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Abstract: In recent years, artificial intelligence technology represented by deep learning has achieved
remarkable results in image recognition, semantic analysis, natural language processing and other
fields. In particular, deep neural networks have been widely used in different security-sensitive
tasks. Fields, such as facial payment, smart medical and autonomous driving, which accelerate the
construction of smart cities. Meanwhile, in order to fully unleash the potential of edge big data,
there is an urgent need to push the AI frontier to the network edge. Edge AI, the combination of
artificial intelligence and edge computing, supports the deployment of deep learning algorithms to
edge devices that generate data, and has become a key driver of smart city development. However,
the latest research shows that deep neural networks are vulnerable to attacks from adversarial
example and output wrong results. This type of attack is called adversarial attack, which greatly
limits the promotion of deep neural networks in tasks with extremely high security requirements.
Due to the influence of adversarial attacks, researchers have also begun to pay attention to the
research in the field of adversarial defense. In the game process of adversarial attacks and defense
technologies, both attack and defense technologies have been developed rapidly. This article first
introduces the principles and characteristics of adversarial attacks, and summarizes and analyzes
the adversarial example generation methods in recent years. Then, it introduces the adversarial
example defense technology in detail from the three directions of model, data, and additional network.
Finally, combined with the current status of adversarial example generation and defense technology
development, put forward challenges and prospects in this field.

Keywords: adversarial example; deep neural network; smart city; adversarial defense; black-box
attack; white-box attack

1. Introduction

In recent years, deep neural network (DNN) has been widely used in computer
vision [1–3], speech recognition [4–6], NLP [7,8] and many other fields, and has made
great achievements in industrial the industry and academia have set off a wave of artificial
intelligence represented by deep neural networks. Meanwhile, the combination of deep
learning technology and edge computing has provided a strong drive for the development
of smart cities. However, the security of deep neural network has not been scientifically
explained and dealt with. The deep neural network obtains results through its own
structure and algorithm mechanism, and relies on a large amount of external data during
the training process. The features of the data determine the deep neural network. judgment
result. Therefore, attackers can attack deep neural networks by modifying the data. As
shown in Figure 1, after adding subtle perturbations to the original image, the human eye
cannot detect the change in the image, but once it is input into the neural network model, it
will seriously affect its recognition performance.
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formation of the model, while the black-box attack can only obtain the output of the target 

model by inputting the original data to the target model. The attack strategy will be intro-

duced together with the actual attack method. With the introduction of adversarial exam-

ples, researchers have begun to pay attention to the generation and defense methods of 

adversarial examples, and have achieved breakthrough results. This paper will discuss 

the methods of adversarial example generation and defense in computer vision in recent 
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of image. Compared with previous investigations, we have summarized and analyzed 
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Figure 1. Adversarial example generation process, by adding (b) perturbation to (a) original samples,
(c) adversarial examples can be obtained.

Szegedy et al. [9] first proposed the vulnerability of deep neural network models in
image classification tasks. The adversarial examples generated after adding perturbation to
the original image are indistinguishable to the human eye, but the deep neural network can
output wrong results with high confidence. The recognition performance of the network is
severely affected. As shown in Figure 2, after adding an adversarial perturbation to the
original example to form an adversarial example, the target model incorrectly identifies
“Cat” as “Dog”, and the human eye cannot detect the difference between the original
example and the adversarial example. The white-box attack can obtain the structural
information of the model, while the black-box attack can only obtain the output of the
target model by inputting the original data to the target model. The attack strategy will be
introduced together with the actual attack method. With the introduction of adversarial
examples, researchers have begun to pay attention to the generation and defense methods
of adversarial examples, and have achieved breakthrough results. This paper will discuss
the methods of adversarial example generation and defense in computer vision in recent
years. At present, there have been some reviews of countermeasures examples in the field
of image. Compared with previous investigations, we have summarized and analyzed
countermeasures attacks and focused on their generation principle. Meanwhile, this paper
analyzes the defense technology from three aspects: model optimization, data optimization
and additional network, so as to provide relevant reference for researchers in this field.
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2. Adversarial Attack

In this section, we first introduce the characteristics and classification of adver-
sarial attacks, and then analyze the typical adversarial attack methods based on the
aggregated results.

2.1. Common Terms

The adversarial attack is to attack the divine neural network through the adversarial
example. According to the characteristics and attack effect of the adversarial attack, the
adversarial attack can be divided into black-box attack and white-box attack, one shot
attack and iterative attack, targeted attack and non-targeted attack, specific perturbation
and universal perturbation, etc., the terms are introduced as follows:

Black-box attack: The attacker cannot access the deep neural network model, and thus
cannot obtain the model structure and parameters, and can only obtain the output result of
the target model by inputting the original data to the target model.

White-box attack: The attacker can obtain the complete structure and parameters of the
target model, including training data, gradient information and activation functions, etc.

One-shot attack: The adversarial attack algorithm only needs to perform one calcula-
tion to obtain an adversarial example with a high attack success rate.

Iterative attack: The adversarial attack algorithm needs to be run multiple times to
generate adversarial examples. Compared with the one-shot attack, iterative attack takes
longer running time but has better attack effect.

Targeted attack: After the adversarial examples designed by the attacker are input
into the target model, the target classifier can misjudge the specified classification result.

Non-targeted attack: The adversarial example only needs to be misjudged by the
target classifier, and does not limit the classification result.

Specific perturbation: Add different perturbations to each input original data to form
different perturbation patterns.

Universal perturbation: The same perturbation is added to each input original data,
and its perturbation mode is the same.

2.2. Adversarial Attacks

At present, the academic circle has not reached a unified conclusion on the generating
principle of adversarial examples. Szegedy et al. [9] believe that adversarial examples
exist in real data, but the probability of occurrence is low, which makes it difficult for the
model to learn adversarial examples. Therefore, after adversarial examples appear in the
test set, it is difficult for the classifier to correctly identify the adversarial examples. While
Goodfellow et al. [10] believe that the vulnerability of neural networks is due to the high-
dimensional linear features of the model, when the model uses linear activation functions
such as Relu or Maxout, it is more vulnerable to adversarial examples. Although the gener-
ation principle of adversarial examples has not been scientifically explained, in recent years,
researchers have provided a theoretical and practical basis for improving the security of
deep neural networks by exploring adversarial example generation algorithms. As shown
in Table 1, this paper summarizes and analyzes the current typical adversarial example
generation methods based on attack type, attack target, attack frequency, perturbation type,
perturbation norm, attack strategy, etc.
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Table 1. Summary of typical adversarial attack and its principle.

Adversarial
Attacks Attack Type Attack Target Attack

Frequency
Perturbation

Type
Perturbation

Norm
Attack

Strategy

L-BFGS [9] White-box Targeted One-shot Specific l∞
Constrained
optimization

FGSM [10] White-box Targeted One-shot Specific l∞
Gradient

optimization

JSMA [11] White-box Targeted Iterative Specific l2
Sensitivity

analysis

C&W [12] White-box Targeted Iterative Specific l0 l2 l∞
Constrained
optimization

One-Pixel [13] Black-box Non-targeted Iterative Specific l0
Estimated decision

boundary

DeepFool [14] White-box Non-targeted Iterative Specific l0 l2 l∞
Gradient

optimization

ZOO [15] Black-box Targeted Iterative Specific l2
Migration

mechanism

UAP [16] White-box Non-targeted Iterative Universal l2 l∞
Gradient

optimization

AdvGAN [17] White-box Targeted Iterative Specific l2
Generative

model

ATNs [18] White-box Targeted Iterative Specific l∞
Generative

model

UPSET [19] Black-box Targeted Iterative Universal l∞
Gradient

approximation

ANGRI [19] Black-box Targeted Iterative Specific l∞
Gradient

approximation

Houdini [20] Black-box Targeted Iterative Specific l2 l∞
Constrained
optimization

BPDA [21] Black-box Targeted Iterative Specific l2 l∞
Gradient

approximation

DaST [22] Black-box Targeted Iterative Specific l∞
Generative

model

GAP++ [23] White-box Targeted One-shot Universal l0 l2 l∞
Generative

model

CG-ES [24] Black-box Targeted Iterative Specific l0 l2 l∞
Evolution
Strategies

2.2.1. L-BFGS

Szegedy et al. [9] proposed that vulnerability of pairs to specific perturbations would
lead to serious deviation of model recognition results in their exploration of the explainable
work of deep learning. They proposed the first anti-attack algorithm for deep learning,
L-BFGS:

min c‖δ‖+ Jθ(x
′
, l
′
)

s.t. x
′ ∈ [0, 1]

, (1)

where c denotes a constant greater than 0, x
′

denotes the adversarial example formed by
adding perturbation δ to the example, and Jθ denotes the loss function. The algorithm is
limited by the selection of parameter c, so it is necessary to select the appropriate c to solve
the constrained optimization problem. L-BFGS can be used in models trained on different
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datasets by virtue of its transferability. The proposal of this method has set off a research
upsurge of scholars on adversarial examples.

2.2.2. FGSM

Goodfellow et al. [10] proposed the Fast Gradient Sign Method (FGSM) algorithm to
prove that the existence of adversarial examples is caused by the high-dimensional linearity
of deep neural networks. The algorithm principle is to generate adversarial perturbations
according to the maximum direction of the gradient change of the deep learning model
and add the perturbations to the image to generate adversarial examples. The formula for
FGSM to generate perturbation is as follows:

δ = εsign(∇xJθ(θ, x, y)), (2)

where δ represents the generated perturbation; θ and x are the parameters of the model
and the input to the model, respectively; y denotes the target associated with x; Jθ is the
loss function during model training. ε denotes a constant, when ε is 0.25, FGSM results
in the shallow softmax classifier with a classification error rate of 99.9% and an average
confidence rate of 79.3% on the MNIST dataset

The advantage of the FGSM algorithm is that the attack speed is fast, because the
algorithm belongs to a single-step attack, but sometimes the attack success rate of the ad-
versarial examples generated by the single-step attack is low. Therefore, Kurakin et al. [25]
proposed an iteration-based FGSM (I-FGSM). The main innovation of I-FGSM is to gen-
erate perturbations by increasing the loss function in multiple small steps, so that more
adversarial examples can be obtained.

2.2.3. JSMA

Papernot et al. [11] proposed the jacobian-based saliency map attack (JSMA). Instead
of using the gradient information of the loss function output by the model, JSMA uses
the probability information of the model output category to perform back-propagation to
obtain the gradient information, and then build an adversarial saliency map to achieve the
purpose of attack. The forward derivative of the deep learning model to the input example
x is as follows:

∇F(x) =
∂F(x)

∂x
= [

∂Fj

∂xi
]
i∗j

, (3)

The degree of influence of each pixel point on model classification can be obtained
through the forward gradient. Then, in order to quantify the influence of the change of pixel
value on the target classifier, JSMA proposed the construction of adversarial significance
graph based on Jacobian matrix, as shown below:

S(x, t)[i] = {
0, ∂Ft(x)

∂xi
<0 or ∑ j 6=t

∂Ft(x)
∂xi

>0
∂Ft(x)

∂xi
|∑ j 6=t

∂Ft(x)
∂xi
|, otherwise

, (4)

where i represents the input feature. The above formula can be used to calculate which pixel
position changes can have the greatest impact on the target classification t. When i is larger,
the target classifier is more sensitive to the perturbation of this feature. Therefore, JSMA
chooses the one with the largest anti-significant value. Pixels are perturbed to generate
adversarial examples. The author proves through experiments that when 4.02% of the
features in the example are changed, the JSMA attack can obtain an attack effect with a
confidence rate of 97%. Moreover, the perturbation value calculated by this method is
relatively small, so the change to the example is difficult to be recognized by the human eye.

2.2.4. C&W

In response to the attack methods proposed by scholars, Papernot et al. [26] proposed
defensive distillation, which uses the distillation algorithm [27] to transfer the knowledge of
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the complex network to the simple network, so that the attacker cannot directly contact the
original model to attack, Defensive distillation effectively defends against some adversarial
examples. For defensive distillation, Carlini et al. [12] proposed a C&W attack by constrain-
ing l0, l2 and l∞. Experiments show that defensive distillation cannot defend against C&W
attacks, and the general perturbation constraints of C&W attacks are as follows:

minimize D(x, x + δ) + c · f(x + δ)

such that x + δ ∈ [0, 1]n
, (5)

where D represents constraint paradigms such as l0, l2 and l∞, l0 constraint the number of
clean example points changed in the generation process, l2 constraint the overall degree
of perturbation, l∞ constraint the maximum allow perturbed per pixel, c denotes the
hyperparameter, and f adopts a variety of objective functions. By conducting experiments
on the MINIST and CIFAR datasets, C&W achieves an attack on the distillation network
with a 100% success rate, and C&W can generate high-confidence adversarial examples by
adjusting the parameters.

2.2.5. One-Pixel

Su et al. [13] proposed an attack method One-Pixel attack (OPA), which only needs to
change one pixel to generate adversarial examples. This method uses differential evolution
algorithm to find adversarial perturbations, and then changes one or a small number of
pixels to cause the model to misclassify, the OPA attack formula is as follows:

maximize fadv(x + e(x))

subject to ‖e(x)‖ ≤ d
, (6)

When d = 1, it means that the network only changes one pixel of the model. The author
uses the differential evolution algorithm to obtain the optimal adversarial perturbation
of the attack effect. For the n-dimensional image x = (x1, · · · ,xn), the perturbation caused
by changing one pixel is actually along the direction parallel to the n-dimension. The
interference of data points is carried out in one direction. Each perturbation is a 5-tuple,
including x coordinate, y coordinate and RGB value. The calculation formula is as follows:

xi(g + 1) = xr1(g) + F(xr2(g) + xr3(g))

r1 6= r2 6= r3
, (7)

where xi denotes the candidate solution, r1, r2, r3 are random numbers, F represents the
scale parameter, which is set to 0.5, and g is the current iteration number. After each
iteration, if the result obtained by the candidate solution exceeds the parent result, then the
candidate solution continues to the next iteration, otherwise, the parent result proceeds
to the next iteration until the best attack result is obtained or the maximum number of
iterations is reached.

2.2.6. DeepFool

Moosavi-Dezfooli et al. [14] proposed a method DeepFool based on gradient iteration
to generate adversarial perturbations. DeepFool first obtains perturbations by calculation,
and then pushes normal examples to the decision boundary through continuous iterative
pixel adjustment until the adversarial examples are obtained after crossing the decision
boundary. Taking binary classification as an example, assuming that the classification
function is f(x) = wTx + b, the corresponding affine plane is β = {x:wT + b = 0}. Therefore,
the minimum perturbation δ that affects the classification result of the original example
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x0 by the classification function is equal to the orthogonal projection of x0 to β, and the
calculation formula of δ is as follows:

δ∗(x0) := argmin‖δ‖2

s.t. sign(f(x0 + δ)) 6= sign(f(x0))

= − f(x0)

‖w‖2
2
w

, (8)

The above objective function solves the minimum adversarial perturbation δ in an
iterative manner, and the calculation formula is as follows:

argmin‖δi‖2

s.t. f(xi) +∇f(xi)
Tδi = 0

, (9)

DeepFool measures the robustness of examples by computing the minimum distance
between the decision boundary of normal examples and adversarial examples. Meanwhile,
c compared with the single-step attack on FGSM, DeepFool can generate more accurate
perturbations in a shorter time, but Deepfool can only achieve non-targeted attack.

2.2.7. ZOO

Different from some existing black-box attack methods based on surrogate models,
Chen et al. [15] proposed the zeroth order optimization (ZOO), which does not exploit
the attack transferability of surrogate models, but It is to estimate the value of the first-
order gradient and the second-order gradient, and then use Adma or Newton’s method to
iterate to obtain the optimal adversarial example, and add a perturbation to a given input
x : x = x + hei, where h is a small constant, ei represents a vector where i-th is 1 and the rest
are 0. The first-order estimated gradient value is calculated as follows:

ĝi ::=
∂f(x)
∂xi

≈ f(x + hei)− f(x − hei)

2h
, (10)

The second-order estimated gradient is calculated as follows:

ĥi :=
∂2f(x)
∂2xii

≈ f(x + hei)− 2f(x) + f(x − hei)

h2 , (11)

Chen et al. verified by experiments on the MNIST and CIFAR10 datasets that the ZOO
attack can achieve a high attack success rate, but compared with the white-box attack C&W,
the ZOO attack takes more time.

2.2.8. UAP

Moosavi-Dezfooli et al. [16] proposed a universal adversarial perturbations attack
(UAP) based on DeepFool, which also uses adversarial perturbations to push normal
examples to the decision boundary to form adversarial examples. It is defined as follows:

k̂(x + δ) 6= k̂(x) f or “most” x ∼ µ, (12)

where the general adversarial perturbation satisfies δ the following constraints:

‖δ‖p ≤ ε

Px∼µ(k̂(x + δ) 6= k̂(x)) ≥ 1− θ
, (13)

where k̂(x) represents the classification function, ε parameter is used to control the strength
of the adversarial perturbation δ, and θ is used to control the success rate of the attack
on the original example. In the iterative process of UAP, the minimum perturbation of
each example is obtained through the DeepFool algorithm and continuously updated.



Electronics 2022, 11, 1283 8 of 19

until the optimal adversarial example is generated. UAP attack achieves the purpose of
transplanting locally generated adversarial perturbations to the target network for attack.
Although Moosavi-Dezfooli et al. only conducted experiments on ResNet to verify the
effectiveness of general perturbation, the UAP attack has been successfully generalized to
other neural networks.

2.2.9. advGAN

Xiao et al. [17] proposed an adversarial attack method advGAN based on generative
adversarial network, which is mainly composed of generator G, discriminator D and target
network model C. AdvGAN first inputs original example x into generator to generate
adversarial perturbation g(x), and then inputs x+ g(x) into discriminator and target model,
respectively. On the one hand, discriminator D is used to identify the category of examples.
The target function of AdvGAN is shown as follows:

L = Ladv + αLGAN + βLhinge, (14)

The objective function is divided into three parts, where Ladv is the misjudgment loss,
the purpose is to guide the generator to generate the best adversarial perturbation, and its
formula is as follows:

Ladv = ExlC(x + g(x), t), (15)

The adversarial perturbations generated by AdvGAN can guide the model to mis-
classify it as class t. LGAN denotes the adversarial loss, that is, the original loss function
proposed by GoodFellow. The formula is as follows:

LGAN = Ex log D(x) + Ex log(1−D(x + g(x))), (16)

The goal of this loss function is to optimize the generator G and the discriminator
D. After training and optimization, the generator G can generate the best adversarial
perturbation g(x), and the discriminator D can also efficiently identify adversarial examples.
For the training of stable GAN, the formula is as follows:

Lhinge = Exmax(0, ‖g(x)‖2 − c), (17)

The hyperparameter c denotes the optimized distance, and advGAN conducts black-
box attack experiments on the MNIST dataset, achieving a success rate of 92.76%.

2.2.10. ATNs

Baluja et al. [18] proposed Adversarial Transformation Networks (ATNs) based on the
generative model. The ATNs input is the original example, and the adversarial example
is generated by training a feedforward neural network. On the one hand, it satisfies the
minimum perturbation and maintains the similarity between the adversarial example and
the original example, on the other hand, it satisfies the success rate of adversarial attacks.
Therefore, the objective function is as follows:

argmin
θ

∑
xi∈X

βLX(GF,θ(xi), xi) + LY(F(GF,θ(xi)), F(xi)), (18)

where GF,θ(xi) represents the generative model that needs to be trained. After inputting
the original example, the adversarial example is output. F(xi) represents the attacked target
model, where LX and LY represent the loss function of the input space and the output
space, respectively. The former is used to constrain the difference between the adversarial
example and the original example. Similarity, the latter is used to constrain the success rate
of adversarial attacks.
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2.2.11. UPSET and ANGRI

Sarkar et al. [19] proposed two black-box attack methods, UPSET and ANGRI, the
former generates generic perturbations for the target class and the latter generates image
specific perturbations. UPSET generates an adversarial perturbation R through the residual
generation network. Assuming that t is the selected target category, the perturbation is
expressed as rt = R(t).The adversarial example generation formula is as follows:

x
′
= U(x,t) = max(min(s× R(t) + x, 1)− 1), (19)

where U represents the UPSET network, and s is the size used to adjust the perturbation rt.
The loss function of the UPSET network consists of two parts, as follows:

L
(

x, x
′
,t
)

= LC(x
′
, t) + LF(x

′
, t)

= ∑m
i = 1 log(Ci(x

′
)[t]) + w‖x′ − x‖k

k

(20)

where LC penalizes the inability to generate the target attack class, and LF is used to ensure
the similarity between the adversarial examples and the original examples. Compared with
UPSRT, ANGRI concats At and Ax to obtain Ac, and then generates adversarial examples
x
′
. Since ANGRI can obtain input images, it can generate better adversarial images, even

when the classifier is trained with noisy images, ANGRI can still generate better adversarial
examples.

2.2.12. Houdini

Cisse et al. [20] proposed Houdini algorithm that could generate adversation examples
for the final performance measurement of the tasks performed by the model for some com-
binative and non-decomsolvable problems that could not generate adversation examples
through gradient descent, such as speech recognition and semantic segmentation. The loss
function of the Houdini network is as follows:

LH(θ, x,y) = Pγ∼N(0,1)[gθ(x,y)− gθ(x,y
′
) < γ] · L(y′ ,y) (21)

where gθ represents the target neural network with parameter θ, gθ(x,y)− gθ(x,y
′
) repre-

sents the difference between the actual score and the predicted score, and L is the original
loss function. In addition, Cisse et al. applied Houdini network to speech recognition,
language segmentation and pose estimation, and achieved good performance.

2.2.13. BPDA

In order to verify that the defense based on gradient obfuscation is flawed, Athalye
et al. [21] proposed backward pass differentiable approximation (BPDA). When a pre-
trained classifier is given, a pre-processor g(x) is constructed, which satisfies g(x) ≈ x, the
derivative can be approximated as:

∇xf(g(x))
∣∣∣x=x′ ≈ ∇xf(x)

∣∣∣x=g(x′ ), (22)

BPDA can overcome the defense based on gradient confusion effectively through
the above equation and acquire the approximate value of gradient, and then generate
the counter example through the average value of several iterations. The authors carried
out BPDA attacks against 7 defense models based on confounding gradient presented at
ICLR2018. BPDA completely avoided 6 defenses and partially avoided 1 defense. The
BPDA algorithm proves that the defense method based on gradient obfuscation has specific
and obvious defects.
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2.2.14. DaST

In real-world tasks, pre-trained models are difficult to obtain. In this paper, Zhou
et al. [22] proposed the data-free substitute training method (DaST) to obtain substitute mod-
els for adversarial black-box attacks without the requirement of any real data. To achieve
this, DaST utilizes specially designed generative adversarial networks (GANs) to train
substitute models. In particular, we design a multi-branch architecture and label-controlled
loss for generative models to handle the uneven distribution of synthetic examples. The
substitute model is then trained with synthetic examples generated by the generative model
and then labeled by the attacked model. The task of the substitute model is to mimic the
output of the target model. This is a game of two, where the target model can be seen as
the referee. The loss function for this game can be written as:

LD = d(T(X̂), D(X̂)), (23)

where d(T(X̂), D(X̂)) represents the metric to measure the output distance between substi-
tute model D and target model T. Update the generative model:

LG = e−d(T,D) + αLC, (24)

where LC represents the label-controal loss, α is used to controls the weight of LC.
DaST is the first substitute model to train adversarial attacks without any real data.

Attackers can use this method to train substitute models of adversarial attacks with-
out collecting any real data. Zhou et al. attacked an online machine learning model
on Microsoft Azure. Using their method, the remote model misclassified 98.35% of the
antagonistic examples.

2.2.15. GAP++

In contrast with algorithms that only rely on input images to generate adversarial
perturbations, Mao et al. [23], inspired by previous work [28], propose a novel general
framework GAP++ based on GAP [29], which can infer targets based on input images
and target labels Condition perturbation. Different from previous single-target attack
models, this model performs target-conditioned attack by learning the relationship between
attack targets and image semantics. GAP++ can generate all types of target perturbations
using only one trained model. In the architecture of GAP++, each input image requires a
corresponding target label as conditional information. However, in the case of non-targets,
there is no conditional target label. Therefore, use the zero vector for off-target training as it
does not affect the learning of the internal representation by concatenating zero tensors in
the model. Extensive experiments on the MNIST and CIFAR10 datasets demonstrate that
the method achieves better performance under a single-target attack model and a higher
deception rate under a small perturbation norm. Although GAP++ borrows the network
architecture and normalization tricks of the original GAP, it is lighter in performance than
GAP and thus can be used for many attack tasks.

2.2.16. CG-ES

Standard evolution strategies (ES) algorithms can perform black-box attacks, where
Gaussian distribution is widely adopted as the search distribution. However, it may not
be flexible enough to capture different distributions of adversarial perturbations around
different benign examples. Feng et al. [24] proposed a new evolution strategies approach
(CG-ES) for searching distribution to solve the fractional black-box attack problem, based
on conditional luminescence model and Gaussian distribution. CG-ES transforms Gaussian-
distributed variables into another space through a conditional flow-based model to enhance
the ability and flexibility to capture the inherent distribution of adversarial perturbations
on benign examples. In addition, Feng et al. proposed to pre-train the c-Glow [30] model by
approximating the energy-based model to the perturbation distribution of the alternative
model. Then the pre-trained c-Glow model is initialized as the attack target model in ES.



Electronics 2022, 11, 1283 11 of 19

Therefore, the proposed CG-ES method makes use of both query-based and transport-based
attack methods, and achieves higher attack success rate and higher attack efficiency.

2.3. Adversarial Attacks Comparison

L-BFGS is an early adversarial attack algorithm, which has inspired other attack
algorithms. The adversarial examples generated by L-BFGS have good mobility and can be
applied in many different types of neural network structures. Although JSMA has High
attack success rate, but because its attack depends on the Jacobian matrix of the input
example, and the Jacobian matrix of different examples is quite different, JSMA does not
have transferability. FGSM only needs one iteration to acquire the adversarial perturbation,
so the attack efficiency is higher, but the attack success rate is not as good as iterative attack
algorithms such as PGD. Compared with FGSM, JSMA and other attacks, the adversarial
disturbance generated by DeepFool attack is relatively small, but DeepFool does not have
the ability of directed attack. UAP achieves better generalization ability based on the idea
of DeepFool, realizes the ability of general attack across models and data sets, and provides
technical support for attack requirements in real scenarios. One-Pixel achieves the purpose
of the attack by modifying a single pixel. Compared with other algorithms, the generated
adversarial examples are more deceptive, but they require multiple rounds of iterations for
the optimal solution, so the attack efficiency is low. C&W attack has strong aggressiveness.
Compared with L-BFGS, FGSM, DeepFool and other attack methods, C&W can successfully
break the defense of defensive distillation, but sacrifice the attack efficiency. UPSET and
ANGRI were proposed at the same time, but UPSET does not depend on the properties of
the input data and can achieve general attacks. The latter cannot achieve general attacks
because it depends on the properties of the input data during training. AdvGAN, DaST
and GAP++ all use generative adversarial networks in the attack process. AdvGAN, DaST
and GAP++ all use the generative adversarial network in the attack process, and the
formed adversarial examples have a strong attack effect, because the adversarial examples
generated by the game process of the generator and the discriminator are highly similar to
the original examples.

3. Adversarial Example Defense

We analyze the adversarial example defense from three directions: model optimization,
data optimization and additional network. As shown in Figure 3, there are several specific
technologies in each research direction. This section introduces defense technologies in
different directions through some typical algorithms.
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3.1. Model Optimization
3.1.1. Defensive Distillation

Distillation was first proposed by Hiton et al. [27], which is based on the idea of
knowledge transfer to transfer complex networks to simple networks. In order to defend
against adversarial attacks, Papernot et al. [26] proposed a defensive distillation technique.
First, a distillation algorithm is used to train a distillation model for the original model.
The input at this time is the original input example and label to obtain the probability
distribution, and then use the input example and the probability distribution trains a
distillation model with the same architecture to obtain a new probability distribution.
At this point, the probability distribution is the new label, and the temperature T is a
hyperparameter. When using the entire distillation network for classification tasks, it can
effectively defend against adversarial attacks.

3.1.2. Gradient Regularization

Addepalli et al. [31] proposed a novel bit plane feature consistency (BPFC) regular-
izer that improves the adversarial robustness of the model by using the normal training
mechanism. Forms a rough impression from the information in the higher bit planes and
uses only the lower bit planes to refine its predictions. Experiments demonstrate that by
imposing consistency on representations learned across different quantized images, the
adversarial robustness of deep neural networks is significantly improved compared to
normally trained models. The method is not due to the robustness achieved by gradient
masking, but due to the improved local properties of the BPFC regularizer, which in turn
yields better adversarial robustness.

Adversarial training requires additional sufficient data to ensure that the model is
robust enough. Ma et al. [32] proposed second-order adversarial regularizer (SOAR) to
replace adversarial training. In order to derive the regularizer, Ma et al. gave the adver-
sarial robustness problem under the robust optimization framework, approximated the
SOAR input with the second-order Taylor series of the loss function w.r.t., and approxi-
mately solved the inner maximization of the robust optimization formulation. Extensive
experiments on both CIFAR-10 and SVHN datasets demonstrate that SOAR significantly
improves the robustness of the network to l∞ and l2 bounded perturbations generated by
cross-entropy-based PGD [33].

3.1.3. Gradient Masking

In order to prevent attackers from attacking the model through gradient information,
Folz et al. [34] proposed a defense method in which S2SNet masks the model gradient.
S2SNet first converts the category-related information into structural information to influ-
ence the information in the gradient, and then encodes the structural parts required for the
classification task, discarding other parts to eliminate adversarial perturbations. S2SNet
preserves structural information through unsupervised training of encoder and decoder.
Therefore, the resulting decoder directs attention to feature information that is highly rele-
vant to the classification task, and then uses the gradient of the target model to fine-tune the
decoder. During the entire training process, there is no class-related information involved
in the gradient, so gradient-based adversarial examples cannot attack the model.

3.1.4. Image Denoising

The generation of adversarial examples is generated by adding specific noise to the
original examples, which can resist the attack of adversarial examples through image
denoising, but ordinary denoisers have the problem of residual error amplification effect,
which leads to the wrong results of model output. Therefore, Liao et al. [35] proposed a
high-level representation guided denoiser (HGD), which uses the U-Net network as the
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denoising network, and adds the loss function to the features of the high-level network,
thereby suppressing the amplification of errors, The HGD loss function is as follows:

L = ‖fl(x
′
)− fl(x)‖, (25)

When l is −2, it is FGD, indicating the difference between the convolutional feature
maps of the penultimate layer; when l is −1 is LGD, indicating the difference between
the convolutional feature maps of the last layer. Since FGD and LGD do not require label
information of examples, they belong to unsupervised learning. Different from the previous
two, CGD requires example tag information and requires the CNN model to predict a
result and compare it with the tag. The HGD model can significantly defend against attacks
against examples through denoising, and won the defense project champion of NIPS2017
offense and defense competition.

3.1.5. Stochastic Network

Wang et al. [36] provide a new solution to hardening DNNs under adversarial at-
tacks through defensive dropout. Dropout is a common tuning method to deal with the
overfitting problem caused by limited training data. As a tuning method, in addition to
using dropout during training to obtain the best test accuracy, Wang et al. also use dropout
during testing to obtain a strong defense effect. Defensive dropout algorithms determine
the optimal test dropout rate given the neural network model and the attacker’s strategy
for generating adversarial examples.

Wang et al. [37] proposed the Defense efficiency score (DES) to evaluate the robustness-
accuracy trade-off of different defense systems. In order to achieve DES, Wang et al.
proposed hierarchical random switching (HRS), which protects neural networks through
a novel randomization scheme. HRS protection network consists of chain of random
switching blocks. Each block contains a set of parallel channels with different weights, and
a random switch that controls which channel is activated when the block’s input is received.
At runtime, the input is only propagated through the activation channel of each block, and
the activation channel is constantly switching. Each activation path in the HRS-protect
model is characterized by decentralized randomization to improve robustness, in addition,
in contrast with integrated defenses that use multiple different networks, HRS requires only
a single underlying network architecture for defense. Compared with defensive dropout,
experiments on MNIST and CIFAR-10 show that HRS achieves better defense effects at the
expense of minimal test accuracy.

Liu et al. [38] proposed the random self-ensemble (RSE) defense method by adding a
random noise layer to the neural network. The noise layer obtained by fusing the input
vector with random noise is inserted before the convolutional layer of the neural network.
Therefore, during training, the gradient is disturbed by the noise layer during the back-
propagation calculation. In the inference phase, each time forward propagation, different
prediction results will be obtained due to the existence of the noise layer, and then ensemble
the results can effectively resist adversarial attacks. Taking CIFAR-10 data and VGG
network as an example, the best defense technology in the past makes the classification
accuracy of the model 48% when it is attacked by C&W. However, with RSE defense, the
prediction accuracy of the model is 86.1%. In addition, the RSE training process ensures that
the integration model can be well generalized and easily embedded into existing networks.

3.2. Data Optimization
3.2.1. Adversarial Training

Adversarial training is to add adversarial examples to the training set, and the feature
distribution of the adversarial examples can be learned during model training, thereby
increasing the robustness of the model. At present, adversarial training, as one of the main
defense methods for adversarial examples, lacks research results on large-scale datasets,
and various defense measures on ImageNet will be broken by specific white-box attacks.
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Therefore, Kannan et al. [39] introduced a logit pairing strategy based on PGD adversarial
training [33] to propose mixed-minibatch PGD (M-PGD) adversarial training method. M-
PGD adds clean examples to adversarial training, and the logit pairing strategy includes
two pairing methods, one is pairing a clean example with an adversarial example, and the
other is pairing a clean example with another clean example. The author verified on the
ImageNet dataset that the adversarial logit pairing strategy has a certain ability to resist
both white-box and black-box attacks. At this point, the defense of integrated adversarial
training almost fails, and its accuracy rate is only 1.3%, while M-PGD’s accuracy rate under
white-box attack and black-box attack is 27.9% and 47.1%, respectively.

Aiming at the problem that deep neural networks are vulnerable to physical attacks,
Wu et al. [40] verified that PGD adversarial training [33] and random smoothing have
limited robustness in two scenarios based on the eyeglass frame attack on face recognition
and the sticker attack on stop signs. Therefore, they designed a novel defense against
occlusion attacks (DOA) adversarial training defense method. First, an abstract adversarial
model, rectangular occlusion attacks (ROA) is proposed. Compared with the traditional
lp-based model, ROA can better implement physical attacks. The ROA is used to place
rectangular stickers on images to achieve attacks. Finally, adversarial examples are used
for adversarial training. Experiments on adversarial eyeglasses in face recognition and
adversarial stickers on stop signs prove that the DOA adversarial training model has strong
robustness to physical attacks on deep neural networks.

3.2.2. Feature Compression

The perturbation between the adversarial example and the original image is very
small, but is amplified in the high-dimensional space in the image classification model.
Jia et al. [41] proposed an image compression-based adversarial example defense method
ComDefend to eliminate redundant perturbations of images. ComDefend consists of a
compression convolutional neural network (ComCNN) and a reconstruction convolutional
neural network (RecCNN), where ComCNN compresses the 24-bit pixels of the input image
into 12-bits to obtain a compressed representation of the original image, which can retain
enough main information of the original image. The compressed representation is then
input to ResCNN, which reconstructs the clean original image, and ResCNN adds Gaussian
noise to the reconstruction process to improve the ability to resist adversarial examples.
Compared with methods such as HGD, ComDefend does not require adversarial examples,
thus reducing the computational cost. Meanwhile, ComDefend greatly improves the ability
of deep neural networks to resist different adversarial attack methods, and its performance
exceeds that of various defense models including the champion of the NIPS2017 adversarial
attack and defense competition.

3.2.3. Input Reconstruction

In order to resist the attack of antagonistic examples, Guo et al. [42] proposed to
eliminate image perturbation by using five image changes, including image clipping
and rescaling, image depth reduction, JPEG compression, total variance minimization
and image quilting, and maximize the retention of effective image information. Prakash
et al. [43] proposed a method to redistribute pixel values based on pixel deflection to
locally destroy the image, and use wavelet denoising technology to reduce the damage and
adversarial perturbation caused by pixel offset, the classification results of clean examples
are not affected, while the adversarial examples are correctly classified after pixel deflection,
which achieves the purpose of eliminating perturbation.

Samangouei et al. [44] proposed an adversarial example defense method Defense-
GAN based on WGAN [45]. First, a random noise generator was used to generate several
random noise vectors, and then the random noise vectors were input to the generator
together with the original examples. The training in the adversarial network ends when the
random noise is fitted to the distribution of clean examples, and the above training process
is repeated with the number of noise as the loop variable, and then the image with the best
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performance is selected for the classification task. Jin et al. [46] proposed an APE-GAN
defense strategy, which also used the generator to reconstruct examples, but APE-GAN
input the adversation examples and clean examples to the generator and discriminator for
training, respectively, so as to eliminate adversation perturbations.

3.3. Additional Network
3.3.1. Adversarial Example Detection

Cohen et al. [47] proposed an adversarial attack detection method combining influence
functions with KNN-based metrics. The method can be applied to any pretrained neural
network to determine how data points in the training set affect the network’s decisions
given a test example by using an influence function to measure the influence of each training
example on the validation set data. The influence function measures the effect of a small
weighting of a particular training point in the model’s loss function on the loss of the test
point, providing a measure of how much the classification of the test example is affected by
each training example. Meanwhile, KNN is used to search the ranking of these supporting
training examples in the embedding space of DNN. It can be observed that these examples
are highly correlated with the nearest neighbors of normal inputs, while the correlation of
adversarial inputs is much weaker, which in turn detects adversarial examples.

Meng et al. [48] argue that the properties of adversarial examples should not be found
from a specific generation process, but to enhance the generalization ability of defense
methods by finding intrinsic common properties in the generation process of all adversarial
examples. Therefore, Meng et al. propose an attack-independent defense framework,
MagNet, which neither relies on adversarial examples and their generation process, nor
modifies the original model, but only utilizes the features of the input data. MagNet is
composed of Detector and Reformer. Based on the popular hypothesis of deep learning, the
adversarial examples are located far from the popular boundary or the popular boundary.
The function of the detector is to detect the confrontational examples far from the popular
boundary, and refuse to classify them, and then reconstruct them through reconstruction.
The classifier reconstructs the examples close to the popular boundary into the original
examples for classification.

Previous adversarial example detection studies have shown that the input exam-
ple and its neighbors exhibit significant consistency in the feature space. Based on this,
Abusnaina et al. [49] proposed the Latent Neighborhood Graph (LNG) to characterize the
neighborhood of input. In this paper, the problem of adversarial example detection is
transformed into a Graph classification problem. Firstly, a Latent Neighborhood Graph
is generated for each input example, and then a Graph neural network (GNN) is used to
distinguish benign and adversarial examples by the relationship between nodes in the
Neighborhood Graph. Given an input example, the selected reference adversarial and
benign examples are used to capture local manifolds near the input example. LNG node
connection parameters and graph Note network parameters are jointly optimized in an
end-to-end manner to determine the optimal graph topology for adversarial example de-
tection. The graph attention network is used to determine whether LNG is coming from an
adversarial or benign input example.

Choi et al. [50] experimentally verified that malicious PowerShell files generated by
GAN are difficult to be detected by traditional artificial intelligence algorithms, so they
proposed an attention-based filtering method to detect malicious PowerShell. The method
first uses the attention mechanism to generate a malicious token list from PowerShell
training data, and then generates real PowerShell data from fake PowerShell data through
the malicious token list. Experiments verify that the detection rate of PowerShell data
restored based on attention filtering is 96.5%

3.3.2. Integrated Defense

In order to verify whether a strong adversarial defense capability can be constructed by
integrating multiple weak defenses, He et al. [51] studied three ensemble defense methods,
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including feature compression, expert +1, and ensemble detection mechanism. In order to
increase the credibility of the experiment, He et al. assume that the attacker is fully aware
of the model’s architecture, parameters and defense strategies, by verifying on two datasets
MNIST and CIFAR-10, when using adaptive attacks to evaluate these When defending, the
attacker is able to defeat the above 3 integrated defenses with low distortion. Therefore, He
et al. propose that when conducting adversarial defense research, robust attacks should be
used to evaluate defense capabilities.

Yu et al. [52] proposed a novel defense method for AuxBlocks model, which extended
the original model by introducing multiple AuxBlocks models similar to the self-ensemble
model. Yu et al. divide the model into two parts: public model and private model, where
the public model represents the original model, and the private model is several auxiliary
models introduced. The public model can be exposed to the attacker, while the private
model is private to the attacker, making it impossible for the attacker to generate valid
adversarial examples. AuxBlocks are set up as miniature neural networks, which can also
be any other structure. Yu et al. verified through experiments that the introduction of
AuxBlocks into the neural network can effectively improve the robustness of the model.
Even in response to adaptive white-box attacks, the auxiliary block model also shows
strong defense capabilities.

4. Challenge

Adversarial attack and defense technologies have developed rapidly in the process
of playing against each other. Researchers have proposed many cutting-edge algorithms.
However, through surveys, it is found that there are still many challenges in adversarial
attack and adversarial defense technologies that need to be tackled by researchers.

4.1. Adversarial Attack

(1) Existing adversarial example generation models are all trained on specific datasets,
lacking transferability, and need to verify the attack effect in real physical scenarios,
such as security systems in smart cities, etc.

(2) The computational complexity of some adversarial example generation techniques is
too high. Although a relatively high attack success rate is achieved, it increases the
amount of computation, resulting in an excessively large trained model. The adver-
sarial example generation model cannot be transplanted into lightweight devices.

(3) At present, adversarial attack technology is developing rapidly in the field of computer
vision, but it is still in its infancy in the fields of NLP and speech recognition. It is
necessary to increase the research on attack technology in these fields to provide
theoretical and technical support to ensure that AI technology can play a safe and
efficient role in the construction of smart city.

4.2. Adversarial Example Defense

(1) For the vulnerability of deep neural networks, the academic community has not
come up with a recognized scientific explanation, so it is impossible to fundamentally
defend against the attack of adversarial examples;

(2) The applicability and adaptability of adversarial example defense technology needs
to be improved. Research has proved that even the defense technology with the best
defense effect will be broken by an endless stream of adversarial attack technolo-
gies. How to improve the self-iteration capability of defense technology is an urgent
problem to be solved.

(3) The current defense technology research lacks the practice in the real world. How to
convert the advanced defense theory and technology into the defense method in the
physical scene is a major challenge for researchers.
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5. Conclusions

Edge/urban IoT construction is inseparable from artificial intelligence technology,
especially deep learning technology, but deep neural networks are vulnerable to adversarial
attacks and cause serious errors. In order to secure the development of edge/urban IoT,
in-depth research on adversarial example techniques is required. This paper conducts a
comprehensive investigation and analysis on the attack and defense of adversarial examples
in the field of computer vision. Due to the vulnerability of deep neural networks, once the
adversarial examples are input, they will output wrong results with high confidence. This
paper first introduces the types of adversarial attacks and the characteristics of adversarial
example generation, and introduces, analyzes and compares typical adversarial example
generation methods in recent years. Then, we introduce the state-of-the-art adversarial
example defense techniques in detail from three research directions: model optimization,
data optimization, and additional network. Finally, combined with the development of
adversarial attack and defense technology, the challenges and opportunities existing in this
stage are proposed.
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