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Abstract: Japan Aerospace Exploration Agency (JAXA) has collected and studied the data observed
by the lunar probe, SELenological and ENgineering Explorer (SELENE), from 2007 to 2017. JAXA dis-
covered that the oxygen of the upper atmosphere of the Earth is transported to the moon by the tail
of the magnetic field. However, this research is still in progress, and more data are needed to clarify
the oxidation process. Therefore, this paper supplements the insufficient observation data by using
Generative Adversarial Networks (GAN) and proposes a review paper focusing on the methodology,
enhancing the level of completion of the preceding research, and the trend of examining the oxidation
process and landscape of the moon. We propose using Anokhin’s Conditionally-Independent Pixel
Synthesis (CIPS) as a model to be used in future experiments as a result of the review. CIPS can
generate pixels independently for each color value, and since it uses a Multi-Layer Perceptron (MLP)
network rather than spatial convolutions, there is a significant advantage in scalability. It is concluded
that the proposed methodology will save time and costs of the existing research in progress and will
help reveal the causal relationship more clearly.

Keywords: GAN; AI; landscape; landscape of moon; moon land data

1. Introduction

In recent years, research has been conducted by applying Artificial Intelligence (AI)
to space information. In particular, studies of the landscape and topography using the
datasets obtained from imaging equipment are an issue. Thus, this author’s research
team has proposed a review paper on the topic of generating datasets using Generative
Adversarial Networks (GAN) to examine the oxidation process of the Moon for the point
in time when the Korea Aerospace Research Institute (KARI) prepares for the launch of
Korea Pathfinder Lunar Orbiter (KPLO) in August 2022.

The iron on the surface of Mars turned into iron oxide because of water and oxygen
several billions of years ago. The reason that Mars is orange-colored is because it has rusted
due to that water and oxygen combination, while the Moon looks gray due to the absence
of water and oxygen on its surface. Recently, a research finding was announced stating that
the surface of the Moon is rusting [1].

Lunar exploration is primarily concerned with methods of digging up resources
buried underground or on the surface of the Moon and utilizing them as an energy source
or material for processing. The research on utilizing the Moon and space is ongoing.
Securing baseline data to establish a policy through accurate and rapid analysis of soil,
climate change, and marine erosion by using the oxidation process of the Moon is warranted.
Thus, this research is a review on the subject of generating a dataset by using GAN to
examine the oxidation process of the Moon, focusing on the lunar landscape.
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Meanwhile, in 2008, the Indian space research agency launched a lunar probe, Chandrayaan-
1. The lunar exploration goal of Chandrayaan-1 was to produce a map of the ice and
minerals that might be on the lunar surface and underground.

Chandrayaan-1 was equipped with the Moon Mineralogy Mapper (M3), produced by
U.S. National Aeronautics and Space Administration’s (NASA) Jet Propulsion Laboratory
(JPL). Researchers made the distribution chart of minerals by measuring the lunar surface
using M3 for nearly a year. Shuai Li discovered hematite from the observed data. Li and
his colleagues found out that hematite was directly reduced again by the hydrogen in the
solar wind [2]. As for the protection element, when the moon is at the tail of the Earth’s
magnet, the influx of solar wind is reduced to below 1%. Since hematite is an ore generated
as iron rusts, for iron to rust, water and oxygen are needed. The location where hematite
was discovered is the high-altitude region of the Moon, close to 80 degrees. This is the
polar region of the Moon, known as the permanently shadowed crater, and it is also the
place where ice was discovered a few years ago. Therefore, there is a possibility that
oxygen-containing water created the hematite, while even dust particles colliding with
the moon after floating from outside, may have retained water. Oxidation is a reaction
involving oxygen, and if there is no oxygen, it cannot occur. Moreover, there is a possibility
that it originated from water on the lunar surface. The fact that water exists on the moon
was verified through Chandrayaan-1 in 2008. In 2009, NASA also intentionally made a
spacecraft collide with the lunar surface and examined the substances protruding in its
aftermath. As a result, it confirmed that a considerable amount of water exists in the polar
region of the moon. Since water exists in all areas of the lunar surface, hematite is also
distributed evenly [3]. More precisely, moisture exists from about 8 cm underneath the
ground surface, and the moon has no atmosphere, so there is no wind. Therefore, the
moisture existing 8 cm below the surface has no reason to show up on the surface.

A meteor is the phenomenon of substances such as dust left over from the solar system
formation process being drawn in by the Earth’s gravity [4]. Although it is very fast, it all
burns up due to friction from the atmosphere. If a meteor collides with the surface of the
Moon, which has no atmosphere, it digs up the soil. With some meteors, moisture that is
underneath the surface comes up, and this, combined with oxygen, causes the iron existing
on the surface to rust. However, this does not mean there is absolutely no atmosphere on
the moon [3]. Argon, helium, neon, natrium, potassium, and hydrogen all exist in small
amounts, but oxygen is not included.

In 2007, Japan Aerospace Exploration Agency (JAEA) launched a lunar probe called
SELenological and ENgineering Explorer (SELENE). The scientists who collected and
studied the data observed by SELENE for 10 years discovered that the oxygen existing in
the upper atmosphere of the Earth escapes to outer space by being carried by the tail of the
magnetic field. Here, the Earth’s magnetic field has a tail of the magnetic field which looks
similar to meteors on the opposite side of the sun. These magnetic tails are very active,
generate massive changes, and supply energy to ions and electrons. Oxygen moves in the
vacuum space with 385,000 km on a magnetic tail. This is the reason that the lunar surface
fixated towards the Earth is rusting. For this reason, the hematites are concentrated on the
lunar surface facing the Earth. However, this research is still ongoing, and more data are
needed to examine the oxidation process [5,6].

Most of the studies in the field of computer vision on the moon have been works
focusing on detecting the surface of the moon. On the other hand, in this paper, a survey
was conducted of lunar data augmentation experiments to supplement the characteristics
of the aerospace field, where the number of data are small, and data collection is difficult.
However, as most of the studies were focused on detection, it was difficult to find direct
studies using GAN. Therefore, the existing methods applied to the moon and the overall
flow of GAN were investigated, with a focus on thinking about how to apply GAN, which
is very popular in the field of computer vision, to the moon.

This paper is a review paper on GAN and machine learning applications in the
aerospace industry and aims to reinforce the ideas of experiments that can be carried out
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in another future study. We have four contributions: (1) a basic explanation of GAN is
given. (2) The developments in the GAN field related to future studies are classified and
explained. (3) The way that machine learning technology is being applied in the aerospace
industry is introduced. (4) We propose future research applying GAN to the aerospace
industry for data augmentation.

Meanwhile, the GAN model intended for use in future study training is Anokhin’s
Conditionally-Independent Pixel Synthesis (CIPS). The initialization of weighted values
optimized for observation data, parameter updating method, and combination of active
functions are verified through an experiment [7,8]. Ensemble techniques may be learned as
the occasion warrants [9].

Section 2 describes aerospace and GAN-related studies, and Section 3 describes future
research methods applying Anokhin’s proposed CIPS. Section 4 explains trends in AI
research in the aerospace industry, and Section 5 discussed the conclusions of this paper.

2. Related Studies
2.1. Conducting Aerospace Mission Using a Probe

The KARI is preparing the launch of KPLO in August 2022. KPLO is set to be
launched through SpaceX’s Falcon 9, from Cape Canaveral Air Force Station with the
mission of filming the lunar surface, finding space resources, and streaming videos to Earth.
Space resources are iron and helium-3, which are clean energy sources including water and
oxygen. Helium-3 is one of the light and stable isotopes of helium, which has two protons
and one neutron. On Earth, helium-3 exists in amounts of one millionth of helium-4.

The lunar probe is equipped with 6 types of payload, including KARI’s high-resolution
camera (Lunar Terrain Imager, LUTI), Korea Astronomy and Space Science Institute’s
Wide-Angle Polarimetric Camera (PolCam), Kyunghee University’s KPLO Magnetometer
(KMAG), Korea Institute of Geoscience and Mineral Resources’ KPLO Gamma-Ray Spec-
trometer (KGRS), Electronics and Telecommunications Research Institute’s Delay/Disruption
Tolerant Network (DTN) verifier, and NASA’s Shadowcam. Five payloads were developed
with Korean technology, and one was developed with overseas technology. LUTI films the
major regions of the lunar surface, and PolCam takes the polarized light image of the sur-
face of the moon with a high resolution of approximately 100 m. KMAG will measure the
minute magnetic field around the Moon, and KGRS will perform spectroscopic observations
of gamma ray particles of the lunar surface. The DTN verifier will verify the space–internet
communication technology between Earth and lunar probes, and shadow cam will observe
the south pole of the moon where ice is expected to exist. Meanwhile, NASA changed the
trajectory of the shadow cam, believing it may not be able to film the lunar surface image
as planned. Figure 1 illustrates the image of the lateral magnetic field of the Sun restored
with GAN [10,11].

Figure 1a depicts an extreme ultraviolet image, Figure 1b shows the lateral magnetic
field image generated by GAN, and Figure 1c shows a magnetic field image observed by
the satellite. Figure 1a,c were acquired in 3-day intervals. As a result of analyzing the front
magnetic field image and the magnetic field image synthesized by GAN, it was verified
that the solar spot was adequately reproduced.

In addition to directly carrying out a mission, Divish Rengasamy et al. broadly divided
up models used in the research for maintenance, repair, and overhaul of deep autoencoders,
long short-term memory, Convolutional Neural Networks (CNN), and deep belief networks
through the status data of the space probe. They also examined the concept and description
of each structure, as well as the problem of using them. Furthermore, they identified the
situation of the current research and explained the direction of follow-up research [12].
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Figure 1. Image of the lateral magnetic field of the Sun, restored with GAN. (a) Image of extreme
ultraviolet ray observed from a satellite. (b) Image of lateral magnetic field generated by GAN.
(c) Image of magnetic field observed from a satellite.

2.2. Case That Applies Machine Learning Technology to the Moon

Since the moon is a satellite revolving around the Earth, it has been the representative
subject of astronomical research. Due to the recent re-examination of machine learning
technology, various techniques are even being applied to the Moon. This section lists studies
related to oxidation and the landscape features of the moon (lunar landscape, craters, etc.)
related to the proposed method, along with many areas where machine learning can be
applied to the Moon. DeLatte et al. listed the challenges of planetary geologists and
machine learning studies, along with the recent results from the field of automatic crater
detection, which used machine learning technologies and presented recommendations for
better automation [13]. Lee Hoonhee listed the recent deep learning studies regarding crater
recognition on the moon and discussed the limitations of research on crater recognition [14].

Jia et al. said that the existing Crater Detection Algorithm (CDA) creates cases where
detection is impossible if a crater is small or overlapping. Thus, the authors suggested that
channel-wise attention, using multi-path representation and self-calibrated convolutions, is
prosperous. They proposed split-attention networks with self-calibrated convolution struc-
ture that can generate discriminative feature representations [15]. Silburt et al. proceeded
with an experiment for detecting the location and size of craters in digital elevation maps
of the moon using CNNs. As a result of the experiment, 92% of the test data that humans
created was restorable [16]. Yutong Jia et al. proposed CDA based on U-Nets and achieved
crater detection accuracy of 93.4% through repeated training, performed 5000 times [17].
Ali-Dib et al. used Mask R-CNN, an “instance segmentation” general framework, to extract
2D shapes in lunar digital elevation maps. As a result, they achieved the outcome of
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identifying 87% of the craters [18]. Chen et al. proposed a High-Resolution-Moon-Net by
adopting transfer learning that can simultaneously and automatically identify craters and
rilles, along with state-of-the-art machine learning technology such as the High-Resolution
Net to facilitate the discovery of lunar energy [19].

Wilhelm et al. used CNNs to analyze the lunar surface without labeling, then found
significant representative regions as a result of the experiment and proved that the label
of the applicable region can be derived with a fully unsupervised method [20]. Roy et al.
presented a U-Net-based deep learning model which restores missing pixels of a lunar
surface image using the context-aware fashion method known as Image inpainting [21].
Lesnikowski et al. experimented with detecting the landing sites of Apollo 15 and 17
by using a variational autoencoder to show that lunar surface anomaly detection can be
performed unsupervised without sufficient representations. In addition, they mentioned
that unsupervised data density estimations can be expanded to various tasks, including
locating lunar resources [22].

Xia et al. used Deep Neural Networks (DNN) that can better depict nonlinear re-
lationships, not the traditional regression method usually used in the past, to draw the
abundance map of 6 major oxides of the moon and magnesium [23]. Table 1 lists research
cases that have applied machine learning to the Moon.

Table 1. Research cases that have applied machine learning techniques to the Moon.

Author Research Area Used Model

Delatte et al. [13] Survey Papers
(Usually, crater detection) -

Lee Honnhee [14] Review Papers
(Usually, crater detection) -

Jia et al. [15] Lunar surface detection Self-calibrated convolution
Silburt et al. [16] Lunar surface detection CNNs (based U-Net)

Yutong Jia et al. [17] Lunar surface detection CNNs (based U-Net)
Ali-Dib et al. [18] Lunar surface detection CNNs (based Mask R-CNN)

Shen et al. [19] Lunar surface detection High-Resolution-Moon-Net
Wilhelm et al. [20] Unsupervised learning CNNs (based VGG16)

Roy et al. [21] Unsupervised learning CNNs (based U-Net)
Lesnikowski et al. [22] Unsupervised learning CNNs (based VAE)

Xia et al. [23] Abundance map of
oxide and magnesium DNN

2.3. Basic Idea of GAN

In the 2014 paper, Ian Goodfellow, who proposed GAN, explained it by likening it
to a police officer and a money counterfeiter. A money counterfeiter created money that
resembles real money and worked hard to deceive the officer. The officer aims to arrest the
money counterfeiter by fully discerning (classifying) real money from counterfeit money.
This process can be said to be a minimax game where a money counterfeiter (Generator)
and the police officer (Discriminator) repeatedly create and classify counterfeit money.
GAN is embodied by two neural network systems, where the two networks, a Generator
(G) and a Discriminator (D), compete. The G converts random noise into a sample that
looks real, and the D discerns whether the input sample is authentic or something synthetic
created by the G.

The G is trained to generate images similar to real images, and D is trained to dis-
tinguish between the ground-truth image and data generated by G. Equation (1) is the
objective function of GAN used for training. This allows the two networks of G and D to
compete and find a Nash equilibrium.

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (1)
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where the value of this V(D, G) is calculated as a probability value, and this equation is
described in terms of G and D as follows:

• D: The input ground-truth image x results in a high probability value as the log value
increases, and the input fake image G(z) results in a low probability value as the log
value decreases. That is, D is updated to distinguish between the ground-truth image
and the fake image generated by G.

• G: A fake image is with noise z is generated following a specific distribution (e.g.,
Gaussian distribution). When the generated fake image G(z) is put in D, it is trained
so that the probability is high, in a similar manner to the ground-truth image. In other
words, when the D(G(z)) value is increased, and the overall probability value is
lowered, in short, G is updated to generate an image that D cannot clearly distinguish.

When training GAN, the two networks of G and D are not trained at the same time.
A method of updating the weights of the remaining networks is used while one network
weight is frozen.

In the end, the target of the ground-truth image is ‘1’, and the target of the generated
image is ‘0’. The ground-truth image outputs a value close to ‘1’ and the generated image
outputs a value close to ‘0’ [6].

Meanwhile, since there is no way to tell on which point the ground-truth image is
mapped within the latent space, it is more difficult to train the G. If the output of the G
is input into the D, the probability of it being genuine is output. This probability is the
output of GAN, and the input is a randomly generated latent space vector of the dimension.
The output creates a training batch which is ‘1’, and trains GAN. The closer the output gets
to ‘1’, the more of a genuine-looking sample can be generated. Figure 2 below illustrates
the GAN model.
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2.4. Variants of GANs

In this section, we will explain various variants of GAN. It is largely divided into
architecture, stability, and image-to-image translation. Architecture includes studies that
apply new concepts to the models or changes model structures. Stability includes studies on
improving instability during training, which is one of the challenges with GANs. Finally, the
image-to-image translation includes models that perform the image-to-image translation
task. Table 2 summarizes the models (methods) described in this section.

2.4.1. Architecture

Conditional GAN (CGAN) is a variation model of GAN that has added the conditional
nature by adding some auxiliary information ‘y’, such as a class label or other modality
data, to a generator and a discriminator. Mehdi Mirza et al. showed the usefulness of
the conditional nature and the possibility of application through CGAN and implied
that, through this, a detailed analysis of each performance and characteristic would be



Electronics 2022, 11, 1303 7 of 20

possible [24]. By adopting the information theory concept to GAN, Chen et al. proposed
InfoGAN, which can learn disentangled representations from completely unsupervised
learning. InfoGAN achieves its goal by maximizing the mutual information between the
fixed small subset of the noise variable of GAN and relatively simple observations [25].

Table 2. Classification of GANs models.

Category Model/Method

Architecture CGAN [24]; InfoGAN [25]; EBGAN [26]; DCGAN [27]; SAGAN [28]; PGGAN [29];
DeLiGAN [30]; BigGAN [31]; StyleGAN [32]; StyleGANv2 [33]; CIPS [34]

Stability Consensus Optimization [35]; PixelDA [36]; WGAN [37]; Gradient penalty [38]; BEGAN
[39]; Spectral Normalization [40]; LSGAN [41]; TTUR & FID [42]

Image-to-Image Translation DiscoGAN [43]; pix2pix [44]; CycleGAN [45]; StarGAN [46]

Meanwhile, Junbo Zhao et al. proposed Energy-Based GAN (EBGAN), which intro-
duced the concept of energy to GAN. Based on EBGAN data, low energy is assigned to
the part or space where data exist in the data manifold, and high energy is assigned to the
rest of the surroundings [26]. In other words, if Y is the correct answer of X from (X, Y),
low energy values are allocated to (X, Y), and if not, high energy values are allocated.
When this is analyzed from the perspective of unsupervised learning, it can be said to be
performing modeling, so that small energy is allocated to X from the data manifold.

Radford et al. studied Deep Convolution GAN (DCGAN), with its advantage even
in the area of unsupervised learning, by fusing CNN, which is used to distinguish itself
from existing supervised learning, with GAN [27]. DCGAN prepared the base where GAN
can be applied to computer vision as CNN was applied and was able to stably train GAN.
As another method, Han Zhang and colleagues proposed Self-Attention GAN (SAGAN),
capable of performing attention-centered long-range dependency modeling to generate
images by showing attention to GAN. Unlike the existing GAN, which can generate detailed
information only from local points, SAGAN can generate detailed information from all
locations, allowing the discriminator to verify whether the details from the part distant
from an image match each other [28].

Tero Karras and colleagues presented Progressive Growing of GANs (PGGAN) which
applies a new training methodology based on the idea that the generator and discriminator
are gradually learned from existing GANs. The method of gradual training is initially
begins learning with a Low-Resolution (LR) image, and then the resolution is gradually
raised by adding layers as learning progresses. The authors showed that training was
carried out more stably and that training time was reduced by adopting a gradual learning
methodology [29].

Gurumurthy et al. proposed GAN for Diverse and Limited Data (DeLiGAN) as
a Gaussian mixture model that can be trained using limited training data by adding
reparameterization from latent space. They also mentioned the fact that conventional GAN
needs large amounts of diverse training data, even though GAN is tremendously successful
in the area of image generation [30].

Andrew Brock and colleagues proposed BigGAN, a massive GAN, to generate compli-
cated data sets such as ImageNet beyond high-resolution images. They proposed a simple
structural change that improves scalability and conditioning by modifying regularization,
while proposing a GAN that is larger than the latest technology. They also introduced a
“truncation trick” that can control the trade-off between sample variety and fidelity due to
such changes [31].

Tero Karras et al. proposed Style-based GAN (StyleGAN), a structure of GAN that
has adopted the style transfer concept from the PGGAN structure. This model causes
stochastic changes in high-level properties and generated images that GANs automatically
learned, enabling the control of intuitive and scale-specific integration (synthesis) [32].
After a year, the authors analyzed the unique structure of StyleGAN, a state-of-the-art
data-driven unconditional generative image modeling up to that point, while presenting
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methods for solving problems. In particular, they proposed a method of redesigning and
regularizing the normalization of the generator to prevent noisy water droplets due to
instance normalization in StyleGAN [33].

Meanwhile, Ivan Anokhin and colleagues presented a new model based on the struc-
ture of StyleGANv2 for an image generator, where the color value of each pixel is inde-
pendently calculated by reflecting the random latent vector values and coordinates of a
specific pixel and is not heavily dependent on convolution. This is possible because CIPS,
a model proposed by Anokhin and selected by us for moon data augmentation task in
future research, generates data for each pixel and uses Multi-Layer Perceptron (MLP).
Therefore, it is thought to be scalable for various data conditions [34].

2.4.2. Stability

Mescheder et al. discovered elements that have a negative impact on the convergence
of an algorithm while analyzing general algorithms for training GAN. To solve this problem,
they found the reason why gradient ascent is unable to find the local Nash equilibrium and
used this information to design an algorithm for finding the Nash equilibrium. They have
empirically proven that GAN can be stably trained by using the proposed algorithm [35].

Bousmalis et al. proposed a GAN-based unsupervised Pixel-Level Domain Adaptation
(PixelDA) method, which is one of the unsupervised domain adaptation algorithms that
learns how to map representations between domains and how to extract domain-invariant
features. PixelDA can obtain advantages by decoupling from the task-specific architecture,
training stability, data augmentation, and interpretability, by comparing with other existing
methods [36].

Martin Arjovsky and colleagues defined the Earth Mover (EM) distance to improve
the instability of the GAN training process and proposed Wasserstein GAN (WGAN), a
model that applies EM distance to GAN [37]. However, even WGAN has a problem of still
generating bad samples or of not guaranteeing convergence. This is due to weight clipping
being adopted to satisfy the Lipschitz condition. To solve this problem, Ishaan Gulrajani
and colleagues presented a method of applying a penalty to the norm of a critic’s gradient
for input as an alternative to weight clipping [38].

Berthelot et al. presented a method of adding the equilibrium term to match the loss
derived from Wasserstein distance and the autoencoder’s loss distribution, as well as to
maintain the equilibrium of the generator and discriminator to train the autoencoder-based
GAN. If this method is used, it enables faster and more stable training, and can obtain
a result with high visual quality [39]. Takeru Miyato et al. tried to stabilize the training
of the discriminator by applying a new weight normalization method called spectral
normalization [40].

Xudong Mao et al. introduced Least Squares GAN (LSGAN), using least squared as a
loss function to solve the problem of gradient loss caused by using sigmoid cross-entropy
as the loss function of the discriminator from the existing GAN. This model can generate
images with better quality than the existing GAN and can operate more stably during the
training process [41].

Martin Heusel et al. proposed the Two Time-scale Update Rule (TTUR) to train GAN
with stochastic gradient descent regarding the loss function of GAN, and to prove the
convergence of GAN training that has not been proven up to that point. They proved that
TTUR has a respective learning rate for the generator and discriminator, and that TTUR
converges to a fixed local Nash equilibrium under several assumptions, using stochastic
approximation theory [42].

Salimans et al. introduced five technologies that enable GAN to converge, espe-
cially semi-supervised learning and the image generator. They explained that, if feature
matching, minibatch discrimination, historical averaging, one-sided label smoothing, and
virtual batch normalization introduced in this paper are used, it helps in understanding
non-convergence problems, improves the performance of semi-supervised learning, and
generates a better image [47]. Then, Mario Lucic et al. empirically proved that everything
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can be converged in Frechet Inception Distance (FID) if sufficient calculations and time are
given. They compared the latest GANs with a fair method, then evaluated the exemplarity
of FID regarding the use and dropping of other encoding networks, and thus provided
the optimal estimation of FID that can be achieved from the FID data set. Additionally, to
compare GANs, they mentioned the need for approximate methods of the result rather
than the outcome itself, due to the randomness of the optimization process and model
instability [48].

2.4.3. Image-to-Image Translation

Since the existing GAN cannot determine the domain relations when unpaired data
are given, Taeksoo Kim et al. introduced Discover Cross-Domain Relations with GANs
(DiscoGAN) to solve this. Unlike the previous method, DiscoGAN can be trained with
two sets of images without explicit double labels and does not need preliminary training.
The feature of this model is that it limits so that all images of a domain are expressed with
the image of another domain. The authors recommend handling the mapping between two
domains from both ways by using such attributes [43].

Isola et al. proposed pix2pix, which applies CGAN for the versatility of image-to-
image translation. Pix2pix learns mapping both from an input image to an output image,
and the loss function to train the map. With this, good results can be obtained without
the hand-engineer of mapping and the loss function [44]. Image-to-image translation
usually aims to learn mapping between input and output images using training data of an
aligned image pair. Zhu et al. proposed CycleGAN that can translate an image from source
image X to target domain Y if there is no image pair. To perform this translation, loss of
F(G(X)) = X was introduced by combining mapping G : X → Y and inverse-mapping
F : Y → X [45].

Choi et al. pointed out that the drawback of the existing method is attributed to limited
scalability because the existing image-to-image translation only shows a result for two
domains, which is a one-on-one situation. To compensate for this, they proposed StarGAN,
which complemented scalability that can perform image-to-image translation for various
domains using a single model [46].

2.5. Cases Related to Aerospace Missions Using GAN

Taeyeong Kim in Korea successfully restored the lateral magnetic field image of the
Sun with image-to-image translation based on CGAN [11]. Image-to-image translation is a
task in which images from one domain transform into another domain.

The magnetic field image of the sun is important sensing data concerning solar activity
and space weather forecast. The lateral situation of the rotating sun provides useful
information with respect to forecasting. The front magnetic field image of the Sun, as
viewed from the Earth, can be obtained with the Helioseismic and Magnetic Imager (HMI)
of Solar Dynamics Observatory (SDO). However, it is difficult for the stereo observatory
observing the side of the Sun to acquire an image since it has no sensor.

The sensor image of SDO’s Atmospheric Imaging Assembly (AIA) and HMI video
was taught to GAN in pairs. SDO is a satellite observing the front side of the Sun and HMI
is a magnetic field sensor. Afterward, the Extreme Ultraviolet Imager (EUVI) sensor stereo
image was input as a condition. Notably, EUVI is a sensor that has the same characteristics
as AIA.

Studies using GAN are being actively performed in pan-sharpening, or super-resolution,
which generates high-definition images using low-definition ones. Even though Jiayi
Ma et al.’s CNN-based pan-sharpening method recently achieved state-of-the-art status, it
is seen as supervised learning with drawbacks in disregarding the space information of
panchromatic images. The authors proposed a framework of a GAN-based unsupervised
learning method called Pan-GAN to compensate for these drawbacks. The proposed model
achieved significant results in comparison to existing methods [49]. Qingjie, Liu et al. pro-
posed PSGAN from the perspective of generative adversarial learning for pan-sharpening.
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PSGAN consists of the generator and discriminator just like the existing GAN. The gen-
erator receives panchromatic and multi-spectral images as input and is designed to map
High-Resolution (HR) multi-spectral images; the discriminator conducts training on an
adversarial relationship by distinguishing this [50].

Kui Jiang et al. proposed the GAN-based Edge-Enhancement Network (EEGAN)
to reconstruct an HR satellite image. EEGAN consists of two partial networks—i.e., the
Ultra-Dense SubNetwork (UDSN) and Edge-Enhancement SubNetwork (EESN). The result
generated by UDSN generates intermediate results containing noise and subsequently
generates HR images by undergoing an additional process through EESN [51]. Jakari Rabbi
and colleagues proposed the new Edge-Enhanced Super-Resolution GAN (EESRGAN),
inspired by the existing EEGAN and the Enhanced Super-Resolution GAN (ESRGAN).
EESRGAN broadly consists of three sections—i.e., ESRGAN, the Edge-Enhancement Net-
work (EEN), and the detection network. ESRGAN and EEN both raise the resolution of a
satellite image, and then detect objects using the detection network [52].

Yiting Tao et al. proposed a network consisting of two streams to enhance the perfor-
mance of HR satellite images. The proposed network is the mainline, a residual network
structure for panchromatic images and the Stacked Convolutional Auto Encoder (SCAE),
which extracts features from multi-spectral images and then supplements the mainline. The
authors proved that excellent results can be obtained with a deeper network and more ker-
nels [53]. Then, Yuanfu Gong et al. proposed Enlighten-GAN for the Super-Resolution (SR)
of a satellite image. The proposed model includes enlighten blocks for generating two-fold
upsampling results. Since enlighten blocks can receive effective gradients and learn high-
frequency information, high generalization capabilities can be obtained. Therefore, the
authors showed that a more realistic and natural HR image can be generated using the
proposed Enlighten-GAN than by existing methods [54].

Wen Ma et al. proposed the SR method for remote sensing images based on Transferred
GAN (TGAN). Unlike the method of previous GAN-based SR, TGAN is different in that
it uses the transfer-learning method for removing batch normalization layers and solving
problems of lacking data. Based on this difference, it showed a far better performance
than the existing Super-Resolution Convolutional Neural Network (SRCNN) and Super-
Resolution Generative Adversarial Network (SRGAN) [55]. Table 3 lists research cases that
have applied GAN techniques to the aerospace missions.

Table 3. Research cases that have applied GAN techniques to aerospace mission.

Author Used Model Research Area

Kim et al. [48] CGAN Image Generating
Jiayi Ma et al. [49] Pan-GAN Pan-sharpening

Qingjie Liu et al. [50] PSGAN Pan-sharpening
Kui Jiang et al. [51] EEGAN SR

Jakaria Rabbit et al. [52] EESRGAN SR + Object Detection
Yiting Tao et al. [53] Residual network + SCAE SR

Yuanfu Gong et al. [54] Enlighten-GAN SR
Wen Ma et al. [55] TGAN SR

3. Research Methodology

It has taken 10 years to announce the theory that the Moon’s oxygen came from the
tail of the Earth’s magnetic field, and related studies are still ongoing. While research time
can be reduced by hiring high-quality talents and deploying exploration satellites, the costs
can be astronomical. This can be observed just by looking at exploration satellites as an
example. SpaceX invested about 500 billion KRW (417 million USD) into developing the
Falcon 9 and the Korea Aerospace Research Institute invested approximately 230 billion
KRW (192 million USD) into the development of KPLO. GAN would contribute to solving
the above-mentioned problems and would be more cost-effective than hiring high-quality
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talents and deploying exploration satellites. GAN-based applications are already used in
many industrial areas [56]. If GAN is used, observation data could be increased.

In GAN, two networks (i.e., the G and the D) compete. Network G generates realistic
samples from noise, while D distinguishes whether an input sample is ground-truth or
a fake.

GAN can synthesize a sample that is difficult to distinguish from an actual sample [57].
It can model a language or compose music [58,59]. This is even possible with a small
amount of data, and since this can minimize the limitations of human resources and capital,
it is a suitable alternative. The goal is to find the compound distribution of a sample that
resembles an actual distribution of observation data. The GAN model to be used in data
augmentation is CIPS. CIPS synthesizes an image with quality equivalent to a state-of-the-
art StyleGANv2 [34]. However, unlike StyleGANv2, CIPS does not use spatial convolutions
and can generate color values for each pixel. In addition, it generates values for each pixel,
so it has advantages over conventional methods in terms of scalability. The generator
structure of CIPS is illustrated in Figure 3.
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The top of Figure 3 illustrates the generated pipeline, and the bottom is the structure
of the Modulated Fully-Connected (ModFC) layer. Mod is the modulation of values, and
DeMod is the inverse operation of Mod.

CIPS is a model that generates pixel values independently for each pixel by receiving
coordinate values of pixels instead of using spatial convolution with spatial constraints
in the existing image generator. When generating an image, CIPS uses random vector z
shared by all pixels and creates style vector w using Mapping function M. This part is the
same as StyleGAN2 and is used as a baseline.

CIPS used a sine function to generate Fourier features only in the first layer for
positional encoding. Other layers use a Leaky Rectified Linear Unit (LeakyReLU) function.
However, when only Fourier features were used, wave-like artifacts occurred. As a result,
coordinate encoding for each coordinate was learned, and Fourier features and coordinate
embeddings were concatenated and used. Through the fact that each pixel is independent
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without using spatial information, it has scalability, and is able to generate an image such
as a panorama.

Table 4 illustrates a CIPS’s generator trained with various datasets.

Table 4. Conditionally-Independent Pixel Synthesis (CIPS) generator trained with various datasets.

Dataset Visual Results

Satellite-
Landscapes
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The latent vector of Figure 3 is input into the mapping network through normaliza-
tion. The mapping network outputs are shared by all pixels of an image. ModFC receives 
modulated style vector 𝐰  and the output from previous layers to modify learnable 
weights and bias. The encoder encodes the coordinates of each pixel using Fourier features 
and coordinate embedding. FC returns the encoded value as the RGB value of the relevant 
pixel. The active function of ModFC uses LeakyReLU and is represented as formula (2) 
[60]. 𝑎,, = max൫𝑧,, , 0൯ + 𝜆(𝑧,, , 0) (2)

In Formula (2), hyper-parameter 𝜆 has the range from 0 to 1. LeakyReLU compresses 
the negative value part without mapping it with a constant 0, such as the Rectified Linear 
Unit (ReLU). Even if a function is inactive, a positive number smaller than 1 is output [61]. 
Since ReLU does not adjust the weighted value when a function is not active, the gradient 
becomes 0. If the gradient is 0 and becomes scarce, it can interfere with GAN training, and 
the learning speed also slows down. Even though scarcity in a deep learning algorithm is 
often a desirable condition, this is not the case for GAN. To prevent such a problem, 
LeakyReLU is used. Since LeakyReLU allows the active value of the negative value, scar-
city is alleviated. 

The generator of Figure 3 also includes skip connections on output as a basic config-
uration. CIPS calculates color information using only random noise and location coordi-
nates as a perceptron-based model [62]. Spatial convolution, upsampling calculation, and 
self-attention mechanisms are not used [27]. The reason for this is that the sharing of in-
formation between pixels can reduce the synthesis work efficiency in certain situations. 
The result, as shown in Table 4, was acquired by applying this algorithm to satellite land-
scapes, satellite buildings, and landscapes data set images [63,64]. CIPS has an excellent 
performance in both qualitative and quantitative assessments using FID, precision, and 
recall indicators [41,65]. CIPS can be used in various domains, such as foveated rendering, 
SR, etc. [66,67]. It shows especially high performance in the spectrum domain. If a coordi-
nate grid is used, work can be carried out in a complicated structure such as cylindrical 
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The latent vector of Figure 3 is input into the mapping network through normalization.
The mapping network outputs are shared by all pixels of an image. ModFC receives
modulated style vector w and the output from previous layers to modify learnable weights
and bias. The encoder encodes the coordinates of each pixel using Fourier features and
coordinate embedding. FC returns the encoded value as the RGB value of the relevant pixel.
The active function of ModFC uses LeakyReLU and is represented as formula (2) [60].

ai,j,k = max
(

zi,j,k, 0
)
+ λ

(
zi,j,k, 0

)
(2)

In Formula (2), hyper-parameter λ has the range from 0 to 1. LeakyReLU compresses
the negative value part without mapping it with a constant 0, such as the Rectified Linear
Unit (ReLU). Even if a function is inactive, a positive number smaller than 1 is output [61].
Since ReLU does not adjust the weighted value when a function is not active, the gradient
becomes 0. If the gradient is 0 and becomes scarce, it can interfere with GAN training, and
the learning speed also slows down. Even though scarcity in a deep learning algorithm
is often a desirable condition, this is not the case for GAN. To prevent such a problem,
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LeakyReLU is used. Since LeakyReLU allows the active value of the negative value, scarcity
is alleviated.

The generator of Figure 3 also includes skip connections on output as a basic configu-
ration. CIPS calculates color information using only random noise and location coordinates
as a perceptron-based model [62]. Spatial convolution, upsampling calculation, and self-
attention mechanisms are not used [27]. The reason for this is that the sharing of information
between pixels can reduce the synthesis work efficiency in certain situations. The result,
as shown in Table 4, was acquired by applying this algorithm to satellite landscapes,
satellite buildings, and landscapes data set images [63,64]. CIPS has an excellent perfor-
mance in both qualitative and quantitative assessments using FID, precision, and recall
indicators [41,65]. CIPS can be used in various domains, such as foveated rendering, SR,
etc. [66,67]. It shows especially high performance in the spectrum domain. If a coordinate
grid is used, work can be carried out in a complicated structure such as cylindrical panora-
mas just by changing the basic coordinate system. In addition, CIPS can be expanded
to other areas or other various uses and is deemed to be suitable for even observation
data synthesis.

4. Trends in Other AI Research

Previously, we looked at how machine learning is being used in regard to space and
the Moon, and how GANs are being studied. In this session, along with the prospects for
the technologies that will be used in space in the future, we will explain the important
problems we noted while investigating other studies, and the direction we need to take in
the future.

4.1. Trends of AI Technology Used in Space

AI is being applied to various industries, and this trend applies to the space industry
as well. Artemis 1, scheduled to be launched in March 2022, is planned to be equipped
with an AI voice assistant [68]. Research continues on AIs mounted on robots for space
resident base construction and resource exploration, which is planned until 2028.

AI technology is also being applied to spacecraft manufacturing and operation. AI al-
gorithms are being applied to advanced guidance and control systems of aerospace [69],
and explainable AI technologies that help pilots make decisions, are being studied [70].
In a similar context, research and surveys related to autonomous spacecraft operation are
also being actively conducted [69,71]. In addition to this, research on the development of
special materials used in the manufacture of spacecraft and the detection of damage to
parts, is also in progress [72].

4.2. The Direction of Research Related to the Moon

This paper mainly deals with the detection of craters on the Moon. However, in the
past, most of the performance was measured by comparing crater detection with human-
labeled data. Recent studies on detecting craters that are difficult for humans to identify,
have also been conducted, and 109,956 new craters have been identified. Of these, it is
estimated that there are 18,966 craters larger than 8 km [73].

Machine learning technology is being used for tasks other than just crater detection.
It has been shown that surface ice can be detected by removing noise in high-resolution
images in the Permanently Shadowed Regions (PSR), further revealing previously unde-
tectable geological features of craters [74,75]. Figure 4 shows the topographic map of the
lunar south pole, including the PSRs (black polygons). The blue polygons are the study
points [74].
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While researching the Moon, the following problems were identified. (1) Moon data
are limited and (2) the patterns of moon data are similar. The number of satellites that
can collect moon data are limited, and acquiring new ones is also not easy. In addition,
since the data are also collected only for a fixed object called the Moon, unlike the general
computer vision problem, it is difficult to distinguish the differences within the data and it
is difficult to generalize it to the computer vision problem. Therefore, it is thought that a
study that explores data augmentation, such as our proposed method, or data such as the
Moon, in reality, is necessary.

4.3. AI Applied to Remote Sensing Images

Various cases of applying AI to remote sensing images are summarized and explained.
Tasks using remote sensing images are largely divided into change detection and SR tasks.

Change detection on an image or a video is the process of identifying differences in
the state of an object or phenomenon by observing it at different times [76]. The procedure
of the change detection method is as follows [77]. Figure 5 shows the process of change
detection on the remote sensing images image.
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Various methods, such as random forest, kNN, and DNN are used for change detection
and are applied to various tasks such as urban change detection, landslide mapping, and
the detection of human settlements [77]. Recently, a method using a famous transformer
in computer vision has also been proposed, showing superior performance to existing
models [78].

Image SR, which refers to the process of recovering HR images from LR images, is an
important task in computer vision image processing techniques [79].

Recently, various deep learning methods have been used for SR, and general networks,
residual networks, recursive networks, attention, and generative adversarial networks are
used [80]. It has also been applied to remote sensing images and used for various tasks, as
well as being applied to photos such as people, landscapes, animals, and cartoon images.

5. Conclusions

Currently, the Moon is rusting at its polar regions. The reason is attributed to a
combination of water underneath the lunar surface and oxygen coming from the Earth;
however, related research is still ongoing. Even though preceding research has been
conducted, it has taken 10 years to announce this theory. Because only a small number of
rusts exist on the other side of the Moon, it will likely take a considerable amount of time
to fully formulate the theory. Therefore, more data are needed to raise the degree of the
theory’s completion. Meanwhile, the reason that U.S.-based NASA changed the trajectory
of their space probe, was to film more images for a longer period, showing how important
the observation data are.

Before proceeding with the generation of images of the Moon, we reviewed GAN and
the machine learning technologies that have been applied to the aerospace fields. In future
studies, a lunar image generation experiment will be conducted to help identify the Moon’s
oxidation process, by selecting the CIPS model in terms of independence of each pixel, and
model scalability as a result of the review paper. In addition, the authors would be able to
review the development of a service that combines the video image payload technology of
the KARI with the image synthesis technology proposed in this paper.
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Abbreviations
AI Artificial Intelligence
GAN Generative Adversarial Networks
KARI Korea Aerospace Research Institute
KPLO Korea Pathfinder Lunar Orbiter
M3 Moon Mineralogy Mapper
NASA National Aeronautics and Space Administration
JPL Jet Propulsion Laboratory
JAEA Japan Aerospace Exploration Agency
SELENE SELenological and ENgineering Explorer
LUTI Lunar Terrain Imager
PolCam Wide-Angle Polarimetric Camera
KMAG KPLO Magnetometer
KGRS KPLO Gamma-Ray Spectrometer
DTN Delay/Disruption Tolerant Network
CNN Convolutional Neural Networks
CDA Crater Detection Algorithm
DNN Deep Neural Networks
CGAN Conditional GAN
EBGAN Energy-Based GAN
DCGAN Deep Convolution GAN
PGGAN Progressive Growing of GANs
LR Low-Resolution
DeLiGAN GAN for Diverse and Limited Data
StyleGAN Style-based GAN
CIPS Conditionally-Independent Pixel Synthesis
MLP Multi-Layer Perceptron
PixelDA Pixel-Level Domain Adaptation
EM Earth Mover
WGAN Wasserstein GAN
LSGAN Least Squares GAN
TTUR Two Time-scale Update Rule
FID Frechet Inception Distance
DiscoGAN Discovers Cross-Domain Relations with GANs
HMI Helioseismic and Magnetic Imager
SDO Solar Dynamics Observatory
AIA Atmospheric Imaging Assembly
EUVI Extreme Ultraviolet Imager
HR High-Resolution
EEGAN GAN-based Edge-Enhancement Network
UDSN Ultra-Dense SubNetwork
EESN Edge-Enhancement SubNetwokr
EESRGAN Edge-Enhanced Super-Resolution
ESRGAN Enhanced Super-Resolution GAN
EEN Edge-Enhancement Network
SCAE Stacked Convolutional Auto Encoder
SR Super-Resolution
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TGAN Transferred GAN
SRCNN Super-Resolution Convolution Neural Network
SRGAN Super-Resolution Generative Adversarial Network
ModFC Modulated Fully-Connected
LeakyReLU Leaky Rectified Linear Unit
ReLU Rectified Linear Unit
PSR Permanently Shadowed Regions
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