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Abstract: The manual segmentation of the blood vessels in retinal images has numerous limitations.
It is very time consuming and prone to human error, particularly with a very twisted structure
of the blood vessel and a vast number of retinal images that needs to be analysed. Therefore, an
automatic algorithm for segmenting and extracting useful clinical features from the retinal blood
vessels is critical to help ophthalmologists and eye specialists to diagnose different retinal diseases
and to assess early treatment. An accurate, rapid, and fully automatic blood vessel segmentation
and clinical features measurement algorithm for retinal fundus images is proposed to improve the
diagnosis precision and decrease the workload of the ophthalmologists. The main pipeline of the
proposed algorithm is composed of two essential stages: image segmentation and clinical features
extraction stage. Several comprehensive experiments were carried out to assess the performance of
the developed fully automated segmentation algorithm in detecting the retinal blood vessels using
two extremely challenging fundus images datasets, named the DRIVE and HRF. Initially, the accuracy
of the proposed algorithm was evaluated in terms of adequately detecting the retinal blood vessels.
In these experiments, five quantitative performances were measured and calculated to validate the
efficiency of the proposed algorithm, which consist of the Acc., Sen., Spe., PPV, and NPV measures
compared with current state-of-the-art vessel segmentation approaches on the DRIVE dataset. The
results obtained showed a significantly improvement by achieving an Acc., Sen., Spe., PPV, and NPV
of 99.55%, 99.93%, 99.09%, 93.45%, and 98.89, respectively.

Keywords: blood vessels segmentation; clinical features extraction; retinal images; trainable filtering
algorithm; smart health; informatics

1. Introduction

Retinal fundus pictures are commonly used to diagnose many eye-related illnesses
that lead to blindness, such as macular degeneration and diabetic retinopathy [1]. A direct
ophthalmoscope, or the manual inspection of the fundus by a professional, is being replaced
by a computer-assisted diagnosis of retinal fundus images. Furthermore, the computer-
assisted diagnosis of retinal fundus images is as accurate as a direct ophthalmoscope
and requires less processing and analysis time. The extraction of retinal blood vessels
from fundus pictures is one of the essential processes in detecting diabetic retinopathy.
Even though numerous segmentation approaches have been proposed, segmentation
of the retinal vascular network and picture quality remains difficult. Noise (typically
owing to uneven lighting) and narrow vessels are now the critical obstacles in retinal
vascular segmentation.
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Although most vessel segmentation methods include pretreatment procedures to
improve vessel appearance, other plans skip the pre-processing steps and jump straight to
the segmentation stage [2]. Additionally, most of the proposed segmentation algorithms
optimise the pre-processing and vessel segmentation parameters for each dataset separately.
As a result, these algorithms can typically achieve high accuracy for the optimised dataset,
but their accuracy will be lowered when applied to different datasets.

Many segmentation approaches nowadays use machine learning ideas in conjunction
with traditional techniques to improve the segmentation accuracy by providing a statistical
analysis of the data to enhance segmentation algorithms [3]. Based on the usage of labelled
training data, these machine learning principles can be divided into unsupervised and
supervised approaches. A supervised technique, a human operator labels and assigns
a class to each pixel in the image, such as vessel and non-vessel. A classifier is trained
using the tags supplied to the input. A sequence of feature vectors is formed from the data
being processed (pixel-wise features in image segmentation problems). In an unsupervised
technique, similar samples are grouped into various classes using predetermined feature
vectors without any class labels. This clustering is based on several assumptions about the
input data structure, namely, that there are two classes of input data with identical feature
vectors (vessel and not vessel). Depending on the situation, this similarity metric might be
sophisticated or specified by a simple metric, such as pixel intensities [4].

The detection of the vascular tree in fundus images with precision and accuracy can
provide several essential aspects for diagnosing various retinal disorders. However, when
utilised as a pre-processing step for higher-level picture analysis, retinal blood vessel
segmentation might significantly impact other applications. For instance, reliable blood
vessel tree detection can be employed in registering time series fundus images, finding the
optic disc or over, recognising the retinal nerve fibre layer, and biometric identification.
There is substantial work on this topic due to the wide range of applications and the fact
that segmentation of retinal vessels is one of the most challenging jobs in retinal image
processing [5].

An accurate, rapid, and fully automatic blood vessel segmentation and clinical features
measurement algorithm for retinal fundus images is proposed to improve the diagnosis
precision and decrease the workload of the ophthalmologists. The main pipeline of the
proposed algorithm is composed of two essential stages: image segmentation and clinical
features extraction stage. In the segmentation stage, a fully automated segmentation
algorithm is proposed and named a trainable filtering algorithm to detect the blood vessels
in the retinal images accurately. An efficient and reliable image pre-processing procedure
in the trainable filtering algorithm is applied to increase the contrast level. To improve
or enhance the intensity level of the small objects in the retinal blood vessel structure,
contrast limited adaptive histogram equalisation (CLAHE) and improved complex wavelet
transform (I-CWT), respectively, are used by removing all the undesired objects (e.g., small
vessel segments) in the enhanced image by applying the Vessels Detection Stage. Finally,
the retinal blood vessels are detected using an efficient edge detection algorithm based on
an improved Canny edge detector. Finally, the output segmented images produced from the
proposed algorithm are fused to produce the final segmented image. In the post-processing
step, a novel blood vessel linking procedure is proposed to correctly join the discontinuous
blood vessels produced in the segmented image resulting from the previous step. Several
useful clinical features are computed, such as the blood vessel’s tortuosity, length, density,
and thickness, which are efficiently used in the early diagnosis of several cardiovascular
and ophthalmologic diseases. An efficient and accurate algorithm for computing the blood
vessel thickness is proposed in this stage. The main contributions list can be summarised
as follows:

• An accurate, rapid, and fully automatic blood vessel segmentation and clinical features
measurement algorithm for retinal fundus images is proposed to improve the diagnosis
precision and decrease the workload of the ophthalmologists.
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• The fully automated segmentation algorithm is proposed and named a trainable
filtering algorithm to accurately detect the delicate blood vessels in the retinal images.

• A novel blood vessel linking procedure is proposed to correctly join the discontinuous
blood vessels produced in the segmented image resulting from the previous step.

The rest of this study is organised as follows: Section 2 presents related works on a
fully automatic blood vessel segmentation and clinical features measurement algorithm
for retinal fundus images. The main steps of the proposed trainable filtering algorithm,
composed of two main stages, including the image pre-processing stage and the vessels
detection stage, are presented in Section 3. Section 4 provides several extensive experiments
to evaluate the performance and accuracy of the developed hybrid and fully automated
segmentation algorithm for detecting the retinal blood vessels using two extremely chal-
lenging fundus images datasets. Finally, the conclusion and future work are discussed
in Section 5.

2. Related Works

Automated techniques for medical image analysis have become essential due to the
large volume of patient information that needs to be processed. Manual analysis can be
reduced or avoided by achieving high accuracy from the retinal blood vessels tree auto
segmentation. According to Maitreya et al. [6], they used trainable semantic segmentation
by utilizing a hybrid method to solve the resolution issue by implementing an artificial
neural network and Capsule Network to achieve up to 99.01% and 98.7%, respectively.
The approach proposed by [7] works on breast cancer boundary and pectoral muscle in
mammogram images through implementing several algorithms, such as the improved
threshold-based and trainable via use mammographic image analysis society and breast
cancer digital repository. The proposed study achieved 98.6% accuracy even though the
authors highlight that mammogram segmentation is still an open research problem and
has to be improved. Reference [8] utilized the fully-convolutional networks U-Nets to
improve the segmentation and detection in the medical images by using two different
datasets, which are ECU and HGR, and their average output results were 92.3% and 94%,
respectively. The researcher focused on enhancing the idea of the contextual pixel analysis
through utilizing the lower numbers of trainable parameters and thus gives the space
open to future work to increase the numbers. According to [9], they are working on a
conventional neural network method for the segmentation of retinal images via the used
dataset of 50 colour images that produced 0.95 average accuracies. Failing to observe the
progress of some dangerous disease leads to the development of a particular abnormality
in the retinal vessels that might damage the retina. Soaibuzzaman et al. [10] worked on
an image segmentation based on convolutional neural networks and trainable methods.
The most common datasets—PASCAL VOC 2012 and Citypass—are used to perform the
proposed algorithms.

Ali Hatamizadeh et al. [11] presented trainable deep active contours (TDACs) to
implement in the image segmentation framework to solve the accuracy issue using the
vaihingen and bing huts datasets. In addition, a modern hybrid method was proposed;
but, we noticed some points that could limit the applicability, such as dependence on
pre-trained convolutional neural networks. Moreover, they leave the area open for further
enhancement on the accuracy of CNN-based image segmentation. They might stop at one
point and open the space to future work enhancement. Eventually, the studies present in
this section mostly all focused on enhancing the accuracy of the segmented retinal images.
Therefore, this paper highlights the trainable filter algorithm adapted with very powerful
and common datasets, DRIVE and HRF, to achieve the highest accuracy results of up to
99.12% and 98.78%, respectively.
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3. The Proposed Automatic Blood Vessels Segmentation and Clinical Features
Measurement Algorithm

A fully automated algorithm is presented for detecting the retinal blood vessels in the
highly challenging fundus images. A quantitative investigation of retinal images is widely
used to diagnose, screen, and treat disease. Among these diseases mentioned, diabetic
retinopathy and macular degeneration are the two main reasons for vision loss. Blood
vessel segmentation is an essential step required for the quantitative investigation of retinal
images. A set of critically beneficial clinical features, such as the blood vessel’s tortuosity,
length, density, and thickness, can be extracted from the segmented vascular tree.

Furthermore, the segmented vascular tree has also been used in several medical
applications, including the retinal image mosaic structure, temporary or multi-modal
image registration, optic disc identification, biometric identification, and fovea localization.
Accordingly, an automatic algorithm for segmenting and extracting useful clinical features
from the retinal blood vessels is proposed to help ophthalmologists and eye specialists
diagnose different retinal diseases and treatment assessments early. Figure 1 shows the
projected blood vessel segmentation and clinical features measurement algorithm.
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Figure 1. Block diagram of the proposed blood vessel segmentation and clinical features measure-
ment algorithm.

3.1. The Trainable Filtering Algorithm

As presented in Figure 2, the proposed trainable filters algorithm consists of two main
stages: image pre-processing and vessels detection stage. In the image pre-processing stage,
an efficient and reliable image enhancement procedure was proposed for reducing the noise
and enhancing the quality of the retinal fundus image to make the blood vessel structures
more visible. In the vessel detection stage, the fusing of the responses of two trainable
and rotation-invariant filters, namely, symmetric and asymmetric filters, is firstly obtained.
Then, the final segmented image is produced by applying a thresholding algorithm to the
fused image. The main stages of the proposed trainable filtering algorithm are explained in
detail in the next sub-sections.

3.1.1. Image Pre-Processing Stage

The main steps of the proposed image enhancement procedure in the proposed train-
able filters algorithm can be summarized as follows:

1. The contrast of the resulting image was enhanced using the CLAHE method.
2. An efficient image denoising procedure was proposed based on an improved Dual-

Tree Complex Wavelet Transforms (DT-CWT) approach to decompose the input image
and shrinkage process to eliminate the noise in the input image.

3. We are applying the moving average filter to enhance the edges of the blood vessels
in the retinal fundus image.



Electronics 2022, 11, 1295 5 of 24Electronics 2022, 11, x FOR PEER REVIEW 5 of 25 
 

 

 

Figure 2. The fundamental stages of the proposed trainable filtering algorithm for detecting the 

retinal blood vessels. 

3.1.1. Image Pre-Processing Stage 

The main steps of the proposed image enhancement procedure in the proposed train-

able filters algorithm can be summarized as follows: 

1. The contrast of the resulting image was enhanced using the CLAHE method. 

2. An efficient image denoising procedure was proposed based on an improved Dual-

Tree Complex Wavelet Transforms (DT-CWT) approach to decompose the input im-

age and shrinkage process to eliminate the noise in the input image. 

3. We are applying the moving average filter to enhance the edges of the blood vessels 

in the retinal fundus image. 

The adaptive histogram equalization (AHE) is frequently employed for image con-

trast enhancement by expanding the dynamic range of the image intensity so that its his-

togram distribution has the wanted shape [12]. The AHE is different from the conven-

tional histogram equalization, where the adaptive histogram is computed from a specific 

region in the input image. Then they are used to redistribute the brightness of the image. 

Thus, it can efficiently improve the local contrast for each part of an image [13]. However, 

the AHE method has a bias to expand the noise in approximately homogeneous areas of 

an image. A variant of AHE, named contrast limited adaptive histogram equalization 

(CLAHE), was developed to overcome this issue by limiting the amplification [14]. The 

CLAHE is a block-based processing method that improves the local contrast in small re-

gions, called tiles instead of the entire image. Then, the adjoining tiles are fused using 

bilinear interpolation to reduce the artificially produced boundaries. The local contrast 

enhancement in the homogeneous areas can be restricted to avoid the over-enhancement 

of noise and lessens the edge-shadowing effects in the enhanced image. 

CLAHE controls the quality of the enhanced image by two essential parameters: the 

Clip Limit (CL) and Block Size (BS). A high value based on the CL parameter leads to an 

increase in the brightness of the input image due to the low-intensity level of the input 

image. On the other hand, a higher value of the BS parameter expands the image inten-

sity’s dynamic range and increases its contrast level. A novel method was proposed by 

Min et al. [15] to determine the optimal value of these two parameters. The pseudo-code 

of the CLAHE method is shown in Algorithm 1. The contrast of the blood vessels was 

considered as one of the primary characteristics of the coloured retinal image. Image con-

trast combines the range of pixels’ intensity values and the difference between the highest 

and smallest pixel values. The primary purpose of the proposed image enhancement pro-

cedure using the CLAHE method is to produce a uniform intensity distribution. The 

Figure 2. The fundamental stages of the proposed trainable filtering algorithm for detecting the
retinal blood vessels.

The adaptive histogram equalization (AHE) is frequently employed for image contrast
enhancement by expanding the dynamic range of the image intensity so that its histogram
distribution has the wanted shape [12]. The AHE is different from the conventional
histogram equalization, where the adaptive histogram is computed from a specific region
in the input image. Then they are used to redistribute the brightness of the image. Thus, it
can efficiently improve the local contrast for each part of an image [13]. However, the AHE
method has a bias to expand the noise in approximately homogeneous areas of an image.
A variant of AHE, named contrast limited adaptive histogram equalization (CLAHE),
was developed to overcome this issue by limiting the amplification [14]. The CLAHE is a
block-based processing method that improves the local contrast in small regions, called tiles
instead of the entire image. Then, the adjoining tiles are fused using bilinear interpolation
to reduce the artificially produced boundaries. The local contrast enhancement in the
homogeneous areas can be restricted to avoid the over-enhancement of noise and lessens
the edge-shadowing effects in the enhanced image.

CLAHE controls the quality of the enhanced image by two essential parameters: the
Clip Limit (CL) and Block Size (BS). A high value based on the CL parameter leads to an
increase in the brightness of the input image due to the low-intensity level of the input
image. On the other hand, a higher value of the BS parameter expands the image inten-
sity’s dynamic range and increases its contrast level. A novel method was proposed by
Min et al. [15] to determine the optimal value of these two parameters. The pseudo-code of
the CLAHE method is shown in Algorithm 1. The contrast of the blood vessels was con-
sidered as one of the primary characteristics of the coloured retinal image. Image contrast
combines the range of pixels’ intensity values and the difference between the highest and
smallest pixel values. The primary purpose of the proposed image enhancement procedure
using the CLAHE method is to produce a uniform intensity distribution. The image with
poor contrast has a small intensity range. Thus, the CLAHE method spreads and adjusts
the intensity distribution of the image to improve its contrast.

First, the coloured retinal image was split into three channels (e.g., red, green, and
blue). The entire coloured retinal image was used in this stage rather than the green channel
as in the proposed trainable filtering algorithm. Second, the CLAHE method was applied
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only to the green channel because it encodes the essential information about the blood
vessel structures compared with other channels.

Finally, an improved DT-CWT was employed as a powerful image denoising approach
to decrease the noise level and prevent damaging the fine details of the blood vessels (e.g.,
edges and curves) in the retinal image, as displayed in Figure 3c. Typically, image denoising
approaches using wavelet transform suffer from four weaknesses: shift variety, oscillations,
aliasing, and shortness of directionality [16]. Herein, an improved DT-CWT based on the
shrinkage operation was employed to decrease the noise level and improve the delicate
structures of the blood vessels in the retinal image. The wavelet-based shrinkage image
denoising method mainly depends on thresholding the wavelet transforms coefficients
where the coefficients of the small values encode the noisiest and excellent features of the
image. In contrast, the essential features are encoded by the wavelet coefficients having
large values. Let Y be a noisy image, X be a noiseless image, and n be the noise level.
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Figure 3. The proposed trainable filters algorithm outputs: (a) the normalized green channel; (b) the
CLAHE output; (c) the DT-CWT output; (d) the output of the symmetric filter; (e) the output of
the asymmetric filter; (f) the combination of the symmetric filter and asymmetric filter; (g) the final
segmented image from the edge detection stage after applying thresholding; (h) the overlapped
automated segmented image with the original retinal image.
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Algorithm 1: The pseudo-code of the CLAHE method

â Step 1: Dividing an input image of size (M × N) pixels into non-overlapping tiles of size
(8 × 8) pixels.

â Step 2: Estimating the histogram of each tile according to the grey-scale levels present in an
input image.

â Step 3: The contrast limited histogram is computed for each tile by (CL) value as

Navg =
Nrx ×Nry

Ngray
(1)

where Navg refers to the average number of pixels, Ngray refers to the number of grey levels
in the tile, Nrx and Nry represent the numbers of pixels in the x and y dimensions of the
specific tile. The (CL) parameter can be computed as follows:

NCL = Nclip ×Navg (2)

where NCL refers to the actual (CL), Nclip is the normalized (CL) in the range of [0, 1]. If the
number of pixels is larger than NCL, then the pixels are clipped and the average value of the
remain pixels to spread to each grey-scale level is defined as follows:

Navggray = N∑ clip/Ngray (3)

where N∑ clip refers to the total number of clipped pixels.
â Step 4: Redistributing the remain pixels as follows:

Step = Ngray/Nremain (4)

The program starts the search from the lowest to the highest of the grey-scale level using the
above step value. If the number of pixels is less than NCL the program will spread 1-pixel to
the grey-scale. If not all the pixels are distributed when the search is ended, the program
will compute a new step according to Equation (4) and start a new search cycle until the
other pixels are all distributed.

â Step 5: The Rayleigh transform is employed to enhance the intensity values in each tile, as
de-scribed in [17].

â Step 6: Computing a new grey-scale level distribution of pixels within a tile using a bi-linear
interpolation among four different mappings to eliminate boundary artefacts.

Then, the significant steps of the wavelet-based shrinkage image denoising technique
are summarized as follows:

1. Applying the wavelet transform (W) to the input image to estimate the wavelet
coefficient matrix (w), as in Equation (5):

w = WY = WX + Wn (5)

2. We modify the coefficients of (w) by shrinking (thresholding) operation to get the
estimate (ŵ) matric of the wavelet coefficients of X.

w → ŵ (6)

3. Applying the inverse wavelet transform to the coefficients matric produced from
step 2 to produce the denoised coefficients, as in Equation (7):

X̂ = W−1 + ŵ (7)

In this study, a soft threshold function (Th = 10) was implemented in step 2.
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3.1.2. Vessel Detection Stage

In this stage, the retinal blood vessels were detected by fusing the responses of two
Shifted Filter Responses (SRF), termed the symmetric and asymmetric filter for detecting
the main blood vessels structures and the endings of the vessels, respectively (see Figure 4).
These two filters were rotated in 12 orientations to include all the possible directions of
the retinal blood vessels. Consequently, it creates a filter bank of a 15◦ rotation of the
filter, which is reliable and suitable for optimal retinal blood vessels detection. Then, the
final segmented image was obtained by fusing the responses of these two filters and then
thresholding the fused image. The proposed SRF filters are non-linear due to their ability
orientation selectivity based on the output representations produced from a set of Difference
of Gaussians (DoG) filters. The SRF filters are invariant to rotation, scale, translation, and
reflection transformations. The selectivity of these two trainable filters is not pre-defined
in the implementation process. However, it is defined from operator-specified sample
patterns (e.g., vertical vessels and bifurcation points) in an automated manner.
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blood vessel as a straight line and recognizing the five points to design the SRF filters.
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Figure 5. The types of detected patterns: (a) line-like pattern; (b) half line-like pattern; and (c) combi-
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The SRF filters are unsupervised trainable edges detectors filters that can be configured
to automatically detect the symmetric and asymmetric straight-edges structures of the
retinal blood vessels. Figure 5 shows how the SRF filters performed the detection process
of the patterns by using the DoG filter. The input of SRF can be represented by five blobs
produced from the DoG filter and placed at a specific distance from the centre of the filter,
as presented in Figure 4a. The result of the SRF filters was calculated as the weighted
geometrical mean of the shifted and the blurred responses of the DoG filter.

The main steps of applying the SRF filters can be summarized as follows:

1. Create the DoG filter and convolute it with the retinal image as in Equations (8)
and (11):

GoDσ (x, y) =
exp( x2+y2

2(0.5σ)2 )

2π(0.5σ)2 −
exp

(
x2+y2

2(σ)2

)
2π(σ)2 (8)

Here, (x, y) refers to the centre of the DoG filter, and σ refers to the SD, and it is 0.5
for the inner Gaussian filter.

2. Blurring the gained responses of the DoG filter by applying Equation (9).

σ′ = σ0 +αρi (9)

3. Shifting the produced blurred DoG responses to the filter centre’s direction with a
shift-vector as in Equation (10).

(∆xi, ∆yi) =

[
−ρicos(θi)
−ρisin(θi)

]
(10)

Cσ = |I ∗GoDσ|+ (11)

where |.|+ refers to the Rectifying Linear Unit (ReLU). For a given I(x′, y′) inten-
sity distribution of an input image I, the response Cσ(x, y) of the DoG filter is
DoGσ(x− ∆x− x′, y− ∆y− y′). If the output of the convolution process is nega-
tive, then it is replaced with 0 as in Equation (11). The shifted and blurred DoG
responses at the location (x, y) can be defined by Equation (12).

Sσi,ρi,∅i(x, y) = max
(
x− ∆x− x′, y− ∆y− y′

)
DoG′σ

(
x′, y′

)
(12)

4. Generating the responses of the SRF filters by calculating the geometric mean, as in
Equation (13).

rs(x,y)
def
= |

S

∏
1
([ S(σi,ρi, ∅i(x, y))wi ])

1
∑s

1 wi |
t

(13)

where 0 ≤ t ≤ 1, wi = exp
(ρi)

2

2τ2 , τ =
( 1

3 max(ρi)
) 1
|S| .

As in Equation (13), the DoG responses of the SRF filters for each retinal image were
thresholded by using a specific parameter (t) value to classify the image’s pixels into two
classes: blood vessels or non-blood vessels.

3.2. Post-Processing Step

Once the segmented retinal image is obtained from the trainable filter, the output is
used to produce the final segmented image. Then, a novel blood vessel linking procedure
was proposed to correctly join the discontinuous blood vessels produced in the segmented
image resulting from the previous step. These discontinuous blood vessels are presented in
the final segmented image due to the poor visibility of the specific blood vessels or the noise
presented in the retinal image. The accuracy of the extract clinical features, such as the
tortuosity, length, density, and thickness of blood vessels, can significantly be affected by
the appearance of the discontinuous blood vessels. Thus, a new procedure was proposed
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in this study to correctly connect the discontinuous blood vessels in the final segmented
image. The proposed blood vessel linking procedure was implemented as follows:

• Produce the skeleton blood vessels structure of the final retinal segmented image and
identify the vessels’ end-points.

• Defining a possible highest distance between the endings of each two segments of a dis-
connected blood vessel. Then a circular-shaped structure element of radius = (highest
distance)/2 was placed at the end of each blood vessel. If the ends of the two blood
vessels approached each other, the placed structural elements were overlapped, as
displayed in Figure 6c.

• Finally, the thinning process was applied to the whole image. Hence, a line of one
pixel wide will be left by the thinned structural elements to link the two endings of the
vessel, while the separated ends are recovered to their initial structure, as displayed
in Figure 6d.
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Figure 6. The proposed blood vessel linking procedure: (a) the segmented blood vessel structures;
(b) the disconnected blood vessels marked in the red circles; (c) the binary circular-shaped structural
elements are drawn at the ends of each blood vessel segment; and (d) the resulting image with linked
blood vessels.

3.3. Clinical Features Extraction Stage

This method was designed for diagnosing retinopathies diseases, for use by ophthal-
mologists and eye specialists, which can help shape the retinal lesions’ thickness, length,
or presentation. All this is connected with cardiovascular and retinopathies diseases. The
quantitative analysis of abnormalities in blood vessel structures can be found in vessel
tortuosity. It can describe their severity level and treatment assessments. One of the main
aims of this work is to develop an automated algorithm description procedure to analyse
the whole blood vessels network in the retinal image. The clinical features extraction stage
computes a set of useful clinical features from the automatically detected retinal blood
vessels accurately and objectively. In this stage, several clinical features associated with the
healthiness of the retinal blood vessels are extracted as follows:
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3.3.1. Vessel Length

The length of the retinal blood vessel was computed for each vessel’s segment by
firstly taking the vessel’s skeleton structure, and then the distance between sequential
pixels in the blood vessel segment is summed as in Equation (14).

Vessel Length =
N−1

∑
i=1

√
(xi−1 − xi)

2 +
(
yi−1 − yi

)2 (14)

Here, N refers to the number of sequential pixels produced from the blood vessel
skeleton segment, and (xi, yi) refers to the pixels coordinates in the blood vessel segment.

3.3.2. Vessel Density

The retinal blood vessels density was calculated by dividing the sum of all the pixels
of the blood vessels by the overall area of the whole retinal image as in Equation (15):

Vessel Density =
∑ The vessel pixels
ImageArea (mm2)

(15)

3.3.3. Vessel Tortuosity

The tortuosity coefficient of the blood vessel is interpreted as a degree of curvature
and twists presented in the blood vessel course, as shown in Figure 7. Some studies have
proved that the vessel tortuosity coefficient can be associated with the average internal
blood pressure; however, no significant increase was observed until the critical blood
pressure level is reached [17,18]. Herein, the mean tortuosity coefficient of the whole retinal
blood vessels network was computed. First, the skeleton structure of the blood vessels was
produced. This was followed by defining the branch points of the blood vessels to divide
the length of the Blood Vessel Segment (BVS) into (b) branches, as in Equation (16):

BVS = s1 + s2 + . . . + sb (16)
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Then, the tortuosity coefficient index for the (BVS) was then computed as follows:

TC(BVS) =
b

∑
n=1

slength(n)
sstraight

(n) (17)

where slength refers to the length of vessel branch, and it was estimated by Equation (17).
sstraight is the straightforward distance between the endings point and was estimated
as follows:

sstraight =
√
(xN − x1)

2 + (yN − y1)
2 (18)

Here, N refers to the number of fundamental pixels captured from the branch of the blood
vessels, while (x,y) refers to the pixels coordinates in each branch of the blood vessels.
Finally, the mean tortuosity coefficient of the entire blood vessels network was acquired by
calculating the mean tortuosity values obtained of each blood vessel.

3.3.4. Vessel Thickness

The blood vessel thickness is the average width of the retinal blood vessels. In this
paper, a new procedure for computing the retinal blood vessels thickness is developed.
Figure 8 shows the output of the developed thickness procedure. The primary steps of the
developed procedure after identifying each blood vessel were implemented as follows:

1. Distance transform was computed from the binary image of the detected retinal blood
vessels, where all background pixels in the transformed image become white, while
the object pixels become black. This transform calculates the Euclidean distance
for each black pixel in the segmented image to the nearest non-zero pixel. In the
developed procedure, the distance transform was implemented on the inverse of the
binary image of the detected retinal blood vessels. Thus, for each pixel of the detected
blood vessel, the Euclidean distance of that specific pixel to the nearest border pixel of
the blood vessel was calculated.

2. After applying the distance transform, the blood vessel pixels that have the most
significant distance values in the distance transform will be located at the middle of
the blood vessel segment. The distance values representing the halfway edge between
the blood vessel segment were obtained with some leniency of the most significant
distance values because of the floating-point computation.

3. Finally, the overall average of all accumulated distance values defines the half-width
of the blood vessel. Consequently, the blood vessel thickness (width) was measured
by multiplying the outcome reached by two.
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4. Experimental Results and Discussion

To evaluate the performance and accuracy of the developed hybrid and fully au-
tomated segmentation algorithm, for detecting the retinal blood vessels, we used two
extremely challenging fundus images datasets, namely, DRIVE [20] and High-Resolution
Fundus (HRF) [21]. In this study, several extensive experiments were conducted. Firstly,
the main description of the employed retinal images datasets in these experiments is given.
Secondly, a detailed evaluation of the fully automated segmentation algorithm (a trainable
filtering algorithm) is presented along with their combination and compared their perfor-
mance against the Ground Truth (GT) images. Finally, the performance of the developed
algorithms is compared with the state-of-the-art approaches.

4.1. Dataset Description

The performance of the proposed blood vessel segmentation algorithms has been
tested using two established, publicly available datasets of retinal fundus images (DRIVE
and HRF). These two datasets have gained particular popularity because they provide the
associated GT images in which different expert observers manually detect the blood vessel.
Thus, they enable the possibility of comparing the results obtained against the provided
GT images to validate the reliability and efficiency of the proposed algorithms. The main
aim of these two datasets is to establish and encourage comparative studies on developing
automated segmentation algorithms for retinal blood vessels in the fundus images.

1. DRIVE dataset [20]: This dataset comprises 40 coloured retinal images split into
a training set and a testing set, each of which comprises 20 images. The mask image
representing the Field-Of-View (FOV) of the retina area is provided for each image and
the corresponding GT image. One expert manually segmented the blood vessels in the
retinal images of the training set. In this work, the training set was used to fine-tune the
parameters of the proposed segmentation algorithms. On the other hand, two other experts
manually segmented the blood vessels in the testing set images. The actual performance of
the proposed vessel segmentation algorithms was assessed using the testing set. The DRIVE
database contains retinal images captured from 400 diabetic subjects between 25–90 years
old in the Netherlands. Around 40 images were randomly chosen: 33 images without any
sign of diabetic retinopathy, and seven images showed mild early diabetic retinopathy.
The retinal images were captured using a Canon CR5 non-mydriatic 3CCD camera with a
45◦ FOV. All the images were saved in TIF format with an 8-bits coloured image and size
of 768 × 584 pixels. An example of retinal fundus images from the DRIVE dataset with
corresponding manually gold standard images is shown in Figure 9.
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2. HRF dataset [21]: The HRF dataset comprises 45 images captured from three
different groups (e.g., healthy subjects, diabetic retinopathy patients, and glaucomatous
patients). Each group has 15 images acquired using a mydriatic fundus CANON CF-60UVi
camera with a 60◦ FOV. All the images were saved in JPEG format with a 24-bits coloured
image and size of 3504 × 2336 pixels and a pixel size of 6.05 × 6.46 µm. The binary
FOV-mask images of the dataset are provided to perform the analysis only in the region
surrounded by the dark background (see Figure 10b). In this dataset, the tree of blood
vessels was manually traced by three experts in retinal image interpretation. An example
of retinal fundus images from the HRF dataset with corresponding manually gold standard
images is shown in Figure 10.
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Figure 10. Image example from the HRF dataset: (a) the original image; (b) FOV-mask image; and
(c) the manually segmented image of the expert.

4.2. Blood Vessel Segmentation Evaluation

In the binary classification task, each pixel in the input image is classified as a vessel
by the proposed algorithm. It is also classified as a vessel in the GT image, counted as a
true positive. On the other hand, each pixel is classified as a vessel in the final segmented
image, but not in the GT image, counted as a false positive (see Table 1). In the evaluation
of the retinal vessel segmentation, the average values of five quantitative performance
measures were calculated to validate the efficiency of the proposed algorithms, including
the Accuracy (Acc.), Sensitivity (Sen.), Specificity (Spe.), Positive Predictive Value (PPV),
and Negative Predictive Value (NPV). These five quantitative measures are computed
as follows:

Accuracy (Acc.) =
TP + TN

TP + FN + TN + FP
(19)

Sensitivity (Sen.) =
TP

TP + FN
(20)

Specificity (Spe.) =
TN

TN + FP
(21)

Positive Predictive Value (PPV) =
TP

TP + FP
(22)

Negative Predictive Value (NPV) =
TN

TN + FN
(23)

Table 1. Confusion matrix along with the adopted evaluation measures.

Vessel Present Vessel Absent

Vessel detected True positive (TP) False positive (FP)

Vessel not detected False negative (FN) True negative (TN)

Here, TP, TN, FP, and FN refer to True Positives, True Negatives, False Positives, and
False Negatives, respectively. The Acc. measurement refers to the total number of correctly
classified pixels to the number of pixels in the FOV-mask image. Sensitivity (Sen.) refers to
the ability of the proposed algorithm to detect the vessel pixels correctly. Specificity (Spe.)
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is the ability of the proposed algorithm to detect non-vessel pixels correctly. The PPV or
Precision rate refers to the ratio of pixels correctly identified as vessel pixels. Finally, the
NPV is the ratio of pixels correctly identified as non-vessel pixels (e.g., background).

4.3. Results on DRIVE Dataset

Firstly, the performance of the proposed algorithm for detecting the retinal blood
vessels was evaluated on the DRIVE dataset. Training set images were used, and several
extensive experiments were carried out to choose the best value for a set of parameters
in such a way as to maximize the segmentation accuracy of the proposed algorithms. For
instance, the value of the parameter (t) (in Equation (13) using the proposed trainable
filters algorithm was chosen by varying its value between 0 and 1 in steps of 0.01. This
threshold process assigns each pixel into two labels: Vessels and Non-Vessels. Then, the
segmentation accuracy was computed to select the best value of the parameter (t). As
shown in Figure 11, the best value of parameter (t) was set to 0.5. Hence, 100 experiments
were carried out where we increased the value of the parameter (t) by 0.1. In the evaluation
stage, five performance evaluation metrics were computed using the testing images, and
the two provided human observers as the GT images.
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Figure 11. The segmentation accuracy obtained during 100 experiments to find the best value of the
parameter (t) in the using the proposed trainable filters algorithm.

Table 2 shows the results generated using the proposed trainable filters algorithm. This
table shows that better results have been achieved using the second human observer than
the first human observer in terms of all the adopted five evaluation metrics. It achieved
an Acc. of 99.12%, Sen. of 98.89%, Spe. of 98.86%, PPV of 93.28%, and NPV of 97.77%.
Furthermore, the performance of the proposed trainable filters algorithm has outperformed
the performance of the proposed algorithm by achieving an overall average Acc. of 98.785%,
Sen. of 98.455%, Spe. of 98.375%, PPV of 92.125%, and NPV of 95.93%. Then, the proposed
blood vessel linking procedure was applied to correctly join the discontinuous blood vessels
produced in the segmented retinal image resulting from the previous step. In this work,
to validate the advantage of applying the proposed blood vessel linking procedure, the
adopted five evaluation metrics were computed with and without applying the proposed
blood vessel linking procedure. An example of the output segmentation results on the
DRIVE dataset is shown in Figure 12.
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Table 2. The average values of five quantitative performance measures using the proposed trainable
filters algorithm on the DRIVE dataset.

Measurements 1st Observer 2nd Observer Average

Acc. 98.45 99.12 98.78
Sen. 98.02 98.89 98.45
Spe. 97.89 98.86 98.37
PPV 90.97 93.28 92.12
NPV 94.09 97.77 95.93
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Figure 12. The output segmentation results of the proposed trainable filtering algorithm on the
DRVIE dataset.

In this work, the performance of the proposed algorithms was compared with current
state-of-the-art vessel segmentation approaches on the DRIVE dataset images. The results
obtained from the second human observer have been considered for comparison purposes.
It was noted that most previously published approaches in the literature report the values
of accuracy, sensitivity, and specificity. Thus, the overall average of these three metrics and
the PPV and NPV values have been computed with GT images (2nd human observer) and
listed in Table 3. Although, Li et al. [22], Jin et al. [23], Hassan et al. [24], Dasgupta and
Singh [25], Li et al. [26], Tamim et al. [27], Yang et al. [28], and Yang et al. [29] have achieved
a higher Spe. and NPV value compared with the proposed trainable filters algorithm in
terms of all the adopted five evaluation metrics, better results were obtained using the
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proposed algorithm mentioned earlier, except for Yang et al. [28], which achieved slightly a
higher NPV value.

Table 3. Performance comparison of the proposed algorithms with state-of-the-art vessel segmenta-
tion approaches on the DRIVE dataset.

Approaches Acc. Sen. Spe. PPV NPV

Odstrcilik et al. [30] 94.73 78.07 97.12 - -

Li et al. [31] 95.27 75.69 98.16 - -

Jin et al. [23] 96.97 78.94 98.70 85.37 -

Hassan et al. [24] 96.25 87.99 97.99 - -

C. Argyrois [32] 94.79 85.06 95.82 - -

Dasgupta and Singh [25] 95.33 76.91 98.01 84.98 -

Samuel and Veeramalai [33] 96.01 82.20 97.35 - -

Li et al. [26] 95.73 77.35 98.38 - -

Yang et al. [29] 95.83 73.93 97.92 77.70 97.53

Kishorea and
Ananthamoorthy [34] 94.10 69.90 95.80 85.50 94.80

Tamim et al. [27] 96.07 75.42 98.43 86.34 96.53

Yang et al. [28] 95.22 71.81 97.47 89.23 98.50

Yang et al. [35] 94.21 75.60 96.96 78.54 96.44

Keerthiveena et al. [36] 94.71 92.7 95.6 92.49 95.70

Trainable Filters Algo. 99.12 98.89 98.86 93.28 97.77

4.4. Results on HRF Dataset

In this section, the performance of the proposed vessels segmentation algorithm has
been assessed using the HRF dataset using the same parameter configuration described in
Section 4.2. The adopted five evaluation metrics were initially calculated for the proposed
vessels segmentation algorithms using the GT images provided in the HRF dataset, as
shown in Table 4. A comparable performance was achieved by the proposed trainable
filtering, with a PPV of 95.89% and NPV of 98.97%. On the other hand, a better Acc. of
98.78%, Sen. of 99.12%, and Spe. of 99.34% was obtained using the proposed algorithm. An
example of the output segmentation results on the HRF dataset is shown in Figure 13.

Table 4. Performance comparison of the trainable filter algorithms on the HRF dataset.

Measurements Trainable Filters Algo.

Acc. 98.78
Sen. 99.12
Spe. 99.34
PPV 95.89
NPV 98.97

The performance of the proposed blood vessel segmentation algorithms has also been
compared with the state-of-the-art approaches on the HRF dataset, as given in Table 5. It
was observed that some existing approaches have achieved a slightly higher segmentation
accuracy compared with the proposed algorithms. For instance, Kishorea and Anan-
thamoorthy [34] have reached an Acc. of 99.6% compared to an Acc. of 98.76% and 98.78%
using the proposed trainable filters algorithm. However, the work presented in [34] has
obtained inferior results in another evaluation metric (e.g., Sen., Spe., PPV, and NPV) com-
pared with the proposed algorithm. On the other hand, Chalakkal et al. [37] has achieved a
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slightly better Spe. value of 100% compared with Spe. values of 99.17%, 99.35%, and 99.78%,
using the trainable filters. However, they got inferior results on the other evaluation metric
(e.g., Acc. and Sen.). Finally, one can see the best Sen. values of 98.87%, 99.12%, and 99.89%
were obtained using the trainable filtering algorithm, compared with the state-of-the-art
approaches on the HRF dataset.
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Figure 13. The output segmentation results of the proposed trainable filtering algorithm on the
HRF dataset.

The first human observer of the DRIVE dataset: Pearson correlation plots were also
adopted to confirm further the clinical reliability and usefulness of the proposed blood
vessels segmentation algorithms as effective tools to provide a precise and automated
estimation of the vessel’s clinical features. As shown in Figure 13, a Pearson’s correlation r
and p coefficient of r = 0.81, p < 0.0001, for vessel tortuosity; r = 0.87, p < 0.0001, for vessel
thickness; r = 0.76, p < 0.0001, for vessel length; and r = 0.93, p < 0.0001, for vessel density
using the proposed trainable filters algorithm (see Figure 14).

The same clinical evaluation was carried out to get the automated estimation of the
clinical features from the DRIVE dataset using the 2nd human observer. As shown in
Table 6 and Figure 14, a Pearson’s correlation r and p coefficient of r = 0.88, p < 0.0001 were
achieved for vessel tortuosity; r = 0.87, p < 0.0001, for vessel thickness; r = 0.96, p < 0.0001,
for vessel length; and r = 0.94, p < 0.0001, for vessel density using the proposed trainable
filters algorithm (see Figure 15).
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Table 5. Performance comparison of the proposed algorithms with state-of-the-art vessel segmenta-
tion approaches on the HRF dataset.

Approaches Acc. Sen. Spe. PPV NPV

Vostatek [17] 94.30 58.30 97.80 - -
Kishorea and

Ananthamoorthy [13] 99.60 76.52 98.50 87.90 96.01

Yang et al. [14] 95.17 79.15 96.76 70.79 97.90
Chalakkal et al. [16] 94.4 88.80 100

Yang et al. [10] 95.49 72.65 97.40 70.03 97.71
Yan et al. [18] 94.37 78.81 95.92 66.47 -

Wang et al. [19] 96.54 78.03 98.43 - -
Khan et al. [20] 95.90 77.20 97.80 - -

Upadhyay et al. [21] 95.20 75.00 97.20 72.70 -
Guo and Peng [22] 98.56 80.25 98.54 - -

Trainable Filters Algo. 98.78 99.12 99.34 95.89 98.97
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Figure 14. Correlation plots between manual use by the first human observer and automated clinical
estimations from the DRIVE dataset using the proposed trainable filters algorithm: (a) tortuosity;
(b) thickness; (c) length; and (d) density.

Further evaluation was performed on the HRF Dataset, which contains 40 GT images
constructed to efficiently assess the performance of the proposed blood vessel segmentation
algorithms. Table 7 shows the overall AV., STD, Max, and Min of each clinical feature. The
manual and automated images were computed along with the Diff and Diff % between
them. The average Diff % between the manual and automated estimations calculated
using the proposed trainable filter algorithm were 2.560%, 12.59%, 2.484%, and 5.529%
for tortuosity, thickness, length, and density, respectively. Correlation plots between the
manual and automated clinical estimations from the HRF dataset using the proposed
trainable filtering algorithm are presented in Figure 16.
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Table 6. Performance comparison conducted between the manual and automated estimations of four
clinical features using the second human observer and the DRIVE dataset.

Manual Trainable Filters

TC TC Diff Diff %

Average 1.708 1.6525 0.0555 3.303
STD 0.903 0.8435 0.0603 6.910
Max 4.48 4.52 −0.04 0.888
Min 1.01 1.01 0 0

Thick. Thick. Diff Diff %

Average 3.834 3.8185 0.016 0.418
STD 0.378 0.4774 −0.0986 23.04
Max 4.3 4.67 −0.37 8.249
Min 3.12 3 0.12 3.921

NL NL Diff Diff %

Average 33.543 31.382 2.1615 6.658
STD 5.496 4.9348 0.5613 10.76
Max 46.94 45.19 1.75 3.798
Min 26 23.68 2.32 9.339

ND ND Diff Diff %

Average 0.013 0.0135 −0.0002 1.676
STD 0.007 0.0122 −0.0046 47.29
Max 0.0344 0.0349 −0.0005 1.443
Min 0.0013 0.0008 0.0005 47.61
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Table 7. Performance comparison conducted between the manual and automated estimations of four
clinical features using the HRF dataset.

Manual Trainable Filters

TC TC Diff Diff %

Average 1.580 1.540 0.039 2.560
STD 0.843 0.821 0.021 2.610
Max 5.38 5.18 0.2 3.787
Min 1.02 1.01 0.01 0.985

Thick. Thick. Diff Diff %

Average 3.834 4.35 −0.515 12.59
STD 0.592 0.536 0.055 9.897
Max 5.79 6.25 −0.46 7.641
Min 2.67 3.29 −0.62 20.80

NL NL Diff Diff %

Average 28.983 29.712 −0.729 2.484
STD 3.673 4.141 −0.467 11.97
Max 38.43 38.55 −0.12 0.3117
Min 23.56 21.75 1.81 7.989

ND ND Diff Diff %

Average 0.0059 0.005 0.0003 5.529
STD 0.0035 0.003 0.0003 0.992
Max 0.0189 0.0184 0.0005 2.680
Min 0.0014 0.0012 0.0002 15.384
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Figure 16. Correlation plots between the manual and automated clinical estimations for the HRF
dataset using the proposed trainable filters algorithm: (a) tortuosity; (b) thickness; (c) length; and
(d) density.

5. Conclusions

This study proposes an accurate, rapid, and fully automatic blood vessel segmentation
and clinical features measurement algorithm for retinal fundus images. The proposed
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algorithm comprises two primary stages: the blood vessel segmentation and clinical
features extraction stages. In the blood vessel segmentation stage, a fully automated
segmentation algorithm was proposed and named a trainable filters algorithm to detect
the blood vessels in the retinal fundus images accurately. The current algorithm has
an image enhancement pre-processing procedure to address the problems of blurring,
uneven lighting, and low contrast of the retinal fundus image, and promotes the early
diagnosis of several eye pathologies. Several comprehensive experiments were carried
out to assess the performance of the developed fully automated segmentation algorithm
in detecting the retinal blood vessels using two extremely challenging fundus images
datasets, namely, the DRIVE and HRF datasets. Initially, the accuracy of the developed
algorithm was evaluated in terms of adequately detecting the retinal blood vessels. In
these experiments, five quantitative performance measures were calculated to validate the
efficiency of the proposed algorithm, including the Acc., Sen., Spe., PPV, and NPV measures,
and compared with current state-of-the-art vessel segmentation approaches on the DRIVE
dataset. The results obtained showed a significant improvement by achieving an Acc.,
Sen., Spe., PPV, and NPV of 99.55%, 99.93%, 99.09%, 93.45%, and 98.89, respectively. Then,
the efficiency and reliability of the proposed algorithm in extracting valuable and helpful
clinical features were also evaluated by conducting extensive experiments. Statistically
notable correlations between the manual and automated estimations of the adopted four
clinical features were obtained using the proposed algorithm on both datasets (DRIVE
and HRF). We would like to advise researchers to focus on multi-scale methods and try
to combine these with our proposed algorithm due to the high quality of the results we
produced in the segmentation domain.
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