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Abstract: The integration of space–air–ground–sea networking in 6G, which is expected to not only
achieve seamless coverage but also offer service-aware access and transmission, has introduced
many new challenges for current mobile communications systems. Service awareness requires the
6G network to be aware of the demands of a diverse range of services as well as the occupation,
utilization, and variation of network resources, which will enable the capability of deriving more
intelligent and effective solutions for complicated heterogeneous resource configuration. Following
this trend, this article investigates potential techniques that may improve service-aware radio access
using the heterogeneous 6G network. We start with a discussion on the evolution of cloud-based
RAN architectures from 5G to 6G, and then we present an intelligent radio access network (RAN)
architecture for the integrated 6G network, which targets balancing the computation loads and
fronthaul burden and achieving service-awareness for heterogeneous and distributed requests from
users. In order for the service-aware access and transmissions to be equipped for future heterogeneous
6G networks, we analyze the challenges and potential solutions for the heterogeneous resource
configuration, including a tightly coupled cross-layer design, resource service-aware sensing and
allocation, transmission over multiple radio access technologies (RAT), and user socialization for
cloud extension. Finally, we briefly explore some promising and crucial research topics on service-
aware radio access for 6G networks.

Keywords: radio access networks; cloud-based RAN; 6G; service-aware

1. Introduction

The 5th Generation (5G) mobile communications system has attracted global atten-
tion from the Information and Communication Technology (ICT) sector in the past few
years [1–13] and has also been used for increasingly sophisticated commercial applications.
Discussions on the prospects of the 6th Generation (6G) mobile communications system
have inspired new research [14–23]. There is a consensus in the research community that
the future 6G network will evolve towards the integration of space, air, ground, and sea,
providing communication services with much wider coverage and more satisfactory expe-
riences compared with 5G [18,19,24,25]. Based on the three major application scenarios of
5G—i.e., massive machine-type communications (mMTC), ultra-reliability, and low-latency
communications (uRLLC)—and the enhanced mobile broadband communications (eMBB),
new types of services will emerge and be defined in the 6G network. These will have more
comprehensive but also more diversified quality-of-service (QoS) requirements. However,
the current 5G architecture may not be adequate to support the newly appearing applica-
tions due to the following reasons: (1) The heterogeneousness of both the networks and
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resources is constantly increasing due to the presence of diverse networking architectures,
simultaneous multi-scale optimization, fragmentized resources, and a highly distributed
topology. This urgently requires the development of a complete and universal AI-driven
management structure [26]. (2) With the appearance of new radio access technologies (RAT)
and the expansion of the air interface access capability, the current network inevitably
shows a deficiency in coordination across concurrent services. Though there have been
discussions on the coexistence of LTE and 5G, the 5G architecture mainly supports network
switching, rather than fulfilling different service performance needs with a collaboratively
unified framework. (3) There has been dramatic growth in physical technologies, e.g., the
bandwidth, processing speed, and flexibility [27]. However, the upper layers of the protocol
stack have lacked timely evolution compared with other layers. The closer to the top of the
protocol stack a layer is, the longer the interaction delay introduced is, and this prevents
the network from catching up with the faster change in the transmission environment at
the physical layer. (4) In spite of the great convenience introduced by enabling multi-RAT
capability in single devices, the new problem of co-site interference, as occurs when ac-
cessing 4G and 5G air interfaces simultaneously, severely degrades the quality of service.
(5) Security strategies also need to evolve with new physical layer resources [28,29].

While the RAT required to remedy the aforementioned issues will no doubt cover a
wide spectrum of topics and motivate massive research efforts, this article concentrates
on potential techniques that may significantly benefit service-aware access, either for
issues newly encountered in 5G networks or for those that have not yet been thoroughly
studied for 6G networks. Specifically, we explain the concept of service awareness for 6G
networks from three perspectives: (1) understand users’ quality of experience (QoE)/QoS
requirements; (2) the ability to sense and analyze past/current service statuses and be
capable of conducting timely and effective network optimization; (3) the awareness of
the resource occupation statuses, utilization patterns, and varying tendencies, and the
capability of effective discovery, allocation, coordination, aggregation of resources.

We initiate our discussion on the intelligent Radio Access Network (RAN) architecture,
which is targeted at effectively balancing the computation load, fronthaul burden, and
service-awareness demands. The distributed AI technologies in each layer not only assist
with the prediction of network behaviors prospectively and optimize the network to achieve
faster service responses, they also identify heterogeneous resources and coordinate various
user requirements.Service awareness requires the 6G network to be aware of the demands
of diverse services as well as complicated resource occupation and utilization tasks. This
will give it the potential to provide services with more intelligent and effective resource-
configuration strategies. In particular, we analyze the challenges and potential solutions
for the heterogeneous resources configuration, including a tightly coupled cross-layer
design, resource service-aware sensing and allocation, transmission over multiple radio
access technologies (RAT), and user socialization for cloud extension. Though local sensing
and optimization may lead to a better performance for a single or group of devices, this
distributed strategy will increase the interaction delay, especially when working for services
with a highly varied status. Thus, we propose the use of a tightly coupled cross-layer design
for the protocol stack as powerful support for the aforementioned architecture. Determining
how to sense and monitor heterogeneous resources, including the spectrum, computing,
and caching resources, is crucial to achieve the expected network performance while
reducing unnecessary collisions and assuring diverse QoS requirements are met. There
are multiple RATs in 6G networks, allowing users to obtain more suitable communication
resources and faster network responses flexibly. We discuss how to fully utilize these
conveniences via multi-path transmission and also address the newly encountered problem
of co-site interference. User socialization, in which an idle device provides services for
others through resource sensing and computing, could be a potential solution that allows
the achievement of a seamless service.

In this article, we start with a brief preview on the evolution of cloud-based RAN
architectures from 5G to 6G. Then, to address the aforementioned problems, we present an
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intelligent cloud RAN architecture that provides service-aware radio access in 6G networks.
Using this architecture, we further discuss the major challenges and potential solutions
involved in integrating service awareness with radio access in 6G networks with emphasis
on heterogeneous-RAT access, tight coupling across protocol layers, resource sensing and
allocation, and user socialization. We conclude the article after discussing current issues
and future research directions for radio access in 6G networks.

2. The Evolution of Cloud-Based RAN from 5G to 6G

The cloud-based RAN was originally proposed to effectively reduce the capital and
operational expenditure [8,9]. Furthermore, it also motivates the strong desires of wireless
communications engineers to globally optimize resource allocation with service-awareness
access over the RAN. Initially, when the mobile communications systems evolved to the
5G network, users were expected to take advantage of 5G’s unique features such as the
high RAT diversity allowing the fulfillment of QoS requirements for latency, reliability,
throughput, mobility, etc. [3,30,31]. However, the multiple heterogeneous coexisting RATs,
together with different types of serving stations deployed in an ultra-dense fashion, severely
complicate the entire system, leading to severe cross interference. Therefore, it is harder
than ever to efficiently manage the network as well as effectively adapt the network to the
highly varied demands and environments [4,9] in a more distributive manner.

To address this problem, the cloud-based RAN emerged as a revolutionary architecture,
where one of the representative designs is the Cloud RAN (C-RAN) proposed by China
mobile [8]. Rather than undergoing simple separation of the radio servers and radio units,
as was done in previous network architectures, the cloud-based RAN pools the BaseBand
Units (BBU) such that they can be conveniently and flexibly accessed by a large number of
remote radio units, called remote radio heads (RRH) or remote radio units (RRU). In the
cloud-based RAN, BBUs are integrated and viewed as one entity, namely the BBU pool,
in order to support the vast computing burden of remotely and densely deployed RRHs,
which are connected to the BBU pool via fronthaul links.

The 6G networks will be designed to fully connect four major geographical domains,
i.e., space–air–ground–sea. In particular, satellite networks contain satellites and space
stations with different orbital altitudes; unmanned aerial vehicle (UAV) networks are
assisted by UAVs and airplanes; terrestrial networks evolve on the basis of cellular systems;
and maritime networks provide wireless connections and the ability to communicate with
devices on and below the surface. A typical RAN architecture for a 6G network is depicted
in Figure 1. As shown in this figure, though we mainly emphasize the new RATs proposed
for 6G networks, some typical networks and RATs, including 2G–5G, WLAN, WPAN,
and even millimeter-wave networks and visible-light networks, will also evolve and be
employed flexibly. Such RATs, along with diverse terminals integrated under space–air–
ground–sea scenarios and the central pool, form a cloud structure. The RATs connect
to the cloud and their demands for computing and caching are served by the cloud in a
centralized manner. The cloud pool allocates a subset of computing and caching resources
and integrates necessary information that is requested by services or reported from peer
access terminals via resource sensing. Then, it completes the control functions, such as
baseband signal processing, scheduling, and radio resource allocation.



Electronics 2022, 11, 1262 4 of 19

UAV communications

UAV

Home

Cooperative 

networks

Builiding

Computational holographic radio

photodiode-coupled 

antenna array

Machine-type 

communications

Cloud

Small cell

Orbital angular 
momentum (OAM)

OAM-based communications

Millimeter-wave 

Laser 

Laser-mm-wave 

aggregation

fiber

fiber

Figure 1. Cloud-based radio access network architecture for 6G mobile communications systems.

In particular, laser-mm-wave aggregation can balance the shortness of laser and
millimeter-waves on cloudy/foggy and rainy days, respectively [16]. A benefit of the co-
operation between the two waves is that the satellites can support communications even
in complex weather conditions. Orbital angular momentum (OAM)-based communica-
tion utilizes orthogonal beams with different OAM modes and offers a new method of
multiple access with less interference and higher reliability compared with the traditional
frequency/time/code-domain [32]. The computational holographic radio extracts available
information from the received interference to achieve precise control of the whole commu-
nication environment [16]. Correspondingly, new RATs will, no doubt, inject much vigor
into the 6G RAN, which will have more capability to support the connection requirements
initiated by different devices and users in globally integrated scenarios.

Based on the novel RATs, the 6G network will extend the current applications and also
support new applications. We depict these in Figure 2. However, higher standards in terms
of the network’s connection, computing, and sensing capability will be required.
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Figure 2. Coming and future applications enabled by 6G.

• Current and Coming Applications
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(1) Ultra-dense video surveillance: In the past, network video surveillance has played a
major role in security systems. However, limited by bandwidth, cost, and transmission
rate, the coverage area and video clarity are unsatisfactory. The 6G network will better
support ultra-dense monitors with higher speed and a lower overhead, especially in
IoT scenarios.

(2) Telemedicine: Enabled by 5G, patients have been able to receive remote diagnoses
and treatments. The problem is determining how to assure real-time imaging and a
synchronous conversation, especially for remote surgeries. Our tightly coupled cross-
layer framework design, which is introduced below, will make this vision possible
from the perspective of an appropriate protocol.

(3) Driverless cars: As the typical use case for URLLC in 5G, the idea of driverless cars has
raised widespread concern from the perspective of appropriate technologies; however,
another equally important issue is scientific ethics. The 6G era may provide a balanced
solution while fully ensuring security.

(4) Man-machine-material intelligent connection: Many theoretical conclusions have been
derived about cognitive functioning between humans and machines [33,34], and some
realistic functions have already been developed, e.g., human–machine conversations,
smart homes, wearable smart devices, etc. However, there is still quite a long way to
go toward the achievement of comprehensive applications.

• Coming and Future Applications

(1) Extended X reality: In the 5G era, some applications of virtual reality (VR) and
augmented reality (AR) have shown attractive business prospects. In the future, the
6G network will assist with the extension of limited virtual experiences into borderless
and immersive worlds generated by the use of wearable devices.

(2) Autonomous industry IoT: The organization and management of industrial devices
is achieved through a central platform without manual intervention. In [35], a gen-
eralized cognitive model for autonomous IoT, which fully considers the reasoning,
learning, and planning processes is proposed. However, the development of a detailed
design and adaption scheme for this structure remain challenging.

(3) Digital twin: The digital twin represents a high-fidelity digital mirror of the physical
entity, and the live replica of a process or whole 6G network has the potential to predict
the impact of decisions and optimize the organization modes [36]. By penetrating
AI into the edge, the 6G network will better support vertical use cases and predict
outbreak events accordingly.

(4) Metaverse: Beyond simply creating a physical, virtual space, the metaverse will be
able to provide an immersive experience with a story through user interaction [37].
However, in addition to hardware and software limitations, another challenge is
determining how to protect the massive amount of private information.

3. Intelligent RAN Architecture for the Space–Air–Ground–Sea Integrated
6G Network

Despite the attractive characteristics of the current RAN in 5G networks, e.g., the
centralized design and hierarchical collaboration, it is still not capable of supporting the
emerging vertical services in the 6G era [38]. Specifically, the limitation on the fronthaul
capacity severely weakens the cloud’s ability to optimize resource allocation, organize
cooperation, and fulfill users’ QoS requirements [7,11]. On the other hand, motivated by
the more complex communication scenarios and customized services in the 6G network,
the prospects of service-awareness access are becoming more attractive, which requires
the service providers to fully consider the users’ personal demands and sense the resource
status [39]. Moreover, communication in various environments, i.e., space, air, ground, and
sea, needs to be organically unified and seamless coverage needs to be achieved.

Next, we show that the alternative way to alleviate the above problems is through the
employment of an intelligent cloud architecture, as illustrated in Figure 3, consisting of three
layers, namely the cloud, edge servers, and integrated air interfaces. The first layer is the cloud
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layer, which plays the core role of the RAN, taking the majority of the computing tasks for
signal processing, resource allocation, and other compute-intensive tasks. The cloud pool is
not only linked to the edge server layer but is also connected to many air interfaces directly
through high-bandwidth fiber or electromagnetic (EM) waves, depending on the actual
physical properties of the links. The majority of resources in the network are controlled
by the cloud and allocated to edge servers or users. Fulfillment of the functionality of this
layer relies on infrastructure built by the major service providers as well as the government.
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Figure 3. Intelligent cloud architecture for the 6G RAN.

The second layer, i.e., the edge server layer, is composed of the computing units,
namely the edge servers that perform similar yet independent functions to the cloud with
less computing capability. Its major task is to offload computing tasks at the cloud to
itself, which can effectively relieve the burden of the fronthaul connecting the cloud pool.
Necessary and important information, such as resource allocation results or mobile users’
QoS satisfaction, are fed back to the cloud layer, aiding in efficient computation. The edge
servers often deal with delay-sensitive services, and the service delay can be shortened by
avoiding excessive message exchange overhead.

The third layer is the integrated air interface layer, which includes various air inter-
faces scattered in the space–air–terrestrial–sea environment, e.g., UAV, airplane, satellite,
sea-level base station, and typical RRH, supporting 2G–5G, WiFi, and other RATs. In this
layer, all air interfaces receive signals to be emitted from the cloud or edge servers. If the
computing load for certain services is low and/or the delay requirement is very stringent,
the cloud typically designates the edge server near the air interface/users to cope with
the corresponding processing tasks. Furthermore, the cloud assigns resources along with
constraints, such as the power budget and spectrum mask, to the edge server for flexible
configuration. In contrast, if some services, such as complicated coding techniques with
large data blocks, cooperation with a large user population, or network-wide optimization,
cause a very large computing load that is beyond the edge server’s capability, the cloud
handles the computing task directly and then forwards baseband-ready signals to the
corresponding air interfaces. This setup evidently exhibits the service-aware feature. The
association between the cloud/edge server and air interface obeys the following rules:
(1) an air interface can receive signals from the cloud and the edge server simultaneously
but cannot communicate with two edge servers concurrently, thereby avoiding poten-
tial conflicts in resource allocation due to independent edge server operations; (2) the
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association between the air interface and the edge server may vary over time, allowing a
flexible configuration.

The distributed artificial intelligence (AI) provides integrated coordination for both
cross-layers and internal function units. The purpose of this is not only to assist in the
prediction of the networks’ behaviors prospectively and conduct optimization to achieve
faster service responses, it also attends to sensing heterogeneous resources and coordinating
various users’ requirements. We illustrate the logical structure of the distributed AI in
Figure 4 across two dimensions. One is AI’s vertical dimension in each function layer of a
communication system, and the other is AI’s horizontal dimension between multiple users
and between users and the cloud.
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Figure 4. The model of the distributed AI: (a) the vertical dimension; (b) the horizontal dimension.

As shown in Figure 4a, we suggest that the adoption of the AI structure should be
driven by data and model simultaneously. Each layer has a sensor node that is used to
sense and collect available information from the space–air–ground–sea environment. The
top application layer can analyze and extract features from the service’s QoS and then
deliver these to other layers based on different models’ requirements. Data from both
sensing and services are used to train and update the AI models adaptively, i.e., model
self-learning. Typical schemes employed to fulfill the model’s self-learning include GAN,
deep learning (DL), and LSTM. GAN has the ability to dynamically monitor and simulate
the internal features of observations and then derive an abstract model to depict statistical
rules. DL can seize the deep connection of input data and iterate towards expected outputs.
LSTM is suitable for models with correlations in the time domain; thus, it can predict the
model’s future trends based on its historical performances. Specifically, the traditional
models in the physical layer, which were mainly derived according to the characteristics of
transmitters and common protocols, can be generated and updated adaptively with the
assistance of AI techniques in 6G networks. In this regard, GAN has shown the potential to
model the channels [40]. For the MAC layer, we consider employing DL to extract implicit
information from resource states. In the transport layer and network layer, on the one hand,
we can use the Q-learning network to solve multi-scale computing problems (e.g., routing
selections and multi-path transmissions), and on the other hand, these models can learn
from external data driven by GAN, DL, LSTM, etc.

In Figure 4b, we illustrate the process of information sharing and negotiation across
users, which is driven by the distributed AI framework. First, each user obtains obser-
vations from the network environments, including information of diverse resources (e.g.,
spectrum, caching, and computing resources) and transmission conditions. These ob-
servations are injected into an extraction/predication module to get key features of the
transmission and network environments. Furthermore, future environments can be esti-
mated via the predication function, which is used to guide user’s transmission strategy.
The estimations are further compared with the observations, and the obtained error is also
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fed back to the extraction/prediction module, which will be used to optimize the local
extraction and predication algorithms. In the meantime, the observations by users are also
uploaded to the cloud, so that the cloud can sense and monitor environment information
over the entire network. Second, the cloud will help distribute user’s QoS demands to
each other, together with the resource and network environment information. With these
information, each user will conduct negotiation in a distributive manner, through which
each user will adjust its own QoS requirements to a more balanced level, i.e., acceptable
for itself yet potentially feasible for the network. For QoS negotiation, users will adopt
game-theory based approaches, as the game theory has been proven to be capable of effec-
tively solving complicated problems such as resource competition, coordination, allocation,
etc., over wireless networks and the game theory itself is persistently evolving with more
intelligence [41–45]. The negotiated QoS and extracted features from observations and
estimation are used to finalize its QoS requirements by the reinforcement learning approach.
Then, by analyzing users’ QoS requests and the available resources over the network, the
intelligent cloud can effectively optimize resource allocation and scheduling improving the
network performances while meeting users’ QoS requirements. Moreover, the optimized
scheduling and resource allocation strategies will be sent back to users such that they can
better train their learning module.

The intelligent cloud architecture has the following essential features. First, the dis-
tributed AI can assist the architecture to adaptively coordinate the limited resources with
the users’demands. Through estimating the possible access performance with multiple
available RATs, each user will select the best solution for itself. This process will also
be coordinated with the cloud and/or edge servers, depending on the serving load and
available resources from both a local and global perspective. Second, the cloud layer and
the edge server layer can balance the computing load. Cloud and edge servers have similar
serving functions for end users, and thus this structure can be transparent to end users
with the integrated air interface layer. In this sense, the hierarchical architecture does not
complicate the network. Third, this architecture fully embraces the RAT diversity in the 6G
network. In particular, each end user can receive multiple services simultaneously from
multiple air interfaces with different RATs. Furthermore, to accommodate more stringent
QoS requirements, it is also possible for a single service to deliver data over multiple air
interfaces with different RATs. Last but not least, by efficiently distributing and balancing
computing loads and AI-driven resource allocation and coordination by the cloud, the
hierarchical architecture is potential to considerably improve the overall network perfor-
mance while meeting users’ QoS requirements. It is worth noting that, even with advanced
machine learning (ML) algorithms and fast-developing computing abilities, completely
centralized optimization over the large-size network is still impractical. Hence, the employ-
ment of a hierarchical structure with distributed AI can no doubt lower the complexity and
improve the scalability of the 6G network. To sum up, the intelligent cloud structure is
desirable as it can flexibly distribute the computing load and scales well with the network
size. However, under this architecture, how to deal with the essential heterogeneousness
over the varying communication environments of the 6G network, as well as providing
service-aware resource configuration to fulfill users’ diverse requirements still faces many
challenges, which will be discussed in the next section.

4. Challenges and Potential Solutions for Achieving a Service-Aware Heterogeneous
Resource Configuration

The intelligent cloud-based RAN mainly concentrates on the way computing abilities
are provided and organized. Determining how to efficiently configure the highly hetero-
geneous resources of the 6G network, which are expected to be aware of users’ QoS/QoE
requirements, requires thorough study on diverse aspects. We next discuss four major
issues in service-aware heterogeneous resource configuration in the RAN of 6G networks:
(1) From a network protocol perspective, does the current protocol stack fit well with the
highly varied heterogeneous networks? (2) From the resource-control perspective, how
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is resource sensing and monitoring organized in the intelligent cloud? (3) From the air
interface perspective, how can we support users’ services via multiple heterogeneous
RATs? (4) From the user socialization perspective, how can we achieve user cooperation
via D2D communications?

4.1. Tightly Coupled Cross-Layer Design with Service Awareness

The RAN architecture and diversified heterogeneous resources of the 6G network
exhibit significant differences from conventional networks. However, the network protocol
stack in each network node is almost unchanged. Thus, the question of “does the current
protocol stack fit well with the network environments nowadays?” arises. Two attractive
new features for the 6G network are service-aware access with seamless coverage and
the presence of various heterogeneous RATs. Correspondingly, the moving users and
varying mobile channels, even those moving at a very slow speed, result in highly varying
network statuses [46]. Figure 5 shows how the conventional protocol stack reacts to fast
changes in the network. The physical (PHY) and link layer can adapt their parameters
on the millisecond time scale (e.g., 5G NR divides the 1 ms subframe into several slots
according to subcarrier spacing, and one of the typical slot lengths is 0.125 ms with 120 Khz
subcarrier spacing). The higher the protocol layer, the longer the response time, and
this may reach some tens of seconds. Therefore, with a fast and highly varying network
status, the upper protocol layers cannot match the pace of lower protocol layers, resulting
in severe inconsistent strategies, as depicted in Figure 5. This significantly lowers the
efficiency of mobile networks. Note that the inconsistency problem is not an issue in wired
or traditional mobile networks, because the networks are typically rather stable. Moreover,
the distributed AI of the aforementioned intelligent RAN architecture may separately and
automatically conduct local optimization and make decisions, which should be supported
and coordinated by the cloud.

Consistency
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Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

Highly varying heterogeneous resources over 

densely deployed 6G RANs Time

Basically 

consistent
Inconsistent

Consistency
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Figure 5. Inconsistent responses to the highly varying heterogeneous network status caused by the
loosely coupled protocol stack.

To address this problem, we propose a bidirectional iterative protocol stack framework
based on a cross-layer design, as depicted in Figure 6. The designed framework consists
of two main parts: the protocol stack entity and the bidirectionally iterative strategy
optimizer (strategy optimizer in short). The former carries out the networking functionality
following the traditional layered structure, whereas the latter determines the transmission
strategy, through which different protocol layers are expected to be tightly coupled to avoid
inconsistency. In Figure 6, we use the typical stack structure of the 3GPP as an example,
where the link layer is replaced by the PDCP (Packet Data Convergence Protocol) layer,
RLC (Radio Link Control) layer, and MAC layer.
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Figure 6. Tightly coupled cross-layer framework with service-awareness achieved via bidirec-
tional iterative strategy optimization (using the typical architecture of a protocol stack in 3GPP
as an example).

The protocol entity inherits the classical layer structure, as it can be easily transplanted
for diverse wireless networks with distributive regulation. The strategy optimizer bidi-
rectionally optimizes the transmission strategy across all layers, representing the core
innovative concept. It includes four sub-function blocks: the QoS-/QoE-mapper, top-down
sub-optimizer, bottom-up sub-optimizer, and consistency check module. The QoS-/QoE-
mapper collects users’ QoS/QoE requirements, which are used to orient parameter opti-
mization in different protocol layers, integrating service awareness. Bidirectional strategy
optimization, carried out by the top-down and bottom-up sub-optimizers, is the key ele-
ment required to overcome mismatching decisions by different layers. Optimization starts
with the bottom-up sub-optimizer, which initiates the transmission strategy of each protocol
in a consecutive order from the PHY layer to the application layer. Different protocol layers
optimize their respective objectives based on the channel quality and available resources
(information from lower protocol layers) and are subject to the QoS/QoE constraints (infor-
mation from the QoS/QoE mapper). The bottom-up sub-optimizer operates in the opposite
direction, from the application to the physical layer, where adjustments at each layer are
based on updated strategy information from the upper layers. Bottom-up and top-down
optimization are performed in an iterative fashion to sufficiently exchange information
across protocol layers. On one hand, this iteration mechanism achieves a low level of
complexity as each layer’s optimization is conducted separately, while on the other hand,
the information is fully exchanged such that the strategies at different protocol layers are
tightly coupled and are as consistent as possible.

We further integrate a consistency-check module, which examines whether the strate-
gies of different protocol layers are consistent. If they are, this module terminates the
iteration and passes the results to the protocol entity. If the iteration does not converge until
timeout, the strategy rules in favor of the lower layer while keeping the higher protocol
layers’ strategies before the iteration unchanged. The consistency check is asymmetric,
because the lower layers are close to the propagation environments.

This design presents a framework that has the potential to overcome the loosely
coupling issue for the conventional protocol stack. Moreover, the proposed cross-layer
framework can be designed within part of the protocol layers, allowing flexibility. It will
powerfully support the new services in the 6G network beyond mMTC, uRLLC, and eMBB,
significantly reducing the latency. Considering some real-time spatial and temporal changes,
e.g., the device density, traffic patterns, and spectrum availability, the Event Defined uRLLC
(EDuRLLC) is defined as the evolved version of the uRLLC [17]. It has higher requirements
in terms of the response speed and coupling of cross-layers. With the frequent switching
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of air interfaces and RATs in high-speed mobile services, the independent design of QoS
optimization at each protocol layer can support more types of latency-sensitive services [47].
However, determining how to integrate diverse QoS/QoE requirements when designing
the specifc protocol stack is an attractive yet widely open problem.

4.2. Service-Aware Heterogeneous Resource Sensing and Allocation

In practical systems, resource allocation solutions are computed based on specific
protocols and access mechanisms [48–51]. After these factors have been standardized,
despite the powerful computing ability provided by the cloud, there are still some unique
challenges that require further attention. One challenge is determining how to optimize
service-aware resource allocation for the edge server; the other is determining how to
discover and aggregate resource fragments for service provisioning requested end users.

As discussed previously, the edge server also has a certain computational ability to deal
with base-band signal processing as well as resource allocation for users associated with it.
However, the numbers of resources allocated to the air interfaces and edge servers need
to be determined at the upper-layers. One possible solution is that the air interfaces each
upload the occupation states of the resources to the corresponding edge server within the
specified time scale, and then the edge server is able to estimate the current network loads
according to the local mathematical model [51]. The other method is to extract the model
from the history data of the edge server and then conduct estimations and predictions. This
method is especially suitable for machine communication with periodic traffic patterns.
Based on the estimated real-time loads and users’ QoS requirements, the edge server will
allocate a reasonable number of resources to each air interface. The edge server will also
report partial loads and solutions to the cloud layer. For some services with strict QoS/QoE
requirements or dramatic densities, the cloud will dynamically release more resources for
the edge servers according to demands.

Delay-sensitive and real-time services will occupy a large proportion of the 6G net-
work. To meet the QoS/QoE requirements for these services, we expect that continuous
(in terms of time, frequency [52], space, power, computing, caching [53], or other resource
domains) yet stable resource blocks will be allocated to them, as shown in Figure 7. Then,
an evident consequence will be the existence of resource fragments, which exhibit strong
heterogeneousness. The identification of these heterogeneous fragments includes two
folds: multi-scale resource sensing and non-uniform resource sampling. The multi-scale
characteristic emphasizes the diversities of methods (e.g., satellites, UAVs, robots, smart-
phones) and content (different resource domains) as well as accuracy (in meters, even
decimeters) and timeliness (real-time or intermittent) in resource sensing. The non-uniform
characteristic leads to higher requirements for heterogeneous resource analysis and match-
ing. These fragments, if well organized, can effectively support many services that do
not have stringent QoS/QoE requirements. Based on the above discussion, a potential
strategy is to build a database for users’ resource-usage patterns that reflects the users’
RAT types and major service categories and maintain the resource-fragment map along
with multiple resource domains. Then, a quick matching algorithm between the users
and the resource-fragment map with relatively low complexity can be designed. Another
topic is determining how to efficiently impose monitoring on the resource status, includ-
ing the correlation of available resources, network-load estimation, as mentioned above,
and even the anomaly detection [54,55]. Overall, we predict that the design of fast and
efficient algorithms for the intelligent architecture will become a high-priority task to deal
with the explosively increasing computation loads in the densely deployed heterogeneous
6G network.
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Figure 7. Heterogeneous resource analysis and aggregation via intelligent sensing and monitoring.

4.3. Service-Aware Transmission over Heterogeneous RATs

In the 5G network, users can switch connections between the NR and LTE base
station depending on which one can provide better QoS. As mentioned previously, in
the heterogeneous 6G network, a mobile user can connect via multiple air interfaces
(different RATs) to receive single or multiple services from the cloud, and this will be more
complicated than the switch in 5G. We have discussed the tightly coupled protocol design
in the above, and it has the potential to support more frequent and diverse switching. If
the end user is requesting multiple services, each service can be simply allocated to one
RAT that is separated from the others. Clearly, the challenge lies in the attempt to obtain a
single service from multiple RATs. This goal has been persistently tackled by the research
community. The major problem is packet reordering, as illustrated in Figure 8a. Data
packets belonging to a single service might come from different RRHs due to the diversified
RATs present in the 6G network. However, the packet sequence is not consecutive in each
path, and thus, packet reordering in the mobile user is needed for data recovery.
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Figure 8. Service-aware access of heterogeneous RATs: the multi-path TCP approach and fountain-
code-based approach.
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One of the most popular approaches to support multi-path transmission is the multi-
path TCP [56], as depicted in Figure 8a. The essential issue in multi-path TCP is the
disharmony between the TCP’s error control mechanism and the independent channel-
quality/path-bandwidth of different paths. The TCP typically maintains a sliding window
for the transmitter and receiver. At the receiver end, if a packet is lost or delayed, causing
timeout, retransmission of all packets with proceeding sequence numbers, even some of
which have correctly arrived, will be requested. This problem may occur often in the 6G
network because the heterogeneous RATs have independent channel fading and congestion
statuses. Moreover, the imbalanced bandwidths across different RATs might severely
aggravate this problem. Aside from the multi-path TCP, the P2P approach via a consistent
hash table and resource discovery and cooperation, might be an alternative approach.
However, it is not suitable for the 6G RAN, as it requires cooperation across multiple paths,
yielding a considerable overhead and thus not making itself a good candidate.

We next show that the fountain code has the potential to solve this multi-path data
aggregation problem. The fountain code was originally developed for multi-cast common
data from distributed servers on the Internet [57]. It is able to generate an infinite encoded
sequence from given source symbols. Under ideal conditions, the source symbols can be
recovered by simply obtaining an arbitrary subset of encoded symbols whose size is not
less than that of the source symbols. The distributed servers can independently generate
fountain-coded packets, which are random linear XOR combinations of a block of equal-
length information packets. For usage in decoding, the random combination pattern is put
in the header of each coded packet. The decoding takes advantage of the low-complexity
iterative algorithm, and more importantly, the order of coded packets from distributed
servers is not concerned by receivers. As long as a receiver can sufficiently accumulate
many coded packets, it can recover the packet block successfully. It is notable that for the
large block size (i.e., the number of information packets in a block), the optimized design of
the distribution of random combination patterns will introduce only a very small amount
of extra redundancy compared with the size of the information packets.

These benefits make the fountain code a strong candidate to increase the speed of
delivery for single service over multiple air interfaces with different RATs. Multiple paths
are analogous to the distributed servers mentioned above. As shown in Figure 8b, the coded
packets from different RATs are not restricted by their arrival order. Furthermore, unlike
the multi-path TCP, the decoding of the fountain code concentrates on the accumulation of
coded packets and is not affected by the bandwidth imbalance across multiple RATs.

A drawback of the fountain-code-based approach is the need for a large block size
to achieve a high efficiency. Thus, it is mainly suitable for delay-tolerant services, such
as software updating and file downloading, which further motivates the achievement
of service-aware access for heterogeneous RATs. Particularly, determining whether to
enable connections via multiple RATs or not is driven by the delay quality-of-service (QoS)
required by the user. As illustrated in Figure 8, when the delay-QoS requirement is very
loose, the fountain-code-based approach is enabled. In contrast, when the delay-QoS
requirement gets more stringent, the multi-path TCP approach will be activated, such
that the timeout setup for the sliding window can assist in the delay assurance to some
extent. In addition, if the service is very delay-sensitive, the RAN has to drop multi-RAT
connections to avoid a long delay. Note that after determining the specific access mode
for the RATs, the number of allocated resources depends on computation by the cloud or
edge servers.

However, multi-path transmission will also introduce or aggravate the problem of
co-site interference, in which a single device served by multiple RATs may receive different
types of signals with diverse time, frequency, or space domain characteristics in a certain
communication period, and this will eventually severely degrade the QoS. As interference
introduced by accessing the LTE and 5G air interfaces in 5G networks simultaneously,
co-site interference becomes more serious and significant because of the integrated commu-
nication scenarios and heterogeneous air interfaces in 6G networks. This issue has gained
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attention from many researchers in terms of determining how to effectively identify inter-
ference and extract useful signals [58,59]. Specifically, the digital-extraction cancellation
scheme can overcome the weakness of the analog scheme caused by the limited accuracy
of multiple RF components, typically by building a signal model to reconstruct the inter-
ference and then offsetting the interference. Based on the above discussion, determining
how to guarantee the availability of the generated signal model and channel model while
considering the protean parameters and coupled signals is a key problem. One possible
solution is to insert some additional information into the pilot sequences, and when the
signals reach the receiver, the known sequence fragments can assist to judge the distortion
caused by interference and noise in the transmission channel. More discussion on the
design of pilot sequences considering different frame structures and heterogeneous RATs
is needed.

4.4. Enabling User Socialization for Cloud Extension

Regardless of how robust and delicate the design architecture is, the provision of
seamless high-quality services for users in various environments and locations is still
extremely difficult. One promising solution is to enable user-centric networking in the 6G
network, where the user plays the role of not only the consumer but also the provider, such
that the cloud-based architecture of RAN can be extended to the user level [6,30,60–63].
Device-to-device (D2D) communications provide strong support to achieve this goal, as
they allow a device to relay the data to other devices in proximity, effectively benefiting the
dead-corner coverage, data sharing, and even the handover in the RAN of 6G networks [64].

One typical example is atomized caching in mobile edge computing (MEC). As shown
in Figure 9, the encoded packages in a file are dispersed at the edge of the network like fog,
and the content requester is able to obtain the required file through D2D communication
with the surrounding caching servers to carry out content sharing. Enabled by fountain
codes, as mentioned in Section 4.3, the content requester does not need to figure out
the associations between the encoded packets and received packets and only needs to
concentrate on the number of received packets. Thus, with the assistance of multiple
caching servers, a single requester will have the ability to download at higher speeds, while
on the other hand, it can also act as a caching provider for other users.

UE6

UE3

BS

UE1

UE2

packet 2 packet 1 packet 10packet 1 packet 5

UE4

UE5

packet 10 packet 21 packet 30packet 9 packet 3

Edge server

Cloud

Mobile communications

D2D communications

User devices caching

Figure 9. Atomized caching enabled by fountain codes with support by D2D communications and
user socialization.

Unfortunately, recently, the standardization of D2D has progressed slowly due to a
lack of economic incentives for both service providers and mobile users. To solve this
problem, data relay among users requires some incentive [65]. In contrast, the beneficiaries
need to pay the helper in some way, enabling socialization across end users [31]. This can
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also be easily integrated into the cloud architecture from the provider side. However, there
are still many open problems to be researched and studied, including how to define and
manage the payment, whether part of the payment should be forwarded to the provider,
how the payment is associated with service types, etc.

5. Future Research Areas for the Service-Aware Intelligent RAN
5.1. Model Selection and Training for Multi-Level AI

With the explosive growth in the number of users and the types of users in the 6G era,
the computing resources in each layer are always limited. This is especially obvious in some
widely distributed terminals, e.g., IoT sensor nodes [66,67]. Moreover, no matter whether
serving for a so-called latency-sensitive application or not, the communication algorithms
are always strictly required on the delay performances. Typically, users do not want their
requests to be answered when they no longer need them. This makes the time complexity
of the algorithm a critical issue in model selection. Most of the proposed algorithms rely on
databases and pre-training. Thus, in the future, even in the segmented communication field,
we hope that the models will achieve a considerable degree of universality and adaptability.

5.2. Service-Resource Matching via Big Data Flying in the Air

With the fast-growing network size, the 6G network imposes overwhelming com-
putational burden in the cloud. Rather than brutally computing for optimized resource
allocation, it is desirable for the cloud to gain knowledge from the big data generated from
networking [31,68], such that the quick service-resource matching pattern can be identified.
However, it is worth noting that unlike the wired networks, the big data for mobile net-
works are often dispersed and flying over the air. Therefore, how to take advantage of this
feature for deep learning will intrigue a very interesting research topic.

5.3. Service-Aware Security Assurance for User-Assisted Cloud

In traditional model updates, user data are necessary to optimize user experiences.
However, people are reluctant to provide important personal information to the cloud,
even if this can help to achieve more refined services through big data analysis. Federated
learning is a new security strategy that enables local updates of models without uploading
data to the cloud [69]. This will introduce a significant communication overhead during
training; thus, some devices with weak computing and storage capabilities may not support
federated learning well. Another potential PHY layer strategy is to generate a secret key
by exploiting the noise channel and use the key as a one-time pad or several-time pad to
ensure secure transmission [70]. Therefore, we should customize special security policies
for different services, fully considering the diversities of hardware, resources, and even the
external environment [71].

5.4. Deeper Virtualization down to the Physical Layer

Though the definition of network slicing has been proposed in 5G networks, it un-
fortunately still mainly concentrates on the resources of the upper layers, i.e., data and
service slicing [72]. The slicing technique in the 6G network, which is supported by cloud
computing, will have the ability to achieve deeper and more refined slicing for wireless
links and air interfaces in the PHY and MAC layers, i.e., RAN slicing [73]. As the PHY
abilities of base stations and terminals are further abstracted, the trend of network function
virtualization (NFV) will become more obvious and finally, “PHY function as a service”
will be achieved.

5.5. Concise Configuration in Intent-Driven Networks

In traditional networks, on one hand, a single network function can usually serve
many core applications, but in the 6G network, the vertical trend of services calls for the
ability to carry out customized networking. On the other hand, configuring networks
manually inevitably leads to low efficiency and late responses, consequently increasing
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the management costs and expenditure for operators. To fully embrace the diversity of
6G services, intent-driven networks (IDNs) have shown huge potential to intelligently
sense and respond to not only users’ and operators’ requirements but also their intent,
including optimizing, monitoring, configuring, verifying, etc. [74,75]. Though IDN are
hopeful candidates to truly fulfill the vision of intelligent networking, which have received
wide attention from researchers, the concrete architecture and technique schemes of IDNs
still require further development.

6. Conclusions

In this article, we first illustrated the concept of service-awareness and then briefly
previewed the evolution of cloud-based RAN architectures from 5G to 6G. After analyzing
the advantages and issues of the existing architectures, we presented an intelligent RAN
architecture for service-aware access in 6G networks. We also shared our opinions on the
issues and potential solutions for the service-aware resource configuration from network-
protocol, resource-control, heterogeneous-RAT, and user socialization perspectives. Future
research efforts will involve the selection and training of ML models, deep learning via big
data, service-aware security assurance, deeper virtualization, and intent-driven networks
for the cloud-based RAN of 6G networks. This article provides a roadmap for researchers
working on hierarchical cloud and service-aware heterogeneous resource configuration for
6G radio access networks.
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