Programmable Arrays (FPGAs)—the most popular reconfigurable plat-
forms, use fine-grained Look-Up Table (LUT) based reconfigurable logic that allows for the
definition of independent custom formulas and connections for individual bits. As a re-
sult, FPGAs can be used to emulate virtually any digital circuit. However, this incredible
flexibility comes at a cost. Each reconfigurable component introduces area and energy
consumption overhead compared to non-reconfigurable counterparts. The complexity of

Electronics 2022, 11, 1261. https://doi.org/10.3390/electronics11081261 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11081261
https://doi.org/10.3390/electronics11081261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3453-4791
https://orcid.org/0000-0002-9695-1729
https://doi.org/10.3390/electronics11081261
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11081261?type=check_update&version=3


Electronics 2022, 11, 1261 2 of 25

hardware with multiple configuration options for all primitives is drastically increased,
which requires reducing clock frequency to achieve timing closure. Moreover, considering
that not only functionality but also placement and routing of each individual gate-level op-
eration is determined independently, both logical and physical synthesis of FPGA designs
are difficult and time-consuming tasks. Furthermore, having more configuration options
leads to larger configuration data size and consequently longer reprogramming times. The
introduction of partial reconfiguration [3], which allows modifying functionality of some
components while preserving the configuration of the rest, helped to mitigate this prob-
lem. There is however another issue: since many applications consist mostly of arithmetic
operations, the flexibility of fine-grained logic often cannot be fully exploited. In order to
achieve better efficiency for byte- or word-based computations, modern FPGAs combines
fine-grained logic with interwoven coarser blocks such as DSPs and RAMs. For arithmetic
calculation intensive applications, reconfigurable platforms based solely on such blocks
can be even a better fit.

CGRAs (Coarse-Grained Reconfigurable Architectures) is a loosely defined group of
programmable devices with processing elements (PEs) of coarser spatial granularity oper-
ating on larger arguments (e.g., 32-bit words) rather than individual bits. The architectures
proposed over the years vary in purpose, degree of reconfigurability, granularity level,
construction of functional units, and interconnection types. As a result of the transition to
a smaller number of more complex processing elements, common functionality changes
for entire operands, and bus-based connection routing, CGRAs sacrifice flexibility but
offer different advantages: superior performance for arithmetic operations, reduced energy
consumption, and faster reconfiguration. What is more, the higher abstraction level and
simplified architecture can be much more convenient for reconfigurable systems end users,
especially if they lack hardware background.

1.2. Virtual Coarse-Grained Reconfigurable Architectures

Due to the lack of mature, commonly available physical CGRA architectures and both
enormous costs and extremely long development of custom ASIC CGRA, virtual architec-
tures implemented as overlays atop FPGAs are not uncommon [4–15]. Apart from serving
prototyping purposes for architecture development, Virtual Coarse-Grained Reconfigurable
Architectures (VCGRAs) can be used to provide a convenient high abstraction layer for
FPGA-based systems end users. As the underlying hardware is still fine-grained, the ap-
proach does not offer performance gains, energy efficiency improvements, nor reductions
of space overhead in silicon. Nevertheless, it can be used to simplify the system description
and narrow down the design space, therefore reducing the development cycle (develop,
implement, debug) time, which is crucial whenever time-to-market is essential.

Mapping an application onto an FPGA with an intermediate overlay layer comprises
two distinctive tasks: front-end (application onto virtual architecture) and back-end (over-
lay onto physical FPGA) mapping. Considering that the overlay architecture is only
temporarily formed within the FPGA fabric, the entire virtual architecture can be altered
and remodeled if it benefits mapping or execution. In other words, there are two levels
of reconfigurability—adjustments of VCGRA configuration for minor and entire overlay
replacement for major changes. Functional changes of the coarse blocks can be performed
by using register-based circuit switching within a single FPGA configuration, dynamic
partial reconfiguration for block content swapping, or a combination of the two. The latter
approach offers a virtually unlimited number of possible PE variants and resource uti-
lization overhead reduction, but changing functionality takes much longer as it requires
reprogramming a section of FPGA. It also entails binding overlay blocks to certain regions
of the underlying chip.

Xilinx FPGAs use module-based partial reconfiguration (also referred to as Dynamic
Function Exchange). Top-level logic is divided into a set of individually reprogrammable
modules and a static part. On a higher abstraction level the reconfigurable partitions can
be treated as processing elements of a CGRA. Normally, each instance of a functional
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module uses individual, location-specific implementation. Consequently, an array of
N × M identical PEs requires N × M implementations for each configuration. However, it
is possible to force relocatability of the modules, so that common implementation results
could be used regardless of location.

This study presents a methodology for mapping custom coarse-grained overlay archi-
tectures with fully reconfigurable processing elements onto Xilinx FPGAs. The innovative
aspect of the proposed approach is that it uses reconfigurable partition based virtual coarse
blocks with module relocation used to reduce the number of location-specific implementa-
tions. The proposed design flow can be divided into the following stages:

• Definition of virtual coarse block interface;
• Specification of its resource requirements;
• Identification of potential partition regions in the target FPGA chip;
• Floorplanning of virtual coarse blocks;
• Implementation of the static part of the architecture with black-box modules;
• Implementation of any desired functionality in a relocatable reference coarse block.

The methodology allows coarse-grained blocks array scaling and easy migration
between different physical platforms. Although the proposed methods were developed for
Xilinx 7-Series devices, they should be easily adaptable to Xilinx UltraScale FPGAs, as the
architectural differences are mostly low level.

2. Related Work
2.1. Trends in Coarse-Grained Reconfigurable Architectures Design

The authors of [16] present a very thorough review of more than thirty different
Coarse-Grained Reconfigurable Architectures, outline general trends, and propose a clas-
sification. They define CGRAs as architectures characterized by spatial reconfiguration
granularity at fixed functional unit level or above and temporal reconfiguration granularity
at region/loop-nest level or above. Despite significant differences between individual archi-
tectures, some common characteristics can be observed. Typically, CGRAs use a 2D mesh or
direct-connection based network of PEs with 32-bits wide operations, static (compile-time)
scheduling, and to some extent dynamic (run-time) reconfiguration of both computing
elements and interconnections. These features are used as a CGRA design reference for
the purpose of architecture analysis within the scope of this study. Virtual architectures
in the form of FPGA overlays are not explicitly mentioned in the review. However, not
only do they meet the proposed CGRA definition, but some of the analyzed architectures
(e.g., [17,18]) use FPGA overlay implementation as a prototype.

A more recent survey [19] covers recently emerged architectures. The authors sug-
gest that, despite significant progress, CGRA architectures and tools have not yet reached
sufficient maturity for a widespread commercial use. The work analyzes technical trends,
outlines challenges, and presents a novel multidimensional taxonomy for CGRAs. The pro-
posed architecture specification uses abstract high-level programming, computation, and
execution models to describe the CGRA from a behavioral perspective. At a lower level,
micro-architecture defines technical details of actual physical manifestation of processing
elements, interconnects, etc. The authors argue that virtualization—i.e., operating on a
unified micro-architecture independent model to generate common abstract configurations
that can later be interpreted onto specialized physical CGRAs—is the most crucial step
towards widespread adoption of the Coarse-Grained architectures. It is suggested that
state-of-the-art FPGA virtualization techniques could provide good foundations for physi-
cal CGRA-targeted virtualization. In particular, FPGA-based CGRA overlays are raised as a
reference point. They are also considered to be a feasible solution in systems using physical
FPGAs, as the abstract programming layer offers platform and CAD independence, agile
development, and general productivity increase.
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2.2. Virtual Coarse-Grained Reconfigurable Architectures

For all the benefits they offer, CGRAs have one fundamental flaw—they are not
generally available. As a result, virtual implementations in the form of FPGA overlays are
often used to exploit some of the advantages of CGRAs. In addition to its undoubted value
in prototyping and architecture development, the overlay approach has an advantage from
the programming perspective, even if it does not provide the same performance nor energy
efficiency [20].

Multiple architectures, analysis, techniques, and tools for Virtual CGRAs have been
introduced over the years [4–15,21]. In spite of the lack of standardization, different
motivations and approaches to virtual CGRA architecture design, common features, and
solutions can be observed.

Typically, a CGRA overlay uses a 2-D mesh of homogeneous processing elements (PEs)
with NESW (north-east-south-west) connections [4–7,21]. A linear communication pattern
is often used for image processing applications [8]. More complex models like crossbar [9]
and multistage global interconnections [10] offer simplified front-end mapping, but high
connection cost and potential congestion problems make them unusable for large networks.

The micro-architecture of individual PEs is rarely discussed. In most cases, the VCGRA
design operates on higher abstraction and implementation details and depends entirely on
FPGA CAD tools responsible for back-end mapping. The few exceptions include arrays of
DSP-based processor-like cores [11,22]. Reconfigurability of the virtual architecture layer is
usually obtained by using a runtime circuit switching controlled by setting registers and
virtual switch blocks implemented using FPGA logic resources. However, in order to reduce
resource utilization overhead, tunable LUTs and switch blocks were proposed [13,23,24] to
utilize FPGA configuration memory for that purpose.

In contrast to CGRAs with physical manifestation, overlay architectures can offer an-
other layer of reconfiguration as the entire virtual architecture can be reformed. QUKU [4],
a prototype FPGA-based overlay with 2-D mesh of virtual programmable elements, is a
good example. On the FPGA configuration layer, each of the PEs can be configured as
one of several possible variants, like a multiplier or a simple ALU. On the overlay layer,
a simple instruction-like configuration is used to determine a cycle-by-cycle behavior of
individual PEs (which input arguments are used, which parts of the available operation are
performed in ALU, etc.). The proposed solution offers rapid overlay configuration changes,
which are essential for temporal distribution of computations. However, this requires
reprogramming the entire FPGA if even a single PE is replaced with a different module.

It is worth noting that although the most overlays use homogeneous coarse PE arrays,
they are often used as a component of heterogeneous systems. Most commonly, VCGRAs
are used with general-purpose CPUs, not only as external hosts controllers but often in
the form of soft cores implemented in FPGA [7] or processors embedded with FPGA in a
SoC [6,22]. Moreover, as the granularity is defined by the abstract programming model,
fine-grained logic can be used alongside it to provide better adaptability and state machine
logic handling in a so-called Mixed-Grained or Multi-Grained approach [15,20,25].

A recent survey [26] comparing multiple VCGRA architectures suggests that overlays
can be effectively used as general-purpose, on-demand application accelerators for FPGA-
based systems. They do introduce a significant hardware performance penalty, but in the
case of general-purpose acceleration, adaptation to application changes is more important.
According to the study, this is where overlays really excel, with three orders of magnitude
reduction in placement and routing time as well as hardware kernel context switching time.

2.3. Mapping Tools and Techniques

Apart from work focused on specific VCGRA architectures, many design tools and
techniques that can be used with a variety of coarse-grained overlays have been proposed
recently. The majority of the work uses standard off-the-shelf FPGA flows for the back-
end and concentrates on different aspects of front-end mapping. Focusing on application
mapping is understandable since temporal granularity of application-specific configura-



Electronics 2022, 11, 1261 5 of 25

tions is much finer than that of overlays. Consequently, as multiple applications can be
mapped and run using a single virtual architecture, the impact front-end mapping has on
performance and especially development productivity is significant.

CGRA-ME [21,27] is an extremely versatile, VTR [28] inspired mapping framework
for CGRA that can be used with both physical and overlay manifestations. It allows for the
definition of custom architectures via an XML-based description language and supports
a variety of connection patterns. The framework translates LLVM-compiled intermediate
representation of a program into a data-flow graph (DFG) and maps it onto PEs of the
architecture using a simulated-annealing based mapper or integer linear programming
technique. Virtual architecture can then be implemented as either standard-cell or FPGA
overlay using standard tool flows. The presented virtual solution uses Altera/Intel FPGAs
and tools. It is mentioned that placing a physical realization of PEs in the form of a regular
grid coherent with logic representation in the virtual CGRA is desired, but no methods for
obtaining that goal are presented.

A huge advantage of overlays is that each application can be mapped onto an individ-
ual optimized version of virtual architecture. QuickDough [6], a design framework for soft
CGRA accelerators, analyses requirements of compute kernel and selects the best fitting
accelerator from a library of pre-built overlays. The library can be updated upon users’
requests with custom architectures based on the provided SCGRA template. The frame-
work uses standard FPGA design flow to implement the overlays, but the authors note that
due to regularity of SCGRA template architectures, other state-of-the-art techniques [12]
(described further in this section) could be used to accelerate the process.

Prioritizing front-end mapping without considering its influence on the back-end
process can have a negative impact on VCGRA performance. Even though front-end
mapping is theoretically independent from the low-level aspects of the micro-architecture,
individual techniques may be applicable only for architectures with certain structures
and interconnection networks or they may work well only for applications with specific
communication patterns. Certain architecture features that simplify the front-end mapping
can increase the complexity of the back-end process. Crossbar routing with direct con-
nections between all PEs is an exemplary case. It is an excellent solution for Just-in-Time
task scheduling, as it simplifies the overlay placement and routing problem to O(1), at the
expense of the connection cost of O(N2) [9]. Apart from direct changes in required routing
resources, increasing complexity diminishes the chances of CAD tools finding a solution
with satisfactory timing and no congestion.

Increasing the efficiency of the overlay to FPGA mapping and improving the perfor-
mance of the actual underlying hardware are less common subjects of research, as standard
techniques and tools for logical synthesis and implementation for FPGAs are considered
efficient. However, specificity of VCGRA architectures can be exploited for better results.

TLUT/TCON [13,23,24] is a complex design flow for FPGA overlays aimed at reducing
logic utilization overheads. It uses the parametrized VCGRA model with expression-based
definitions of setting registers which are then implemented as tunable look-up tables (with
table entries being Boolean functions of a parameter rather than ones and zeros). When an
application is mapped onto such an overlay, appropriate parameters’ values are determined
and applied to the placed and routed generic configuration in a so-called specialization
stage. This way, setting registers are kept entirely in the configuration memory of the FPGA
instead of using additional logic resources. A similar approach is proposed for changing
settings of individual routing switches; however, this is possible only for hypothetical
FPGAs, as vendors do not provide access to low level routing reconfiguration infrastructure.
It is worth noting that parametrized configuration generation and specialization require an
entire dedicated toolchain developed for this purpose.

Despite being identical to the overlay perspective, individual PEs of virtual architec-
tures are usually implemented independently for better global optimization. According to
LaForest and Steffan [5], partitioning can be used as a simple solution to improve compute
density and speed of mesh based overlays, as it prevents unnecessary deduplication of
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components in the critical paths. Moreover, the implementation result of a single instance
can be reused at other locations. Rapid Overlay Builder (ROB) [12] proposes a combination
of techniques for fast implementations of virtual architectures in Xilinx FPGA, without com-
promising the efficiency of the solution. Instead of performing independent placement and
routing for each PE, ROB uses hard macro relocation of implementation results, with possi-
ble multiple variants for different sets of resources. The flow comprises resource budgeting
for PEs, floorplanning their distribution in FPGA fabric, placing and routing initial PE
variants, relocating implementation results, and interconnecting the design. However,
the two initial phases require manual engagement from the users. The proposed techniques
can be used to obtain significant speedup of placement and routing process, but as they
are based on now obsolete ISE and GoAhead tools, the flow is incompatible with newer
Xilinx FPGAs.

Recently introduced IMPRESS [14,15] is an academic design flow for Xilinx FPGAs ca-
pable of mapping virtual architectures onto networks of reconfigurable partitions. The tool
is based on set of TCL scripts working under Xilinx Vivado. It exploits module relocation
to reduce implementation time and bitstream memory footprint. Although proper floor-
planning of the reconfigurable partition is claimed to be crucial for efficient mapping of
virtual architectures, no automation for the process is provided.

2.4. Relocatable Partitions in FPGAs

Modern FPGAs are highly heterogeneous and modules can only be relocated between
partitions using compatible sets of resources. Reusing the placement and routing result at
another location by applying them as fixed design constraints can speed up implementation
and hence shorten the development cycle [29,30]. Nevertheless, relocating entire partial
bitstreams is far more advantageous. Even though many studies on this subject were
published over the years, a vast majority (i.e., [31–36]) have become outdated with the
emergence of new FPGA architectures and changes in design tools.

Oomen et al. [37] established a great foundation for bitstream relocation in Xilinx
7-Series devices. Their work presents design requirements and methods that can be
used to enforce relative placement and routing of modules in order to achieve bitstream
compatibility. Unfortunately, the work oversees potential global routing feed-through and
can lead to breaking routing connections if it occurs. Retkowski et al. [38] proposed a very
similar approach extended by a feed-through prevention obtained by module isolation.
Both studies are presented as proof-of-concept and address solely the relocation between
two compatible partitions.

For the purpose of relocating virtual coarse-grained block implementation results
(as constraints or bitstreams) to multiple locations within the same or across multiple
designs—as presented in this study—the authors proposed an improved technique based
on the aforementioned work. Its distinctive features are:

• Separated workflows for structural static design and reconfigurable module functionalities;
• Nested sub-PBlock based constraining of partition-to-static port buffers;
• Cross region routing prevention (as adjacent regions can be unavailable at

different positions);
• Local routing loop-back prevention (as loop-back resources replacing connections in

the available direction occur only in boundary located switchboxes).

This study focuses on different aspects of Virtual CGRA implementation in FPGAs;
partition relocatability is only presented to the extent required to comprehend the proposed
solutions. Technical details of all methods and tools used to obtain reconfigurable module
relocatability are described in full in a previous publication by the main author [29,39].

Another similar relocation technique has been recently proposed as a part of the
IMPRESS design automation tool [14,15]. The main difference between the approaches
is in the global routing feed-through prevention method. Instead of applying the vendor
provided module isolation mechanisms, IMPRESS generates blocker nets around reconfig-
urable regions.
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2.5. Partition Floorplanning

The majority of state-of-the-art FPGA partition floorplanning solutions (i.e., [40–44])
focus on optimizing area coverage (best utilization of available area, with minimal over-
head) and minimizing total wire length (Manhattan distance between connected compo-
nents). Typically, optimization is based on simulated annealing. However, some solutions
use Mixed-Integer Linear Programming, which is claimed to be more effective for large
partitions with a time limited search. Contrary to the previously used techniques, all con-
temporary solutions must consider FPGAs heterogeneity. Another key restriction for floor-
planning reconfigurable modules in Xilinx devices, acknowledged in the aforementioned
work, is regularity of partition geometry (due to the configuration memory construction,
only rectangular reconfigurable regions aligned to clock region borders are supported).

Module relocation entails even more restrictions as it is only possible if original and
target regions use identical resource distribution. Given the heterogeneity of modern
FPGAs, partition relocatability is only obtainable at very specific locations in the fabric.
Consequently, the characteristics of the floorplanning problem are completely different
than for designs without module relocation. Instead of being an area coverage problem,
floorplanning becomes a combination of common pattern search (finding regions with
identical resource distribution) and combinatorial optimization (selecting which region
should be occupied by each PE).

R. Backasch et al. [45] proposed a technique that can be used to identify homogenous
reconfigurable regions in modern heterogeneous FPGAs for the purpose of partition relo-
cation. The approach exploits column-based regularity of resource distribution in Xilinx
FPGAs. The technique identifies column patterns that satisfy resource requirements for
partition, eliminates non-minimal patterns, and finds all occurrences of regions that use
such a distribution in a target chip. The authors present search results for Xilinx Virtex
(xc5vfx70, xc6vlx240, xc7vx690) devices but do not test the partition relocation between
such regions. Although the general ideas are relevant and constitute a solid foundation
for the work presented in this study, several issues important for actual implementation of
relocatable partitions were not addressed. Regions might be misidentified as compatible
since no differentiation between resource columns of opposite alignment is made. Insepara-
bility of adjacent interconnection tiles is also not respected, which may cause back-to-back
violations in Xilinx 7-Series [46]. Finally, no isolation feasibility checks are performed.

AutoReloc [36] is a bitstream relocation design-flow enhancing capabilities of the now
obsolete Xilinx PlanAhead software. It uses a two-phase partition floorplanning algorithm.
The initial stage is a column pattern choice. Contrary to [45], it uses a different search strat-
egy and considers left- and right-alignment of resource tiles and interconnection columns
inseparable. The proposed search method always finds only minimal patterns, which is
usually an advantage, but, as explained later in this article, is not always desirable. What
is more, the algorithm omits non-reconfigurable regions, but can place partitions directly
adjacent to them, which can make partition-to-static routing generated elsewhere impossi-
ble to recreate, unless additional restrictions are applied. The technique could be adapted
to use with module isolation, required for routing feed-through prevention, but does not
support it in the original form. From all patterns found with at least a designer-specified
number of occurrences, one is selected based on arbitrary but reasonable criteria. Once
a pattern is chosen, simulated annealing is performed to find optimal selection of available
blocks. The objective function is defined so that total distance between selected regions
is minimized and minimal distance between two partitions is bigger that an empirically
predefined threshold (to avoid congestion). The optimization is limited to selecting the
best set of reconfigurable regions; no effort to select the optimal position for individual
partitions is made.

Contrary to the presented state-of-the art solutions, floorplanning techniques proposed
in this study support module isolation and optimize placement of individual partitions.
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3. Materials and Methods

Exploiting reconfigurability of the underlying FPGAs enhances capabilities of Virtual
CGRAs in both prototyping and end-use applications. FPGAs can be reprogrammed to
change configuration of setting registers [23], swap processing elements with different
variants [4], or even replace entire overlay [6]. However, reconfiguring the entire FPGA
is time consuming and might be inefficient if changes are limited. Partial reconfiguration
(PR) allows for the reprogramming of a section of FPGA, while leaving the rest of the
fabric untouched. Due to vendor-specific construction of configuration memory, partial
reprogramming affects fixed sectors of FPGA primitives, grouped (differently across various
devices) based on their physical location in the chip. Therefore, virtual components of an
overlay architecture need to correspond to specific sets of resources in the underlying chip,
to be individually reconfigurable on the FPGA level.

3.1. Resource Distribution and Reconfigurable Partition in Xilinx FPGAs

Xilinx FPGAs support module-based partial reconfiguration under a name of Dynamic
Function Exchange (DFX). At the top level of hierarchy, any Partially Reconfigurable design
is divided into a number of reconfigurable partitions and a static part. Each partition
needs to be assigned to a partition block (PBlock)—a PR compatible sector of the FPGA
fabric. At the top level, all partitions are treated as black-boxes; any reconfigurable module
with compatible interface can be implemented within the partition, provided that PBlock
resources are satisfactory for module requirements.

Modern Xilinx FPGA architectures use highly heterogeneous resources. For the pur-
pose of PBlock construction analysis, only reconfigurable logic resources are of relevance,
other resources (including communication transceivers, input–output buffers, PCIe con-
trollers, XADC converters, etc.) will be omitted. Xilinx FPGAs use coarse Block RAMs and
DSPs alongside two variants of fine-grained LUT-based Configurable Logic Blocks—with
(CLBM) and without (CLBL) additional distributed RAM and shift registers. The internal
structure of each Xilinx FPGA device is highly connected to the construction of its clock tree.
The fabric is divided into clock regions corresponding to horizontal clock routing channels
branching from a centrally located vertical clock spine or multiple vertical spines in the case
of UltraScale devices. Resources are grouped by type and distributed unevenly in columns
perpendicular to clock region rows (Figure 1). In general, resources of a single type fill
an entire span of a column within a single clock region—occasional occurrences of non-
reconfigurable resources and empty spaces in the FPGA fabric prevent some columns from
being uniform across multiple clock rows. In both Xilinx 7-Series and UltraScales, routing
resources used by the components are placed alongside either side of the logic alternately,
in separate interconnection block columns (INT). Despite being uneven, the distribution is
very regular with observable repetitiveness of identical patterns (Figure 1).

The smallest unit of configuration memory that can be independently reprogrammed
is defined as a configuration frame. It contains configuration data for all components
in a clock-region wide section of a single logic column and the routing corresponding
switchboxes. Configurations of individual components reside at fixed-offset positions,
based on their relative vertical location within the span of the clock region. A partition
block can cover area corresponding to multiple configuration frames tiled horizontally
(within a clock region) and vertically (across multiple regions), but only rectangular shapes
are allowed. Furthermore, enlarging the partition area increases time required to reprogram
it. Theoretically, reconfiguration of a single frame is allowed, but as partial reconfiguration
flow in Xilinx Vivado tools does not allow separating adjacent interconnection tiles (back-
to-back violation) [46], it is only feasible at specific locations.
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Figure 1. Simplified schematic of resource distribution in Xilinx 7-Series devices. The FPGA fabric is
divided into lock regions (X0Y0 to X1Y2), interconnection blocks are located to either side of logic
resources (CLB, BRAM, DSP). Dashed lines indicate repetitions of arbitrarily selected column pattern
across clock regions.

3.2. Overlay Architecture Assumptions

In theory, any CGRA can be implemented in the form of an overlay atop sufficiently
powerful FPGA, but due to the characteristics of the underlying hardware, virtual im-
plementations of some architectures might be far less efficient than others. In addition,
the diversity of CGRAs causes great differences in both front-end and back-end mapping
tasks, hence establishing universal techniques compatible with all architectures is impossi-
ble. The mapping methodology presented in this study is relatively versatile, it allows using
various architectures based on the most popular solutions, and it proposes reconfigurable
partition usage that can maximize its impact on the VCGRA operation. Nevertheless, it is
based on certain assumptions and restrictions regarding overlay architecture (presented
further in this section).

At a high abstraction level, CGRA systems can be described as arrays of coarse-grained
processing elements connected to host processors, memory, and peripheries (Figure 2).
Depending on the architecture, CPU might be used only for configuration or during system
operation as control unit or main processing platform (with CGRA being an auxiliary
accelerator). In the case of VCGRA, CPUs embedded in FPGAs—in the form of either
soft cores (e.g., Microblaze, NIOS) or SoC hardware (e.g., ARM core in Zynq)—can be
used instead of external processors. Additional virtual hardware, including reconfigurable
fine-grained logic, might also be implemented in the FPGA alongside the PE array. For the
purpose of the proposed mapping methodology, only the PE array is considered. Other
components may either be distributed across the FPGA as a part of global static design or
assigned to certain locations. In the latter scenario, occupied regions need to be defined
before partition floorplanning to eliminate them from the allowed search space.
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Figure 2. General model of CGRA systems. Host processor might be used only at configuration stage
(standalone CGRAs) or throughout execution stage (for system control as well as computations).

Due to relatively large size of minimal independently reconfigurable fragment of FPGA
fabric, partial reconfiguration is suitable for significant functional changes in processing
elements rather than connection switching. At the same time, using a small number of
large partitions limits reconfiguration time reduction, depriving the approach of its greatest
advantage. In order to fully exploit partial reconfiguration, partitions should be used
as core components for a large number of PEs. It needs to be stressed that the abstract
overlay structure does not need to match the actual physical partitioning (Figure 3). Static
components of processing elements can be excluded from reconfigurable partitions in order
to reduce their size, hence decreasing reprogramming time. Moreover, virtual switches of
interconnection network corresponding to individual PEs, but regarded as separate entities
at the overlay level, can be included within the scope of reconfigurable partitions to reduce
logic utilization overhead. Due to restrictions of the PR mechanism, the reconfigurable
modules must be instantiated at the top level of design hierarchy. As a result, such solutions
require non-intuitive architecture description. Therefore, direct PE-to-partition binding
might be more convenient.

Even though proposed model supports multitude of interconnected network structures
and allows setting-register-based run-time switching, some solutions are better suited for
use with the proposed approach than others. Mesh-based patterns can be effectively used
with a large number of elements. Direct connections between a small number of neighboring
partitions simplifies routing in the FPGA, which can reduce net delays and probability
of congestion problems. Moreover, 2-D mesh is the most popular connection pattern in
both virtual and physical CGRAs [16,19]. Typically, only connections to the nearest PEs
in four basic NESW (North-East-South-West) directions are used but expanded patterns
with additional connections are not uncommon (Figure 4). The proposed methodology
is designed to work with 2-D mesh based VCGRAs. The current version of the objective
function used in the floorplanning procedure assumes only basic NESW connections. If the
architecture uses additional connections, calculations of their cost need to be appended to
the objective function.
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Figure 3. Proposed model of Virtual CGRA using partial reconfiguration mechanism for PE function-
ality changes.

Figure 4. Mesh-based communication patterns with direct NESW (North-East-South-West) connec-
tions between PEs (a) and expanded versions with additional diagonal connections (b) and extended
distance NESW (c).

The proposed floorplanning procedure uses techniques based on exploiting 2-D mesh
network characteristic to accelerate the process. Significant modification might be required
to produce satisfactory results for other popular connection patterns (Figure 5). In VCGRAs
with direct connections between any PEs (e.g., crossbar connections), interconnection cost
grows with the square of PE number. Considering that the proposed approach assumes
using many processing elements, it is not well suited to such connection patterns.
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Figure 5. Other patterns used in Virtual CGRAs: linear dataflow (a) and configurable each-to-any
(e.g., crossbar) connection (b).

3.3. Module Relocation

In the proposed approach, homogenous array of processing elements uses numerous
instances of logically equivalent partitions. Physical implementation of any module as-
sociated with a partition needs to be contained within explicitly defined sector of FPGA
fabric—PBlocks. If partitions are assigned to compatible PBlocks with the same arrange-
ment of hardware components, they can use identical relative placement and routing (P&R).
Instead of performing independent implementation runs for each instance, common results
can be applied to all partitions.

Module relocation—i.e., moving a fully placed and routed module to another partition
at a different position—can be performed by forcing fixed P&R constraints or by readdress-
ing entire partial bitstreams. In the first scenario, location-specific implementation runs
are drastically accelerated since modules are already pre-placed and pre-routed. In the
other, the location-specific run is not required at all, provided that timing closure can be
guaranteed by different means (e.g., by using register buffers or constraining net delays on
both sides of partition-to-static connection) [29].

Although Xilinx Vivado toolchain offers no support for module relocation per se, it
can be obtained using a combination of inbuilt Partial Reconfiguration Flow (PRF) and
Isolation Design Flow (IDF) with additional constraining and TCL scripted processing of
intermediate results. The techniques used to provide module relocatability are described
in detail in previous work by the main author of this article [29,39]. General concept and
details with crucial influence on floorplanning are outlined below.

Partition relocation is performed between partitions that have vertical span of a single
clock region and identical set of reconfigurable resource columns with the same intercon-
nected alignment. For each different PBlock construction, reconfigurable modules are
implemented only once in a so-called reference partition. Placement and routing results
are then extracted and re-applied as constraints with new location offsets. Alternatively,
a partial bitstream can be generated and relocated by changing frame address register value.
Static design with black-box partition is implemented independently. Partitions are isolated
from the static to prevent global routing feed through. A so-called isolation fence—single
primitive wide space that cannot be used for logic placement—is required. Partitions can be
assigned to the same columns in adjacent clock regions. However, as global routing cannot
cross partitions, at least a clock-region high sector of all columns needs to be included in
the static. Partition-to-static connection cannot cross clock-region borders, as the adjacent
regions may be unavailable at different locations. Consequently, partition ports must be
placed only alongside either left, right, or both vertical borders. All partition-to-static
nets use additional buffers on both ends to preserve identical connection and help with
timing closure management. Buffers in the static serve as anchoring points. They can be
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implemented alongside different entities in CLBL or CLBM columns. The column type
does not need to match, but the placement in relation to partitions must be the same. This
is obtained by implementing the partition-to-static interface in the reference design and
then relocate the results in form of P&R constraints. The entire process is fully automated
and does not require any manual engagement.

3.4. Design Flow

Imposing the aforementioned assumptions and restrictions made it possible to de-
velop a productivity-oriented back-end mapping methodology for Virtual CGRAs with
relocatable reconfigurable partitions, compatible with off-the-shelf FPGA hardware and
CAD tools. The presented solution is an updated and refined version of the methodology
proposed in the earlier work [29], adapted for the specificity of virtual CGRA designs and
expanded with new functionality—most notably automated floorplanner. In this approach
a VCGRA system description with PE array of parametrizable size and explicitly defined
reconfigurable partition instances is divided into static and reconfigurable parts that use
separate design flows (Figure 6).

Static design with user-defined MxN PE array and black-box partitions is synthesized
using standard Xilinx Vivado tools. The proposed partition floorplanner searches through
target FPGA for, preferably homogeneous, regions that satisfy resource requirements of
the PE partitions. Then, it attempts to find optimal locations for individual partitions in
a reasonably short time. The obtained floorplan is then used to implement the design
using Xilinx Vivado toolset and module relocation methodology [29,39]. The same para-
metric static overlay can be implemented with different floorplans using various PBlock
constructions and PE array sizes or targeting different FPGA. A library of implemented
reconfigurable overlays can store different designs for future use.

Figure 6. VCGRA with relocatable partitions—back-end mapping design flow overview.

Multiple functional variants of modules are developed and implemented separately,
in a so-called reference partition design, using the module relocation methodology. As the
relocatable modules are location independent, a single variant of placed and routed module
for a given PBlock construction can be used for all instances in multiple floorplans and
FPGA platforms. If a floorplan uses several types of PBlocks, one reference design of each
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type is required. On the basis of the application characteristics and target platform capacity,
the most appropriate application-specific combination of static and reconfigurable modules
can be selected during front-end application mapping (Figure 7).

Figure 7. VCGRA with relocatable partitions—front-end mapping design flow overview.

The main contribution of this study is an automated custom floorplanner for Virtual
CGRAs with relocatable reconfiguration partitions. It is a TCL-based tool that expands the
design flow proposed in earlier work [29], which formerly required manual floorplanning.
The toolchain was developed for Xilinx FPGAs and operates as an extension for vendor
provided software (executed from Vivado command prompt). However, the original
floorplanning approach presented in this article could potentially be adapted to different
hardware and software.

The importance of proper floorplanning is significant, considering the fixed binding
between the reconfigurable partitions and regions of the underlying FPGA. In order to
maximally reduce the number of PE implementation variants used in the design, the floor-
planner should attempt to assign PEs to as many identical PBlocks as possible, as module
relocation can only be performed between compatible regions. Moreover, directly con-
nected processing elements should be located in close proximity to each other in order to
reduce delays and eliminate routing congestion problems.

Finding optimal floorplan is an NP-hard problem that requires completing two tasks:

1. Finding appropriate partition block candidates—regions in FPGA fabric with enough
resources to fit required logic with minimum overhead—for each partition;

2. Selecting partition locations (PE to PBlock candidate assignments) capable of pro-
ducing best routing results (short net delays, no routing congestion), optimal design
density, and the lowest number of different implementations of PEs.

3.5. Finding Relocation Compatible Regions

The first step in finding appropriate regions for reconfigurable partitions is determin-
ing resource requirements. If all possible variations of reconfigurable modules are known in
advance, the number of primitives of each type should be determined as a superposition of
variants’ resource utilization, estimated during logical synthesis, with an additional margin.
However, with the proposed separation of VCGRA structure and module functionality
development, modules’ functionality might be unknown at that stage. In that case, several
generic overlay implementations with PBlocks using different configuration of resources
can be prepared beforehand and the most appropriate variant can be selected once actual
module requirements are determined. Considering that relocatable partitions operate on
entire columns within the scope of a single clock region, resource requirements based on
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primitives are converted to a minimal number of columns of different types that need to be
included within PBlocks.

The state-of-the-art solutions [36,45] can identify homogeneous regions with specified
amount of reconfigurable resources. However, additional conditions need to be satisfied
for regions to support module relocations:

• Regions with compatible column types but opposite alignment must be differentiated;
• Partition borders cannot be placed between inseparable adjacent interconnection columns;
• Feasibility of isolation fence insertion and anchoring point placement needs to be checked.

The proposed search procedure addresses these issues. The approach obtains re-
source distribution information directly from Xilinx Vivado software (using get_tiles and
get_property queries with filters) and performs column pattern checks in individual clock
regions. Multiple non-overlapping regions of different constructions are considered be-
cause the number of identical regions can be smaller than the required PE array size.
The procedure comprises the following steps:

1. Define partition candidate search parameters:

• Minimal number of columns with given resource type (DPSs, BRAMs, LUTs
etc.)—user provided or calculated from primitive-based resource utilization
estimation. Note that certain resources are contained within more than one
column type;

• Maximum column width of partitions;
• Anchoring points position (left/right/either/both sides of PBlock);
• Overlapping pattern reduction preferences (see steps 10–12);
• Optional prohibited regions, excluded from PBlock search space.

2. Select target platform.
3. Obtain clock regions information for the target. Start search for a single region.
4. Identify indices of columns where resources of certain types occur and store them in

temporary lists.
5. Reduce search space based on availability of BRAMs and DSPs.

• BRAMs and DSPs instances in FPGA fabric are quite rare. If several columns
of BRAM or DSP types are required, the search can be limited to few locations
where such columns occur within acceptable range.

6. Identify PBlock candidates—subsectors of search space with required resources.

• Iterative checks on regions of width (w) varying from minimum (sum of required
columns of each type) to maximum allowed column span are performed on lists
of column indices (Figure 8);

• Starting from column with the lowest index i0 = imin the floorplanner checks if
enough columns of each type reside between i0 and i0 + w;

• Incrementations of start index (i) and width (w) take interconnection block
distribution into consideration—start and end columns of checked regions are
always left- and right-aligned, respectively.

7. Check feasibility of isolation fence insertion and anchoring buffer placement.

• Depending on selected anchoring points position for partitions, the floorplanner
checks if adjacent isolation fence columns (any type) and anchor point CLB
columns are available next to selected region (Figure 8);

• If anchoring buffer placement is impossible, PBlock candidate is removed from
the results.

8. Identify column pattern of the region found and group with others.

• If pattern already exists, regions are appended to associated list;
• Otherwise, new pattern structure is created.

9. Repeat steps 4–8 for all clock regions.
10. Reduce overlapping patterns.
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• Shorter patterns may be entirely contained within longer ones, but they may
have more occurrences;

• As overlay floorplanning might be performed before all module variants are
designed, minimal size is not always desirable;

• Currently, overlapping pattern reduction supports three strategies: always select
minimum size, always select maximum size, and select longer if it does not
reduce number of occurrences;

• Intermediate results obtained up to this step can be reused with multiple strategies.

11. Eliminate PBlocks located in areas reserved for routing.

• At least some part of each column must be included in static for the purpose of global
routing, as it cannot feed through partitions (due to module relocation restrictions);

• For FPGAs with small number of clock regions (e.g., Artix-7 family, Kintex-7
xc7k160t) default strategy leaves a single central row of clock regions for routing.
Custom strategies can be defined;

• This step could be performed at an earlier stage to reduce search space, but the
proposed order allows testing multiple strategies of routing interleave placement
on single search results (basing on intermediate results from step 10).

12. Eliminate overlapping regions.

• Partition blocks not only cannot overlap but need additional spacing for at
least isolation fence and anchoring buffers. Regions that violate this need to
be eliminated;

• If a region overlap is identified the procedure keeps the region of the more
popular pattern (or instance that occurs earlier in the clock region in the case
when both regions use same resource distribution) and eliminates the other—in
order to maximize number of PBlocks using the same pattern.

13. Export PBlock candidates, grouped by patterns and ranked by group size.
14. Generate parametric constraints for PE array and reference partitions.

• A parametric, conditional if-clause based constraint file with placement con-
straints for all partition blocks is generated; only the sections of the file corre-
sponding to PBlocks selected for the overlay are applied to further design.

Figure 8. Example of iterative region search—required resource columns: BRAM, DSP, 2× logic.
If partition ports are located on right or both sides only regions (ik; ik + w1) and (ik+1; ik+1 + w0) can
be accepted. (Region (ik; ik + w0) does not satisfy resource requirements—no BRAM. Other regions
can only use ports to the left as no logic for anchoring buffers is available to the right).
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Pattern ranking determines which overlapping regions are eliminated and what subset
of patterns is used in the later stage of the floorplanning. Group size based ranking aims to
minimize the number of different PBlock variants used in the design, and consequently the
number of required placement and routing runs and partial bitstreams for reprogramming.
However, if fully implemented relocatable modules using a particular PBlock construc-
tion are available, PBlocks of such construction requires no additional implementation.
Therefore, it might be desirable to select them first. For this purpose, support of optional
user-defined pattern preferences, that override group based ranking, has been introduced
to the proposed floorplanner.

3.6. PBlock Candidate Based Floorplanning

The second stage of partition floorplanning consists of solving a combinatorial opti-
mization problem of finding best possible matching. Each of the reconfigurable partitions
needs to be individually assigned to one of the PBlock candidates. Considering that module
relocation is only possible between compatible regions, it is desirable to use as few PBlock
variants as possible, optimally one for all partitions. Starting from the pattern with the most
occurrences, if the number of PBlock candidates is greater than or equal to the number of
PEs in the overlay, no other PBlock variants are used. Otherwise, PBlock candidates that use
pattern with the next largest number of occurrences are added until the condition is fulfilled.
PBlocks with different constructions use their individual sets of placement and routing
results for all reconfigurable modules in the later implementation stages. Nevertheless,
apart from different connection cost resulting from partition ports arrangement, all variants
are treated equally for the purpose of PBlock selection.

Finding the optimal matching is virtually impossible due to two factors. First of all,
for k reconfigurable partitions and n possible locations (PBlock candidates) there are n!/(n
− k)! possible combinations of partition to location assignments. Secondly, a complete
evaluation of a solution would require performing a full implementation run with post-
routing timing and power analysis, which is extremely time consuming and offers only
approximate heuristic-based solution. Moreover, any modifications of static functionality
may influence the efficiency of individual partition floorplans. In order to make the
floorplanning more feasible, a non-exhaustive search strategy with simplified solution
evaluation must be used.

Total wire-length (i.e., a sum of Manhattan distances between directly connected
elements) is a parameter commonly used for approximate solution evaluation in the state-
of-the art approaches. The total connection length affects average net delays, routing
resources utilization, and probability routing congestion. Considering that no routing
can feed through relocatable partitions, in the proposed floorplanner a modified distance
calculation method that includes the cost of routing detours through other clock regions is
used. Additionally, maximal connection length is considered. Being the worst-case scenario,
it has significant impact on timing closure unless register-based buffers are used at partition
ports. Therefore, the objective function used in the proposed floorplanner comprises of
a weighted sum of total wire-length and maximum connection cost with adjustable weights.
Since determining the total connection cost requires calculating length of all individual
connections, it takes little computational effort to evaluate maximum length too.

The majority of floorplanners (i.e., [40–44]) use simulated annealing search, which is
a commonly used strategy for many combinatorial optimization problems. The approach
is versatile and offers satisfactory results but requires evaluating an immense number of
possible solutions, which makes it slow if objective function is time consuming. Alterna-
tively, a decisive search based on the characteristics of the actual problem can be employed.
In theory, similar arrangement of logical and physical representation of partitions can result
in a good floorplan. However, the shape of a custom MxN PE array and PBlock candidate
distribution rarely match. Nevertheless, some aspects of the geometry can still be exploited
to guideline the floorplanning process. The proposed approach is used to determine an
initial matching by performing a modified breadth-first search with direction-based penal-
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ties and then to attempt to improve the results by performing a local 2-opt optimization
between neighboring partitions. The exact procedure is outlined below:

1. Select minimal number of PBlock patterns (as described earlier), identify all PBlock
candidates of these patterns, and set them as available for matching.

2. Find the center of PE array and center of mass of PBlock candidate distribution in the
FPGA fabric. Start mapping from the center and search outwards.

• Setting search tree root at the center of PE array reduces the depth of the search;
• Starting from the center helps to preserve consistency between PE array and

the floorplan.

3. Obtain the first set of PEs located closest to the center (same distance in logical network).
4. For each PE, generate hypothetical pairs with all available PBlock candidates.

• Due to the outward search direction, the number of PEs considered in each
iteration grows linearly, but as the number of available PEs decreases at the same
rate, the total number of combinations within a single iteration is manageable.

5. Calculate cost of each match based on location (distance, direction) of each candidate.

• The cost is calculated as the weighted sum of Euclidean distance from the center
and Manhattan distance from the directly connected predecessor (if such exists)
with added direction-based penalties;

• Physical location is considered directionally consistent with logical structure if
the X and Y components of position in relation to the reference in both PE array
and FPGA fabric are not of the opposite sign;

• A moderate penalty is applied for locations with inconsistent direction in relation
to either connected predecessor or the center;

• A severe penalty is applied if a PE, located in a particular direction from the
center, that has s successors (PEs located outwards, considered in later iterations)
further in the consistent direction, is paired with a location that has p < s available
PBlock candidates that fulfill the direction consistency;

• The penalties help to preserve consistency between PE array and the floorplan
and prevent the otherwise greedy matching from exhausting all candidates in
a given direction prematurely. This way, scenarios where outermost elements
might be left with no reasonable pairing options can be avoided (Figure 9).

6. Rank pairings for all PEs based on cost. Check for conflicts between best matches.
In case of pairing conflicts, check costs of switching to lower ranked options and
preserve the matching with the highest cost of change. Repeat until no conflicts occur.

• At the beginning, all the PEs attempt pairing with their top-rated match;
• If multiple PEs opt for the same location, only the element that causes the

highest growth in cost if moved is preserved, others are re-assigned to lower
ranked locations;

• In the case of movement to an unoccupied location, estimated cost increase is
the difference between lower and higher ranked results. If the next best location
already has a matching, combined cost of movement to the occupied location
and re-assigning the occupant is compared with movement cost to next lower
ranked option, the lower value option is used;

• Re-assignments can lead to new conflicts at different positions. Process is re-
peated until all conflicts are resolved.

7. Initial floorplanning for this PE group is finished; set selected PBlock candidates as
unavailable for next matchings.

8. Obtain the next set of PEs—elements located one position outward in the array—and
determine their predecessors (directly connected elements that underwent initial
floorplanning). Repeat steps 4–8 for a new set, continue until all PEs are floorplaned.

9. Calculate objective function for the complete initial floorplan. Save individual
partial results.
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10. Starting from PE [0,0] check if swapping it with any of the neighboring PE (including
diagonals) decreases objective function value, if so, accept the swap. Repeat for
every node.

• For a selected PE located at [x,y], feasibility of location swapping with elements
at [x+0,y+1], [x+1,y−1], [x+1,y+0], [x+1,y+1] positions is checked. Note that the
considered PE is also used for a swap check of previously considered elements;

• Cost of all NESW connections for new locations of both swapped PEs is calculated
and compared to the original. If original or new location is responsible for the
maximal connection length, new max is determined.

11. Continue until no PE swaps are performed or until maximum swap limit is reached.
12. For any PE assigned to location with another unused PBlock candidate in the closest

proximity, check if swapping with such region decreases objective-function value.

• Similarly to step 10, NESW connection cost of alternative location is compared to
original; swap is only performed if lower cost is obtained.

13. If any changes are performed, go back to step 10, or else save the obtained floorplan.

Figure 9. Directional consistency in PBlock selection process. In logical array PE(1,1) is located in
direction [−1,−1] from its predecessor PE(2,2). To preserve consistent geometry, it should be assigned
to a region situated below and to the left of A. However, in the next iteration more elements—PE(0,0),
PE(0,1), PE(1,0)—need to be located farther in that direction. Although the position of C in relation
to A is consistent with PE(1,1) to PE(2,2) direction, selecting C would result in later placement of
elements PE(0,0) and PE(0,1) to the right of PE(1,1)—as no regions are available in their preferred
directions. Moreover, if D is used for PE(2,1) or worse PE(3,1), too many elements will opt for PBlocks
E and F, resulting in some of them being placed far from their optimal location. Despite immediate
directional inconsistency, PE(1,1) should prefer D over C.

4. Results

A complex evaluation of the proposed floorplanning solution was performed. Compat-
ibility with Xilinx Vivado tools and general propriety of the operation was tested in static
overlay design implementation. Manual floorplans used in the partition relocation tests
described in the previous study by the main author of this manuscript [29] were replaced
with the results generated by the automated floorplanner proposed in this article. The tool
correctly identified identical regions in all tested Xilix 7-Series FPGAs. The automatically
generated floorplans were successfully used in the Xilinx Vivado implementation flow.
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The quality of results and execution time of the proposed partition to PBlock assign-
ment procedure based on initial modified breadth-first search and fine 2-opt improvements
has been evaluated and compared to the simulated annealing approach, which is used in
most state-of-the-art solutions. The common objective function was used in both cases.
As the results of any stochastic method depend greatly on the randomly selected start
point, average values calculated from repeated simulated annealing searches were used to
mitigate the influence of this deviation. Additionally, the floorplan found in the modified
breadth-first search of the custom solution is used as a starting point for simulated anneal-
ing instead of 2-opt in a so-called hybrid approach. For a better quantitative measure of the
quality of the generated floorplans, reference objective-function values, calculated as an
average for 10 random floorplans for each case, are presented as well.

Tables 1 and 2 present objective-function and elapsed time for the partition to PBlock
assignment of various overlays in Artix7 xc7a200t and Virtex7 xc7v2000t, respectively.
Results for simulated annealing with constant (30 for A, 100 for B) and PE array size
dependent (5xy for C) number of iterations between temperature decrements are presented.
Oversizing this parameter results in long execution time, despite procedure termination
when a limit of cycles without changes is reached. On the other hand, if too few steps are
used in a large search space, the obtained results have worse objective-function values.
Further analyses use simulated annealing and scale the parameter with array size, as this
approach seems to offer better results. Improvement of the starting point solution used
in the hybrid approach has little impact on the execution time and objective function
compared to random start point if the same set of parameters is used. The proposed custom
search is several orders of magnitude faster than simulated annealing and offers solutions
of comparable quality. Large deviations in 2-opt stage execution time are possible, as the
procedure is terminated as soon as an iteration with no swaps occurs.

Table 1. Comparison of floorplanning methods for Artix7.

Array
Size

Proposed Approach Hybrid Simulated Annealing Reference
RandomInitial

Floorplan
Optimized
Floorplan

A
Steps/dT = 30

B
Steps/dT = 100

C
Steps/dT = 5xy

X Y Fobj t [ms] Fobj t [ms] Fobj t [ms] Fobj t [ms] Fobj t [ms] Fobj t [ms] Fobj

2 2 1860 6 1860 16 1594 1233 1594 1274 1594 8620 1657 559 4933
2 3 3695 10 3693 44 3322 2643 3312 2741 2971 26,466 3291 1740 6077
2 4 5350 11 4810 41 4618 6231 5453 3292 4360 33,825 5617 2710 10,459
3 3 7114 15 6490 46 6517 7017 7332 4342 6386 38,845 7561 4049 11,889
3 4 10,599 21 10,599 38 9685 10,151 11,407 6263 9548 45,686 11,914 6786 16,156

Table 2. Comparison of floorplanning methods for Virtex7.

Array
Size

Proposed Approach Hybrid Simulated Annealing Reference
RandomInitial

Floorplan
Optimized
Floorplan

A
Steps/dT = 30

B
Steps/dT = 100

C
steps/dT = 5xy

X Y Fobj t [s] Fobj t [s] Fobj t [s] Fobj t [s] Fobj t [s] Fobj t [s] Fobj

3 3 10,310 0.08 10,310 0.12 5900 19.7 6,125 19.6 8106 24.4 7630 13.8 27,647
4 4 18,856 0.21 17,211 0.44 16,945 27.5 16,112 27.3 25,042 35.2 18,423 50.5 70,060
5 5 42,530 0.37 27,170 0.88 38,191 23.3 30,500 36.5 37,153 87.4 30,882 146.9 121,368
6 6 60,195 0.67 43,285 1,56 57,491 31.0 53,344 48.4 53,957 149.6 45,432 305.8 160,686
7 7 101,480 0.93 63,231 2.57 87,675 54.8 84,454 62.3 74,346 197.8 65,674 513.8 270,153
8 8 114,196 1.37 76,105 3.82 110,730 74.1 123,696 78.9 117,212 246.3 80,774 2263.7 337,978

The proposed solution seems to offer a significant advantage when floorplanning large
arrays. Due to the multitude of potential combinations, simulated annealing based solutions
either take significantly more time to finish (for 8 × 8 array: 2263.7 s = 37.7 min compared
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to 3.82 s) or introduce the risk of premature termination. In the latter case, minimization
of the objective function value is notably less efficient. Although the improvement from
the non-optimized reference is still significant (for 8 × 8 array: 337,978 reduced to 123,696),
the proposed approach offers much better results (Fobj = 76,105).

As the floorplanner attempts to place innermost elements of the array near the center
of the fabric, it may not be capable of finding viable solutions located at peripheral positions.
Thus, objective-function results for small arrays placed in large devices might be higher
than for reference methods. Depending on the connection to I/O ports and various aspects
of the design not considered in the objective function, a central location of the array may
still be beneficial. Moreover, if placement far from the center is desirable, the central
point can be shifted closer to any position by prohibiting regions located in the opposite
direction. Considering the significant acceleration offered by the proposed approach,
multiple solutions with variously shifted centers can be checked in a fraction of the time
required for a single simulated annealing run.

Execution time reduction for designs with small PE arrays might seem irrelevant as
floorplanning time of several seconds is negligible in comparison to placement and routing
time. However, in the case of larger array sizes, the floorplanning is accelerated by minutes,
while offering similar quality results (Figure 10). Considering multiple reiteration during
development, this can contribute to a significant time saving. Note that, in order to increase
legibility the floorplanning time in Figure 10 is depicted in logarithmic scale. Moreover, as the
total cost is geometry dependent (M(N − 1) + N(M − 1) connections for M × N array), objective-
function values are normalized with respect to total number of connections within PE array.

The proposed floorplanning approach attempts to keep consistency between logical
and physical structure. If the geometries of the PE array and partition distribution differ
significantly, the method may be less effective. Indeed, differences in the quality of the
results can be observed in the floorplanning results for various PE arrays of similar size
presented in Table 3.

Table 3. Influence of array geometry on the quality of the floorplanning results. Comparison of
normalized values of minimization objective function (lower is better).

X Y Nr of PEs Proposed Approach Simulated Annealing

3 16 48 1.0863 0.7628
4 12 48 0.9016 0.8098
5 10 50 0.8109 0.8992
6 8 48 0.7320 0.8298
7 7 49 0.7498 0.8476

The importance of the proposed direction inconsistency penalties is proved by com-
paring simple outward breadth-first search with the modified version (Table 4). It can be
observed that using the proposed modifications allows one to obtain significantly lower
objective-function values for both the initial floorplan and 2-opt optimized results.

Table 4. Comparison of basic breadth-first search with the proposed modified method, objective-
function values (lower is better) for initial and 2-opt optimized floorplans.

Proposed Approach Breadth-First Search

X Y Initial Optimized Initial Optimized

2 2 3856 3856 8036 5396
3 3 10,310 10,310 22,323 11,818
4 4 18,856 17,211 46,267 28,352
5 5 42,530 27,170 75,405 46,225
6 6 60,195 43,285 113,865 77,230
7 7 101,480 63,231 170,516 134,301
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Figure 10. Normalized values of minimization objective-function (lower is better) and floorplanning
times for different array sizes.

5. Conclusions

Virtual Coarse-Grained Reconfigurable Architectures can benefit from partial reconfig-
uration. If certain components can be reconfigured on their own, reprogramming can be
drastically accelerated in comparison to changing the configuration of entire FPGA. Fur-
thermore, an excessive overhead associated with spatial distribution of multiple variants
within the same configuration can be avoided. Due to the construction of Xilinx FPGAs, the
usage of the mechanism is restricted. The generic VCGRA model proposed in this study
presents how and under what assumptions overlay designs can be divided into static and
reconfigurable partition parts in order to effectively use partial reconfiguration.

Development productivity can be increased by exploiting module relocation. Same
placement and routing results can be reused at multiple positions within the same or
across multiple designs. Relocation of partial bitstreams reduces the number of required
implementation runs and configuration data storage space. Having numerous instances
of identical modules, virtual CGRAs with homogeneous processing elements are prime
beneficiaries of these advantages.

Partial reconfiguration implies assigning logical modules to certain physical structures
in the FPGA. VCGRAs, based on the most popular 2-D mesh pattern distribution of
individual partition blocks in chip, have a crucial impact on routing feasibility and net
delays. Taking that into consideration, proper partition floorplanning is essential in such
designs, even more so considering that module relocation is only possible between identical
partition blocks.

The floorplanning problem for virtual CGRA with relocatable partitions can be divided
into two separate tasks—finding homogeneous regions in FPGA fabric and assigning
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individual partitions to certain locations. The two-stage solution presented in this study
is compatible with Xilinx Vivado tools and capable of automated floorplan generation.
The proposed partition to the PBlock assignment approach based on modified breadth-first
search with penalties for direction inconsistencies followed by a local 2-opt optimization is
drastically faster than state-of-the-art solutions and offers comparable quality of results.
Although the difference in the floorplanning time for small arrays might be irrelevant in
comparison to placement and routing time, a gain of several minutes can be obtained in the
case of larger designs. The offered speedup is crucial considering that VCGRAs are usually
used either as prototyping platforms or as a method to increase development productivity
in FPGA-based systems.

Although the proposed methodology of mapping CGRAs onto FPGAs with relocatable
reconfigurable partitions imposes multiple restrictions on the abstract architecture, it was
designed acknowledging trends in CGRA design. Therefore, it should be applicable to
many contemporary VCGRAs. In particular, QUKU [4] seems very well fitted to the
proposed model, as it uses multiple overlay configurations based on combinations of
different variants of processing elements connected in a 2-D mesh.
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