
Citation: Zha, B.; Shen, H.

Adaptively Periodic I/O Scheduling

for Concurrent HPC Applications.

Electronics 2022, 11, 1318. https://

doi.org/10.3390/electronics11091318

Academic Editor: David Defour

Received: 9 March 2022

Accepted: 19 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Adaptively Periodic I/O Scheduling for Concurrent
HPC Applications
Benbo Zha and Hong Shen *

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China;
zhabb@mail2.sysu.edu.cn
* Correspondence: shenh3@mail.sysu.edu.cn

Abstract: With the convergence of big data and HPC (high-performance computing), various machine
learning applications and traditional large-scale simulations with a stochastically iterative I/O
periodicity are running concurrently on HPC platforms, which poses more challenges on the scarcely
shared I/O resources due to the ever-growing data transfer demand. Currently the existing heuristic
online and periodic offline I/O scheduling methods for traditional HPC applications with a fixed
I/O periodicity are not suitable for the applications with stochastically iterative I/O periodicities,
which are required to schedule the concurrent I/Os from different applications under I/O congestion.
In this work, we propose an adaptively periodic I/O scheduling (APIO) method that optimizes the
system efficiency and application dilation by taking the stochastically iterative I/O periodicity of
the applications into account. We first build a periodic offline scheduling method within a specified
duration to capture the iterative nature. After that, APIO adjusts the bandwidth allocation to resist
stochasticity based on the actual length of the computing phrase. In the case where the specified
duration does not satisfy the actual running requirements, the period length will be extended to adapt
to the actual duration. Theoretical analysis and extensive simulations demonstrate the efficiency of
our proposed I/O scheduling method over the existing online approach.

Keywords: I/O scheduling; periodic I/O scheduling; stochastic iterative application;
high-performance computing

1. Introduction

High-performance computing (HPC) systems, especially supercomputers, play an
unprecedentedly important role in modern scientific discovery, thanks to their enormous
computing power and storage capacity. Large-scale numerical simulations from different
fields, such as meteorology, aerospace, bio-pharmacy, and high-energy physics, are helping
scientists to accelerate the progress of research and to save money by eliminating the
need for real experiments [1]. With the era of the exascale supercomputer coming, more
large-scale modeling, simulations, and other applications will be deployed and bring more
challenges. I/O bottleneck is one of the most severe problems on HPC platforms.

Although computing power has increased dramatically, system I/O throughput cannot
expand synchronously due to storage technology developments [2]. Larger-scale applications
deployed on HPC will produce greater data transferring demands on the scarce I/O resource.
Under the convergence trend of big data and HPC [3], certain big data applications have
higher data requirements on the parallel file system (PFS). In addition, fault-tolerance tech-
nologies, such as checkpointing/restart, which are designed to resist the decreasing Mean
Time between Failures (MTBF) also exacerbate I/O contention [4]. In order to meet these
practical demands, data transferring and management must be more efficient.

Many studies have been conducted to mitigate the I/O bottleneck problem. In terms
of system architecture, there are topology-aware methods [5], memory hierarchy-aware
methods [6–8], burst-buffering methods [4,9,10], and so on. From the aspect of applications,

Electronics 2022, 11, 1318. https://doi.org/10.3390/electronics11091318 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11091318
https://doi.org/10.3390/electronics11091318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9886-3853
https://doi.org/10.3390/electronics11091318
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11091318?type=check_update&version=1


Electronics 2022, 11, 1318 2 of 18

many approaches, such as application coordinating [11,12], I/O scheduling [13–17], and
data layouting [18,19], are proposed. The I/O scheduling method, which allocates I/O
bandwidth to each application in order to optimize system utilization and applications
efficiency, is widely used in HPC.

Nevertheless, the existing I/O scheduling approaches largely focus on traditional HPC
applications that usually have a fixed I/O periocity. With the convergence of big data and
HPC, many machine learning (ML)-based applications deployed on HPC exhibit a stochas-
tically iterative I/O periodicity, the executions of which depend on specific input data to
run in an iterative way to approximate an acceptable solution [20,21], such as the structural
identification of orbital anatomy application [22]. Some scientific data analytic applica-
tions also present stochasticity, such as functional MRI quality assurance (fMRIQA) [22].
Furthermore, many traditional scientific applications based on solving large sparse linear
systems with iterative methods, such as the randomized Kaczmraz method, also possess
these properties [23]. The existing methods are either unable to fully exploit the charac-
teristics of applications, such as online scheduling [13], or not suitable for applications
with a stochastically iterative I/O periodicity, such as periodic I/O scheduling [14,15,24].
To simplify the expression, we refer to the application with a stochastically iterative I/O
periodicity as a stochastic iterative application hereafter.

In order to utilize the stochastically iterative I/O periodicity of these emerging applica-
tions, we proposed an adaptively periodic I/O scheduling (APIO) to optimize application
efficiency and system utilization. It first conducts a periodic scheduling to utilize the
periodicity given the specified probabilistic distribution of applications, which allocates
different specified bandwidths within different durations for each instance of applications
in a period. In each period it then fine-tunes the allocation of bandwidth to resist the
stochasticity of applications in run time. When the specified number of instances for some
applications can not be scheduled within a period, it extends the period to adapt to the ac-
tual duration. Our proposed algorithm inherits the advantages of periodic I/O scheduling
and adapts it for scheduling a wide range of HPC applications that have a stochastically
itetative I/O periodicity.

The main contributions of this work include as follows:

• We propose an adaptively periodic I/O scheduling algorithm, which combines the
advantages of periodic scheduling and online scheduling to leverage the iterativeness
and stochasticity of the ever-growing stochastic iterative applications on HPC;

• We perform a theoretical analysis of the efficiency of the proposed scheduling;
• We conduct simulations to show the efficiency and effectiveness of our proposed

method compared to the existing online scheduling.

The rest of this paper is organized as follows. Section 2 describes the related works on
stochastic iterative applications and I/O scheduling. Section 3 introduces the models on
platform and application, the I/O scheduling problems, and the existing I/O scheduling
algorithms. In Section 4, the proposed adaptively periodic I/O scheduling algorithm is
presented, and the related analysis on the efficiency is also shown. Section 5 shows the
simulation experiments and Section 6 concludes this work.

2. Related Works

The enormous data-transferring requirements from a variety of applications pose a
huge challenge for HPC storage systems, especially the ones with bandwidth-limited PFS.
Several research studies have been conducted to study how to use such systems efficiently
in different scenarios. In this work, the focus is on scheduling I/Os from stochastic iterative
applications that share the aggregated bandwidth of PFS concurrently. Therefore, we
discuss the three closest parts in this section.

2.1. Stochastic Iterative Applications

With the computing capacity of HPC systems rapidly increasing, there are a variety
of applications originating from a wide range of fields that involve a lot of computation



Electronics 2022, 11, 1318 3 of 18

and large amounts of data transfer, and whose execution takes a lot of time (hours, and
even days), deployed on such HPC platforms. Due to fault tolerance or visualization,
these applications often store the intermediate results regularly into the persistent storage
and then show the periodicity [14,25]. This periodicity might cause I/O bursts and then
worsen the I/O bottleneck problem when many applications access the underlying PFS
concurrently. An architecture solution for mitigating this I/O congestion is burst-buffering,
which is widely discussed in the literature [4,9]. In addition, the applications running on
HPC often show stochasticity, in which their execution time depends on the input data [26].

In our work, we define the stochastic iterative application as the application with a
stochastically iterative I/O periodicity. The application executes I/O operations iteratively,
but there is a random interval between two I/O operations to complete computing. The
iterative I/O periodicity has many reasons, such as the iterative computing way and check-
pointing/restart. The stochasticity of the computing phase comes from data characteristics,
non-stationary iterative methods, and so forth.

The reasons why stochastic iterative applications are becoming more common mainly
include the following points: First, the trend on the convergence of big data and HPC
appeals to many ML-based applications to be deployed, which achieve an acceptable solu-
tion by the stochastic iterative algorithm [20,21]. The structural identification of an orbital
anatomy application is such an ML-based data analysis example [22]. Second, some scien-
tific data analytic applications, such as functional MRI quality assurance (fMRIQA) [22],
show stochasticity and they execute on different instances iteratively. Third, many tradi-
tional scientific applications based on solving large sparse linear systems with popular iter-
ative methods, such as the randomized Kaczmraz method, also possess stochasticity [23].

2.2. I/O Scheduling

Through controlling the execution procedure of I/O requests, I/O scheduling can
be applied to many data-transferring scenarios to mitigate I/O-related problems. In
terms of HPC, it schedules the I/O requests from different applications to access the
underlying persistent storage. It can be implemented on different storage layers for different
purposes [27]. For application-side optimizations, Liao et al. [28] proposed a dynamic
file-domain-partitioning method according to the locking protocol of PFS to optimize the
parallel I/O of one application. For server-side methods [29], Song et al. [30] presented a
server-side I/O coordination for PFS to reduce the interference of different applications.
For interaction between multiple layers [7,8], data compression and smart data movement
are designed. In this work, we study coordinating I/O requests from many stochastic
iterative applications on the I/O nodes.

I/O scheduling deployed on I/O nodes can utilize the data location information to optimize
data access. In reference [31], the proposed IOrchestrator reorganizes the I/O requests by
considering the data spatial locality. In reference [5], Tessier et al. provide a topology-aware data
aggregation method to minimize the data conflict on the computing network. In reference [19],
a randomness detection method, SSDup, is designed to improve the data transferring. In
reference [18], a contention-aware scheduling is presented to balance the workload on each
SSD server. In addition, this kind of I/O scheduling can obtain global application information
and can easily integrate it into job scheduling to coordinate multiple applications. In order to
resist the effects of I/O interference, Dorier et al. [12] propose a coordinating scheduling for
two applications, CALCioM. In reference [32], Carretero et al. provided a bandwidth-aware
mapping algorithm to consider job and I/O scheduling simultaneously.

The closest study to this work is the offline periodic scheduling proposed by
Aupy et al. [14], which constructs a period to consider the periodicity of HPC applica-
tions. It achieves better performance on system efficiency and application dilation than
another general online scheduling method [13]. In our prior study [17], we proposed a
Markov-chain-based I/O scheduling, which improves the online scheduling by consid-
ering the state of burst-buffers. This type of I/O scheduling has wide applicability for
applications on HPC.



Electronics 2022, 11, 1318 4 of 18

2.3. Stochastic Scheduling

In order to consider the stochasticity of jobs, many stochastic job scheduling methods
had been proposed in the book by Pinedo [33]. A speculative scheduling method proposed
in reference [26] provides a solution for stochastic HPC applications in a reservation-based
scheduling contexts, building a speculative reservation sequence to rerun the job when the
prior reservation is unsatisfactory. In reference [22], Gainaru et al. continuously optimize
the speculative scheduling by checkpointing the completed work.

For stochastic iterative applications, Du et al. [23] verified the robustness of the peri-
odic checkpointing, which essentially is an I/O scheduling case to deal with stochasticity.
In reference [34], the authors construct the optimal checkpointing strategies to decide which
iteration performs checkpointing. These works place the research object on the stochas-
tic iterative applications. This work for scheduling the I/O of such stochastic iterative
applications is motivated by them.

3. Preliminaries and Motivations

In this section, we first describe the HPC platform model and the application execution
model. Then, the I/O scheduling problem was formulated. Finally, we introduce the
existing online and offline methods related to this work, and then describe the motivations.

3.1. Platform and Application Execution Model
3.1.1. HPC Platform Model

The HPC platform consists of lots of computing nodes and storage nodes to satisfy
the requirements of large-scale scientific applications. The computing nodes are identical
in terms of the computing capacity and the local bandwidth in common. A job scheduler
assigns these computing resources to the applications in batch, and then each application
has its own exclusive computing nodes.

We depict the platform model assumed for this work in Figure 1. There are many
applications running on the platform concurrently and sharing the underlying PFS through
I/O nodes (ION). The computation for each application is isolated on the specified comput-
ing nodes, but the I/O operations contend the shared I/O bandwidth of PFS, B. When the
total I/O bandwidth requirement exceeds the aggregated bandwidth B, some applications
have to be delayed, which is decided by the I/O scheduler.

Figure 1. Schematic model of HPC platform.

3.1.2. Application Execution Model

In our considered execution model, there are K applications with stochastically it-
erative I/O periodicities running concurrently on the HPC platform illustrated above.
Applications execute alternatively between the computing phrase and I/O phrase. The
combination of a computing phrase and an I/O phrase refers to an instance. Each appli-
cation consists of Ni such instances (because the applications running on HPC platform
often last very long, so here we assume the number of instances is enough big to achieve a



Electronics 2022, 11, 1318 5 of 18

periodic scheduling such as in reference [14]). Unlike periodic scheduling [14], the length
of the computing phrase in each instance is stochastic rather than fixed, which follows a
distribution, D, and the length of the I/O phrase is fixed, since the data structure of the
intermediate results is designed as fixed in advance.

To clarify the execution procedure, an example for three stochastic iterative applica-
tions is illustrated in Figure 2. Three applications, A1, A2, and A3, have their own execution
characteristics. Each application Ai has Ni instances that have different computation lengths
Wk

i and the same I/O volume IOi. Due to the limitations of the platform bandwidth and
the periodicity of the applications [25], I/O congestion might be happening during the
execution. If the I/O execution procedure is disordered under the best-effort strategy, the
caused I/O congestion would have dramatically degraded the I/O performance for the
Write Amplification of SSD (solid-state drive) [13]. The aim of I/O scheduling is to ensure
the order of I/O execution by arranging specific bandwidth for each application.

Figure 2. Execution example for three stochastic iterative applications.

Meanwhile, for each application Ai, it runs on βi computing nodes, which are specified
by the HPC batch job scheduler. The local bandwidth of a computing node is b. Thus, the
maximum rate to transfer data for Ai is Bi = min(B, βi · b). However, the real I/O rate
of Ai at time t is the minimum between Bi and the remains of the PFS bandwidth, i.e.,
bi(t) = min

(
Bi, B−∑i 6=j bj(t)

)
.

3.2. Problem Description

The objectives of I/O scheduling are to achieve the maximum system efficiency and
the minimum application dilation, the same as in the work in reference [13]. We define the
application efficiency first for each application Ai at time t.

ρ̃i(t) =
∑i≤ni(t) Wi

t− ri
,

where ni(t) ≤ Ni is the number of instances of Ai that have been executed at time t, ri is the
release time of Ai. The optimal application efficiency ρi can be obtained in the dedicated

mode: ρi =
∑k≤Ni

Wk
i

∑k≤Ni
(Wk

i +
IOi
Bi

)
and ρ̃i(t) ≤ ρi.

The system efficiency refers to the total performance of all processors in the platform.
Additionally, the application dilation refers to the largest slowdown among all applications.

Therefore, we formulate two problems on these two objectives of I/O scheduling
as follows:

Problem 1 (MaxSysEfficiency): Given K stochastic iterative applications, Ai(βi, Ni, ri, Wk
i , IOi),

and a HPC platform that has a B PFS aggregate bandwidth and N computing nodes with



Electronics 2022, 11, 1318 6 of 18

b local node bandwidth, find the I/O bandwidth assignment bi(t) for each application to
maximize the total platform performance.

max
1
N

K

∑
i=1

βi ρ̃i(di) (1)

s.t. bi(sk
i + Wk

i ) ≤ Bi, k ∈ {1, · · · , Ni}, i ∈ {1, · · · , K}
K

∑
i=1

bi(sk
j + Wk

j ) ≤ B, k ∈ {1, · · · , Nj}, j ∈ {1, · · · , K}

∫ sk+1
i

sk
i +Wk

i

bi(t)dt = IOi, k ∈ {1, · · · , Ni − 1}, i ∈ {1, · · · , K}
∫ di

s
Ni
i +W

Ni
i

bi(t)dt = IOi, i ∈ {1, · · · , K}

In Formula (1), ρ̃i(di) =
∑

Ni
k=1 Wk

i
di−ri

. The first and second constrained conditions are
to satisfy the restriction of the application and platform bandwidth. In third and fourth
constrained conditions, the I/O volume of each application is satisfied and the order of
instances is promised implicitly.

Problem 2 (MinDilation): Find the I/O bandwidth assignment for each application bi(t)
to minimize the largest slowdown among applications with the same parameters and
consistent constraint conditions as Problem 1.

min max
i=1···K

ρi
ρ̃i(di)

(2)

The rationale behind the MinDilation objectives is to provide fairness between all
applications. It guides the scheduling to minimize the maximum of slowdowns to avoid
starving some applications. All notations mentioned in these problem descriptions are
listed in Table 1.

With the rapid growth of computing resources, HPC centers tend to rent spare com-
puting resources to more users currently. Different applications have different I/O require-
ments for reasons such as the levels of services and the types of storage hardware [35].
The I/O scheduling problems can be generalized to take the applications’ criticality into
account. Here, we provide a simple enhanced model by introducing a weighted parameter
for each application. The objective of the MaxSysEfficiency problem can be modified as
max 1

N ∑K
i=1 βiwi ρ̃i(di), where wi denotes the importance of application Ai. The MinDilation

problem can also be modified in the same way. However, our proposed I/O scheduling in
this work tends to make a global improvement while ignoring the demands of individual
applications. The related weighted parameters are set to be one (i.e., all applications have
the same importance).

3.3. Existing Methods and Motivations

Both problems described above have been proved as being NP-complete, even in
a simple offline setting [13]. So we can just give some heuristics rather than an exact
algorithm. These problems just have different optimization objectives. Thus, a unified
method can deal with them with different strategies. Online I/O scheduling [13] is a
greedy algorithm based on different heuristics. Periodic I/O scheduling [14] then improves
the online one to exploit the periodicity. We describe both of them briefly and give the
motivations of our work.



Electronics 2022, 11, 1318 7 of 18

Table 1. Notations for problem description.

Notation Description

N The number of all the computing nodes in HPC platform
B The aggregate bandwidth of PFS
b The bandwidth of each local computing node
K The number of all the stochastic iterative applications
Ai The i-th application
βi The number of allocated computing nodes for Ai
Ni The number of instances for Ai
ri The release time of Ai
di The final complete time of Ai
Bi The possible maximum bandwidth for Ai

Wk
i The computing duration of the k-th instance of Ai

IOi The I/O volume of Ai
ρi The optimal application efficiency for Ai
sk

i The start time of the k-th instance of Ai
bi(t) The assigned bandwidth at time t for Ai
ρ̃i(t) The real application efficiency at time t for Ai

3.3.1. Online I/O Scheduling

The rationale behind this is determining a priority queue of applications based on
some strategies at each event. This greedy algorithm can adapt to many application settings.
However, it is an online centralized method, which has heavy computation and a lack
scalability. For different optimization objectives, there are different strategies [13] shown
below that can be chosen.

• The RoundRobin strategy favors the application with the “first-come first-served”
(FCFS) fashion. It ensures fairness and usually can be used for comparison;

• The MinDilation strategy favors the applications with low values of ρ̃i(t)
ρi(t)

. The application
with low efficiency can be executed to improve the application efficiency that is user-
oriented;

• The MaxSysEff strategy favors the applications with high βi
ρi(t)
ρ̃i(t)

. The application with
a higher application efficiency represents that can utilize the system resources more
efficiently. This objective is CPU-oriented;

• The MinMax-γ strategy is a balance between MinDilation and MaxSysEff . It favors

the applications that have high values of βi
ρi(t)
ρ̃i(t)

, and dilation values of ρ̃i(t)
ρi(t)

below a
certain threshold γ.

3.3.2. Periodic I/O Scheduling

For the case with a fixed length of application instances, periodic I/O scheduling utilizes
the periodicity of applications to assign the I/O bandwidth to each application offline [14].
It searches an appropriate period through an exponential search and inserts the schedulable
application into the period based on some strategies, which is the same as the online
method. This method obtains better performance than online I/O scheduling for this special
case. It is decentralized, so it does not cause an additional overhead when applications run.

The method first sets the minimum possible period Tmin = maxi(Wi + IOi/Bi) and the
maximum possible period Tmax = K′ · Tmin with a specified parameter K′. It increasingly
searches all possible periods between Tmin and Tmax by a factor of (1+ ε). For each possible
period T, it inserts the schedulable application Ai into the current bandwidth allocation
by insert-in-pattern(P, Ai). If there is space to satisfy the I/O volume of Ai in the period,
then Ai is schedulable. Finally, it chooses the optimal period Topt to obtain the best system
efficiency, SE. The detailed algorithm is shown in Algorithm 1.



Electronics 2022, 11, 1318 8 of 18

Algorithm 1 Periodical I/O Scheduling (PerSched) [14]
Input: A set of applications Ai(βi, Ni, ri, Wi, IOi), PFS bandwidth B, local bandwidth b, K′, ε
Output: The bandwidth allocation Popt for all applications and the period Topt

1: Tmin = maxi(Wi + IOi/Bi) and Tmax = K′ · Tmin
2: T = Tmin
3: SE = 0, Topt = 0, Popt = ∅
4: while T ≤ Tmax do
5: P = ∅
6: while exists a schedulable application do
7: A = {Ai is schedulable}
8: choose Ai from A by strategy MaxSysEff
9: P = Insert-In-Pattern(P, Ai)

10: end while
11: if SE < SysEfficiency(P) then
12: SE = SysEfficiency(P)
13: Topt = T, Popt = P
14: end if
15: T = T · (1 + ε)
16: end while

3.3.3. Motivations

This work is motivated by three observations: First, due to some reasons, like the
convergence of big data and HPC, there are many stochastic iterative applications deployed
on the HPC platform, whose computing phrases obey some distributions. Second, the
existing method can not utilize the characteristic information of applications adequately.
The general online method ignores the periodicity and stochasticity of applications com-
pletely. Additionally, the periodic method is not able to adapt to the stochastic applications
directly. Third, the effects of the lengths of different application instances getting longer or
shorter can be counteracted. So, the adaptively periodic method is proposed to satisfy the
requirement of stochasticity.

4. Adaptively Periodic I/O Scheduling

In this section, we describe the adaptively periodic I/O scheduling (APIO) in detail.
First, we introduce the overall scheme and the related data structure. Then, we present the
APIO algorithm and give some analysis results.

4.1. Scheme and Data Structures

In order to exploit the periodicity and stochasticity of applications with a stochastically
iterative I/O periodicity, we construct a scheme based on the periodic I/O scheduling. For
each stochastic iterative application Ai, the length of the computing phrase Wk

i of its each
instance Ik

i is a random variable obeying a distribution D(µi, σi). The practical length of
Wk

i can be determined after the finish of that computing phrase.
The overall scheme includes two steps: In the first step, it sets Wk

i to be the same as µi and
then utilizes the periodic I/O scheduling (Algorithm 1) to obtain a basic schedule P (periodic
pattern). The schedule P can be expressed as ∪K

i=1(Ai{Ik
i {< t1, b1 >,< t2, b2 >, · · · }}). For

each instance Ik
i , it includes a sequence of < tj, bj > representing that the I/O operation of

Ai starts at the time tj with the bandwidth bj. Then, we can construct an auxiliary array,
f ree, to record the free space of PFS’s I/O bandwidth. f ree is also a sequence of < tj, bj >.
In the second step, it adjusts the basic schedule P at each event when any computing phrase ends.

To clarify the algorithm in the second step, we introduce a list-data structure, L, which
records all the start times of the first I/O part < Ik

i .t1, pk
i > of each instance Ik

i . pk
i is the

pointer of the instance Ik
i . L is a sorted array on Ik

i .t1 increasingly. The basic schedule P
and the free space f ree are also as input in the second step. These three main data structures
are illustrated in Figure 3.



Electronics 2022, 11, 1318 9 of 18

Figure 3. Data structure for APIO algorithm.

4.2. Adjusting the Periodic Schedule

Because the length of the computing phrase of each instance for the stochastic iterative
application varies randomly, the periodic I/O scheduling pattern should be adjusted to
achieve better performance or satisfy the extension of the computing. For an instance of an
application, if its computing phrase ends in advance, its I/O phrase can be executed ahead.
Otherwise, the execution of its I/O phrase would be postponed.

Specifically, when a computing phrase of an instance ends its execution on computing
nodes, it will issue an event to notify that its I/O phrase can start. Let ek

i be the event when
the computing phrase of the k-th instance of the i-th application finished. If the time ek

i .t
that the event is issued is less than the assigned time Ik

i .t1, the I/O transferring should be
started earlier. Its periodic schedule, Ik

i {< t1, b1 >,< t2, b2 >, · · · }, should be modified.
It gets the space from f ree to execute IOi. Similarly, when ek

i .t is greater than Ik
i .t1, its

schedule also be adjusted.
In addition, when an event happens, there are some assigned I/O that have not been

executed. We can assert that its execution time should be postponed. As such, its related
schedule should be recalculated too. The detailed algorithm for the online execution of the
stochastic iterative applications is described in Algorithm 2. The further explanation of the
specific operations is also given.



Electronics 2022, 11, 1318 10 of 18

Algorithm 2 Online Execution based on Adjusting (OnlineAdj)
Input: A set of applications Ai(βi, Ni, ri,D(µi, σi), IOi), PFS bandwidth B, local bandwidth

b, the periodic schedule P
Output: The used time Tper for the current period

1: gets the application set A, the remained bandwidth of PFS f ree and the auxiliary list L
from P

2: while exists an event ek
i do

3: if Ik
i is marked as empty then

4: Allocates bandwith for Ik
i and updates f ree

5: else
6: if ek

i .t < Ik
i .t1 then

7: cleans the assignment of Ik
i

8: allocates bandwith for Ik
i and updates f ree

9: end if
10: if ek

i .t > Ik
i .t1 then

11: cleans the assignment of Ik
i

12: allocates bandwith for Ik
i and updates f ree

13: end if
14: for each L.Ik

i .t1 < ek
i .t do

15: empties Ik
i and updates f ree

16: removes Ik
i term from L

17: end for
18: end if
19: executes the current bandwidth assignment
20: end while
21: Tper = Time(A)

4.2.1. Cleaning Instances

When an event comes earlier or later, the bandwidth assigned previously is invalid and
we need to recalculate the bandwidth assignment for the application issuing the event. We
show an example in which an instance finished its computing phrase early in Figure 4. The
solid line marked t−1 represents the current time. t1 denotes the expected time in the periodic
I/O scheduling and the pre-assigned bandwidths should start at time t1. However, the
computing phrase of the instance I1

1 is finished early, so the pre-assigned bandwidths for I1
1

are invalid and then they are reassigned the bandwidth from the remaining bandwidth, f ree.
The gray part in the figure represents the expected execution based on the pre-assignment
of the periodic I/O scheduling. Similarly, if the computing phrase of the instance I1

1 is
finished at a possible time t+1 that is greater than t1, it will reassign the bandwidths too.

For an instance Ik
i that will be cleaned, we first release the bandwidths {< t1, b1 >,

< t2, b2 >, · · · } assigned to it and then add to f ree. The algorithm then allocates band-
widths to Ik

i based on the best-effort strategy from the remaining bandwidth f ree. Among
these operations, each item < tj, bj > of Ik

i satisfies bj < Bi and each item < tj, bj > of f ree
satisfies 0 ≤ bj ≤ B. Note that when the instance Ik

i issues the event ek
i , a new bandwidth

part < ek
i .t, b1 > might be allocated. This will cause f ree to add a new item with ek

i .t, and
remove the first bandwidth part < Ik

i .t1, pk
i > from the auxiliary list L for instance Ik

i ,
which is executed instantly.



Electronics 2022, 11, 1318 11 of 18

Figure 4. Example: instance finishes earlier in a period.

4.2.2. Emptying Instances

Assuming an event ek
i comes, it will update the bandwidth assignment of instance Ik

i
directly. However, if ek

i .t is greater than the start time of the I/O phrase of some instances,
such as Ik

j with j 6= i, we can assert that the instance Ik
j will be postponed. To find such

an instance, we maintain the auxiliary list L that records the first bandwidth part for each
instance. From the beginning of the list, we find all the terms with Ik

i .t1 < ek
i .t. Thus, we

mark these instances Ik
j with a flag variable empty and clean their assigned bandwidth to

f ree. The record < Ik
j .t1, pk

j > of Ik
j in L is also removed.

When the event ek
i comes, if the instance Ik

i is marked as empty, we just allocate the
bandwidth for it from f ree directly. The operation of cleaning instances is for the instance
itself, and the operation of emptying instances is for other instances. Algorithm 2 adjusts
the periodic bandwidth assignment through both operations, which reserves the advantage
of the periodic I/O scheduling.

4.3. APIO Algorithm

In order to utilize the periodicity and stochasticity of the stochastic iterative ap-
plications, the adaptively periodic I/O scheduling (APIO) algorithm adjusts the band-
width assignment of periodic I/O scheduling. It is composed of two basic modules:
PerSched (Algorithm 1) and OnlineAdj (Algorithm 2). The complete description is shown
in Algorithm 3.

APIO first calculates the total number of periods Nper = maxi(
Ni

Nper
i

). Nper
i is the

number of instances for application Ai in a period produced by algorithm PerSched. Then,
for each period, it performs online scheduling by the OnlineAdj module, the input of which
includes all the instance information of a period. Finally, it calculates the system efficiency
SE and the dilation DI through the objectives shown in Formulas (1) and (2).

This algorithm can be seen as a combination of online and offline minds. It utilizes
the periodic offline scheduling to obtain some prior information and then performs online
scheduling to resist the stochasticity of the applications. It utilizes comprehensively the
global information and the local information.



Electronics 2022, 11, 1318 12 of 18

Algorithm 3 Adaptively Periodic I/O Scheduling (APIO)
Input: A set of applications Ai(βi, Ni, ri,D(µi, σi), IOi), PFS bandwidth B, local bandwidth b
Output: The system efficiency SE and the dilation DI

1: gets the periodic schedule Popt and the period Topt by Algorithm 1
2: gets the number of period Nper = maxi(

Ni
Nper

i
)

3: Ttot = 0 , p = 1
4: while period p ≤ Nper do
5: gets the used time Tper by Algorithm 2
6: Ttot+ = Tper, p ++
7: end while
8: calculates SE and DI from Ttot

4.4. Performance Analysis

APIO is an online scheduling based on the pre-assignment of the periodic I/O schedul-
ing to exploit the characteristics of stochastic iterative applications. Here, we analyze the
advantages of this proposed method on the effectiveness and efficiency.

The key operations of APIO are the advance and delay of I/O transferring relative to
the pre-assignment of the periodic method. Both operations do not worsen I/O congestion
since there is enough space around the congestion area. In practice, the I/O overhead is
less than one-third of the PFS aggregate bandwidth for most of the time [4].

The advance of I/O transferring can utilize the free space before the pre-assignment.
As such, it does not worsen the schedule. Even if there is no free space, the pre-assignment
of the application can satisfy the I/O requirement. When I/O transferring is postponed,
some pre-assigned space might be wasted. However, in most cases, there is enough
space to satisfy the postponed I/O requirement. With high probability (p(x) ≥ 0.95), the
length of the computing phrase is less than twice the mean length. Additionally, there is a
pre-assigned space for the next instance that can be used. So Theorem 1 below is held.

Theorem 1. The performance of APIO is within two factors of the online scheduling, with a high
probability for stochastic iterative applications with Gaussian Distribution.

Proof. Without the loss of generality, the performance considered here is the system
efficiency for all the applications. For other objectives, we can achieve similar results.

In terms of application, the system efficiency is proportional to its completion time.
This is assuming that the completion time of online scheduling proposed in reference [13]
is Tonline for the stochastic iterative applications, and the completion time of periodic I/O
scheduling in reference [14] is Tperiodic for the applications that are generated by reducing
the stochasticity of the stochastic iterative applications. Since the periodic I/O scheduling
can utilize the periodicity of applications sufficiently, it obtains a global optimization and
then Tperiodic < Tonline with a high probability.

APIO adjusts the pre-assignment of periodic I/O scheduling. When the length of the
computing phrase gets shorter, the completion time of the instance is less than the pre-
assignment. However, when the length gets longer, the completion time would be longer.
However, the length will be within two factors of the average length with a high probability.
For the Gaussian distribution D(µ, σ), the probability p(x ≤ µ + 2σ) is 0.955. The pre-
assigned space for the next instance can satisfy the I/O requirement of the current instance.
So the completion time of APIO is within two factors of the periodic I/O scheduling with
a high probability, which is TAPIO < 2 · Tperiodic. Then, TAPIO < 2 · Tonline. The theorem
is proved.

Moreover, APIO is more efficient than the existing online scheduling [13]. It just
assigns the I/O bandwidth for each instance once with several computations, rather than
for each application in each event. The pre-assignment of I/O bandwidth for a period is
pre-calculated, which provides a performance basis of our method and makes the efficiency



Electronics 2022, 11, 1318 13 of 18

possible. The other computation overhead is searching the sorted auxiliary arrays, which
can result in a constant complexity in run time.

5. Simulation Results

In this section, some simulation experiments have been designed to evaluate the
performance of our proposed method, APIO. The experiments are conducted on stochastic
iterative applications constructed by real applications with different I/O characteristics.
We compared the performances on system efficiency and the application dilation of APIO
and online scheduling [13] under different I/O congestion settings. All the simulations
are implemented through a discrete event simulator introduced by reference [4], which
maintains an event queue to mimic the execution of applications on an HPC platform.

5.1. Experiments Settings

The settings of the simulation experiments include system configuration and applica-
tion configuration. Both configurations are built by simulating the parameters of the real
system and application.

5.1.1. System Configuration

In this work, the run-time platform had been described by a very simple model
illustrated in Figure 1. The related system parameters refer to the experiment settings in
references [4,15], which originate from the real environment of the Intrepid Blue Gene/P
supercomputer in Argonne National Laboratory, US.

The aggregate bandwidth of PFS, B, is set as 100GB/s. The peak bandwidth for each
node, b, is 1 GB/s. The number of computing nodes is assumed to be sufficient. For this
simple model, it does not need other parameters. The discrete event simulator getting these
platform parameters can simulate the running of the entire HPC platform.

5.1.2. Application Configuration

Application settings used in this work also originated from the real applications that
are reported in APEX’s report (https://www.nersc.gov/assets/apex-workflows-v2.pdf,
(accessed on 18 April 2022) for the LANL (Los Alamos National Laboratory) workflows [4].
We considered four real scientific applications: the Eulerian Application Project (EAP),
Lagrangian Applications Project (LAP), Silverton, and the vector particle-in-cell (VPIC).
The detailed characteristics of these applications are depicted in Table 2. Note that Bi rate
(GB/s) implies the number of computing nodes assigned to the application Ai and the
checkpoint time implies the volume of I/O transfers.

Table 2. Characteristics of the APEX applications [4].

Application EAP LAP Silverton VPIC

Number of instances 13 4 2 1
Bi rate (GB/s) 160 80 160 160
Ti Period (s) 5671 12,682 15,005 4483

Checkpoint time (s) 20 25 280 23.4

Then, we design a different I/O congestion to compare the performance of APIO and
the basic online I/O scheduling (BIOS). The different combinations of these applications
represent a different I/O congestion. The detailed configuration is shown in Table 3. From
set #1 to #10, I/O contention is decreased with the decrease of the number of application
LAP, because the I/O transferring at the same time is decreased.

https://www.nersc.gov/assets/apex-workflows-v2.pdf


Electronics 2022, 11, 1318 14 of 18

Table 3. Application combinations for different I/O congestions [4].

Set # 1 2 3 4 5 6 7 8 9 10

EAP 0 0 0 0 0 0 1 0 0 1
LAP 10 8 6 4 2 2 2 0 0 0

Silverton 0 1 2 3 0 4 0 1 5 1
VPIC 0 0 0 0 1 0 0 1 0 0

In order to model the stochasticity of the application, we design three different distri-
butions for the experiment. Uniform distribution is for simple situations, Truncated Normal
and LogNormal distribution are more closer to the real situation. The parameters are derived
from the characteristics of the APEX applications. The detailed distributions are shown in
Table 4.

Table 4. Probability distributions of the lengths of the computing phrase.

(a) Probability distributions

Distribution PDF f (x)

Uniform(a, b) 1
b−a

Truncated Normal(µ, σ, a, b) 1
σ

1√
2π

exp(− 1
2 (

x−µ
σ )2)

1
2 (1+er f (x/

√
2))

LogNormal(µ, σ) 1
xσ
√

2π
exp(− 1

2 (
ln(x)−µ

σ )2)

(b) Distribution parameters

EAP LAP Silverton VPIC

µ 2 4 5 1
σ 0.5 1 1 0.5
a 1 2 3 0
b 3 6 7 2

From the parameters of these applications, we can construct the applications as the
input of the discrete event simulator. The simulator eventually calculates the objective
functions and obtains the system efficiency and application dilation for different I/O
scheduling methods.

5.2. Results and Analysis

In this section, we show the experiment results by comparing the performance of APIO
and the basic online I/O scheduling (BIOS [13]). Both methods are based on the MinMax-γ
strategy with γ = 0.5, which is able to achieve higher than average performances compared
to other strategies [13]. We conduct the simulation for each set of applications and different
probability distributions, and then calculate the system efficiency and application dilation
defined in Section 3.2. For each set, the test is repeated five times and we calculate the
average.

Due to the simplicity of Uniform distribution, we first show the results of APIO
and BIOS under the Uniform distribution. So, the length of the computing phrase of the
application’s instances is distributed in the interval [a, b] with an equal probability. APIO
can utilize the probabilistic characteristic to optimize the I/O scheduling. The detailed
results are shown in Figure 5.



Electronics 2022, 11, 1318 15 of 18

0.25

0.50

0.75

1 2 3 4 5 6 7 8 9 10

Set

S
ys

te
m

 E
ffi

ci
en

cy
 

BIOS
APIO

(a)

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10

Set

D
ila
tio
n

BIOS
APIO

(b)

Figure 5. Performance of different scheduling for different I/O congestion. (a) System efficiency,
(b) application dilation.

From set #1 to #10, the I/O congestion is increasing gradually. So, as Figure 5 shows,
the system efficiency is also increasing and the application dilation is decreasing accordingly.
For all the sets, the performance of APIO is superior to BIOS. At set #1, I/O congestion is
the most serious, but APIO achieves the best relative performance. When I/O congestion
disappeared, both methods obtained a similar performance.

Second, in order to show the influence of probability distributions, we conduct the
simulation under the Truncated Normal and LogNormal distribution. The particular parame-
ters of distribution are listed in Table 4. Other experiment’s settings are the same as the
Uniform distribution. The detailed results are shown in Figure 6.

As per the result shown, the trends of the system efficiency and application dilation
are same as the results under the Uniform distribution. APIO obtains better performance
than BIOS. However, the performance under the Truncated Normal distribution is better
than the LogNormal distribution overall. The reason is that the proposed method favors the
symmetric stochastic change of the computing phrase. Adaptively adjusting the periodic
bandwidth allocation can counteract the effects of shrinking or expanding the computing
phrase. The truncated normal distribution has better symmetry than the logNormal dis-
tribution and then obtains better performance. This result shows that the performance is
seriously affected by the characteristics of the application.



Electronics 2022, 11, 1318 16 of 18

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

Set

S
ys

te
m

 E
ffi

ci
en

cy
 

Normal-BIOS
Normal-APIO
LogNormal-BIOS
LogNormal-APIO

(a)

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10

Set

D
ila
tio
n

Normal-BIOS
Normal-APIO
LogNormal-BIOS
LogNormal-APIO

(b)

Figure 6. Performance of different scheduling for different I/O congestion. (a) System efficiency,
(b) application dilation.

In addition, when I/O congestion is serious, such as in set #1 and #2, the system
efficiency of APIO for the LogNormal distribution even surpasses the performance of BIOS
for the Truncated Normal distribution.

6. Conclusions

In this paper, we studied the I/O scheduling problem for applications with a stochas-
tically iterative I/O periodicity to achieve the targeted objectives, such as system efficiency
and application dilation. The existing methods did not utilize the stochasticity and period-
icity presented in a wide range of applications, including particularly big data analytics.
To take both characteristics of these applications into account, we proposed an online
scheduling method, namely the adaptively periodic I/O scheduling (APIO) method, which
dynamically adjusts the pre-assigned bandwidth online, which is provided by periodic
I/O scheduling. APIO combines the advantages of the periodic I/O scheduling method to
utilize the periodicity with the online adjustment to adapt the stochasticity. We provide the
performance analysis to show the effectiveness and efficiency of the proposed method. The
simulation experiment results show the superiority of the proposed method to the existing
online scheduling method.

In our future work, a theoretical analysis based on computational complexity and
probability theory will be done. Meanwhile, there are many research directions for new I/O



Electronics 2022, 11, 1318 17 of 18

scheduling methods that can be investigated in the future. A more sophisticated scheduling
method based on more application properties can be studied. Weighted I/O scheduling
with consideration for the applications’ criticality will be explored, and energy-efficient
I/O scheduling based on an HPC platform’s energy model will also be studied in order to
reduce energy consumption.

Author Contributions: Conceptualization, B.Z.; Methodology, B.Z.; software, B.Z.; Supervision, H.S.;
Writing—original draft, B.Z.; Writing—review & editing, H.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Key-Area Research and Development Plan of Guangdong
Province, No. 2020B010164003 and the National Key Research and Development Plan’s Key Special
Program on the High-Performance Computing of China, No. 2017YFB0203201.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hey, T.; Tansley, S.; Tolle, K. The Fourth Paradigm: Data-Intensive Scientific Discovery. Proc. IEEE 2011, 99, 1334–1337.
2. Boito, F.Z.; Inacio, E.C.; Bez, J.L.; Navaux, P.O.A.; Dantas, M.A.R.; Denneulin, Y. A Checkpoint of Research on Parallel I/O for

High-Performance Computing. ACM Comput. Surv. 2018, 51, 1–35. [CrossRef]
3. Fox, G.C.; Qiu, J.; Jha, S.; Ekanayake, S.; Kamburugamuve, S. Big Data, Simulations and HPC Convergence. In Proceedings of the

Big Data Benchmarking—6th International Workshop, WBDB 2015, Toronto, ON, Canada, 16–17 June 2015 and 7th International Workshop,
WBDB 2015, New Delhi, India, 14–15 December 2015; Rabl, T., Nambiar, R., Baru, C.K., Bhandarkar, M.A., Poess, M., Pyne, S., Eds.;
Revised Selected Papers; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2015; Volume 10044,
pp. 3–17.

4. Aupy, G.; Beaumont, O.; Eyraud-Dubois, L. What Size Should Your Buffers to Disks be? In Proceedings of the 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada, 21–25 May 2018; pp. 660–669.

5. Tessier, F.; Vishwanath, V.; Jeannot, E. TAPIOCA: An I/O Library for Optimized Topology-Aware Data Aggregation on Large-
Scale Supercomputers. In Proceedings of the 2017 IEEE International Conference on Cluster Computing (CLUSTER), Honolulu,
HI, USA, 5–8 September 2017; pp. 70–80.

6. Herbein, S.; Ahn, D.H.; Lipari, D.; Scogland, T.R.; Stearman, M.; Grondona, M.; Garlick, J.; Springmeyer, B.; Taufer, M. Scalable
I/O-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters. In Proceedings of the Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’16, Kyoto, Japan, 31 May–4 June
2016; ACM: New York, NY, USA, 2016; pp. 69–80.

7. Dong, B.; Byna, S.; Wu, K.; Prabhat; Johansen, H.; Johnson, J.N.; Keen, N. Data Elevator: Low-Contention Data Movement in
Hierarchical Storage System. In Proceedings of the 2016 IEEE 23rd International Conference on High Performance Computing
(HiPC), Hyderabad, India, 19–22 December 2016; IEEE: Hyderabad, India, 2016; pp. 152–161.

8. Devarajan, H.; Kougkas, A.; Logan, L.; Sun, X.H. Hcompress: Hierarchical data compression for multi-tiered storage environments.
In Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, LA, USA,
18–22 May 2020; pp. 557–566.

9. Liu, N.; Cope, J.; Carns, P.; Carothers, C.; Ross, R.; Grider, G.; Crume, A.; Maltzahn, C. On the role of burst buffers in leadership-
class storage systems. In Proceedings of the 2012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST),
Pacific Grove, CA, USA, 16–20 April 2012; pp. 1–11.

10. Koo, D.; Lee, J.; Liu, J.; Byun, E.K.; Kwak, J.H.; Lockwood, G.K.; Hwang, S.; Antypas, K.; Wu, K.; Eom, H. An empirical study of
I/O separation for burst buffers in HPC systems. J. Parallel Distrib. Comput. 2021, 148, 96–108. [CrossRef]

11. Thapaliya, S.; Bangalore, P.; Lofstead, J.; Mohror, K.; Moody, A. Managing I/O Interference in a Shared Burst Buffer System. In
Proceedings of the 2016 45th International Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, 16–19 August 2016;
pp. 416–425.

12. Dorier, M.; Antoniu, G.; Ross, R.B.; Kimpe, D.; Ibrahim, S. CALCioM: Mitigating I/O Interference in HPC Systems through Cross-
Application Coordination. In Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium
(IPDPS), Phoenix, AZ, USA, 19–23 May 2014; pp. 155–164.

13. A. Gainaru.; Aupy, G.; Benoit, A.; Cappello, F.; Robert, Y.; Snir, M. Scheduling the I/O of HPC Applications Under Congestion.
In Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Hyderabad, India,
25–29 May 2015; pp. 1013–1022.

14. Aupy, G.; Gainaru, A.; Fèvre, V.L. Periodic I/O Scheduling for Super-Computers. In Proceedings of the High Performance
Computing Systems. Performance Modeling, Benchmarking, and Simulation, Denver, CO, USA, 13 November 2017; Lecture
Notes in Computer Science; Springer: Cham, Switzerland, 2017; pp. 44–66.

15. Aupy, G.; Gainaru, A.; Fèvre, V.L. I/O Scheduling Strategy for Periodic Applications. ACM Trans. Parallel Comput. (TOPC) 2019,
6, 1–26. [CrossRef]

http://doi.org/10.1145/3152891
http://dx.doi.org/10.1016/j.jpdc.2020.10.007
http://dx.doi.org/10.1145/3338510


Electronics 2022, 11, 1318 18 of 18

16. Liang, W.; Chen, Y.; An, H. Interference-Aware I/O Scheduling for Data-Intensive Applications on Hierarchical HPC Storage
Systems. In Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communi-
cations; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Zhangjiajie, China, 10–12 August 2019; pp. 654–661.

17. Zha, B.; Shen, H. Improved probabilistic I/O scheduling for limited-size Burst-Buffers deployed HPC. Parallel Comput. 2021,
101, 102708. [CrossRef]

18. Liang, W.; Chen, Y.; Liu, J.; An, H. CARS: A contention-aware scheduler for efficient resource management of HPC storage
systems. Parallel Comput. 2019, 87, 25–34. [CrossRef]

19. Shi, X.; Liu, W.; He, L.; Jin, H.; Li, M.; Chen, Y. Optimizing the SSD Burst Buffer by Traffic Detection. ACM Trans. Archit. Code
Optim. (TACO) 2020, 17, 1–26. [CrossRef]

20. Bu, Y.; Howe, B.; Balazinska, M.; Ernst, M.D. The HaLoop approach to large-scale iterative data analysis. VLDB J. 2012,
21, 169–190. [CrossRef]

21. Yildiz, O.; Zhou, A.C.; Ibrahim, S. Eley: On the effectiveness of burst buffers for big data processing in HPC systems. In Pro-
ceedings of the 2017 IEEE International Conference on Cluster Computing (CLUSTER), Honolulu, HI, USA, 5–8 September 2017;
pp. 87–91.

22. Gainaru, A.; Goglin, B.; Honore, V.; Pallez Aupy, G.; Raghavan, P.; Robert, Y.; Sun, H. Reservation and Checkpointing Strategies
for Stochastic Jobs. In Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New
Orleans, LA, USA, 18–22 May 2020; IEEE: New Orleans, LA, USA, 2020; pp. 853–863.

23. Du, Y.; Marchal, L.; Pallez (Aupy), G.; Robert, Y. Robustness of the Young/Daly formula for stochastic iterative applications. In
Proceedings of the 49th International Conference on Parallel Processing (ICPP), Edmonton, AB, Canada, 17–20 August 2020;
ACM: Edmonton, AB, Canada, 2020; pp. 1–11.

24. Jeannot, E.; Pallez, G.; Vidal, N. Scheduling periodic I/O access with bi-colored chains: Models and algorithms. J. Sched. 2021,
24, 469–481. [CrossRef]

25. Hu, W.; Liu, G.m.; Li, Q.; Jiang, Y.h.; Cai, G.l. Storage wall for exascale supercomputing. Front. Inf. Technol. Electron. Eng. 2016,
17, 1154–1175. [CrossRef]

26. Gainaru, A.; Aupy, G.P.; Sun, H.; Raghavan, P. Speculative Scheduling for Stochastic HPC Applications. In Proceedings of the
Proceedings of the 48th International Conference on Parallel Processing (ICPP), Kyoto, Japan, 5–8 August 2019; ACM: Kyoto,
Japan, 2019; pp. 1–10.

27. Boito, F.Z. Transversal I/O Scheduling: From Applications to Devices. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil, 2015.

28. Liao, W.K.; Choudhary, A. Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on Underlying
Parallel File System Locking Protocols. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, Austin,
TX, USA, 15–21 November 2008; IEEE Press: Piscataway, NJ, USA, 2008; pp. 3:1–3:12.

29. Boito, F.Z.; Kassick, R.V.; Navaux, P.O.; Denneulin, Y. AGIOS: Application-Guided I/O Scheduling for Parallel File Systems. In
Proceedings of the 2013 International Conference on Parallel and Distributed Systems (ICPADS), Seoul, Korea, 15–18 December
2013; IEEE: Seoul, Korea, 2013; pp. 43–50.

30. Song, H.; Yin, Y.; Sun, X.H.; Thakur, R.; Lang, S. Server-side I/O Coordination for Parallel File Systems. In Proceedings of the
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11,
Seattle, WA, USA, 12–18 November 2011; ACM: New York, NY, USA, 2011; pp. 17:1–17:11.

31. Zhang, X.; Davis, K.; Jiang, S. IOrchestrator: Improving the Performance of Multi-node I/O Systems via Inter-Server Coordination.
In Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’10, New Orleans, LA, USA, 13–19 November 2010; pp. 1–11.

32. Carretero, J.; Jeannot, E.; Pallez, G.; Singh, D.; Vidal, N. Mapping and Scheduling HPC Applications for Optimizing I/O. In
Proceedings of the 34th ACM International Conference on Supercomputing (ICS), Barcelona, Spain, 29 June–2 July 2020; pp. 1–12.

33. Michael, L.P. Scheduling: Theory, Algorithms, and Systems, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2016.
34. Du, Y.; Marchal, L.; Pallez, G.; Robert, Y. Optimal Checkpointing Strategies for Iterative Applications. IEEE Trans. Parallel Distrib.

Syst. 2022, 33, 507–522. [CrossRef]
35. Hua, Y.; Shi, X.; Jin, H.; Liu, W.; Jiang, Y.; Chen, Y.; He, L. Software-defined QoS for I/O in exascale computing. CCF Trans. High

Perform. Comput. 2019, 1, 49–59. [CrossRef]

http://dx.doi.org/10.1016/j.parco.2020.102708
http://dx.doi.org/10.1016/j.parco.2019.04.010
http://dx.doi.org/10.1145/3377705
http://dx.doi.org/10.1007/s00778-012-0269-7
http://dx.doi.org/10.1007/s10951-021-00685-8
http://dx.doi.org/10.1631/FITEE.1601336
http://dx.doi.org/10.1109/TPDS.2021.3099440
http://dx.doi.org/10.1007/s42514-019-00005-9

	Introduction
	Related Works
	Stochastic Iterative Applications
	I/O Scheduling
	Stochastic Scheduling

	Preliminaries and Motivations
	Platform and Application Execution Model
	HPC Platform Model
	Application Execution Model

	Problem Description
	Existing Methods and Motivations
	Online I/O Scheduling
	Periodic I/O Scheduling
	Motivations


	Adaptively Periodic I/O Scheduling
	Scheme and Data Structures
	Adjusting the Periodic Schedule
	Cleaning Instances
	Emptying Instances

	APIO Algorithm
	Performance Analysis

	Simulation Results
	Experiments Settings
	System Configuration
	Application Configuration

	Results and Analysis

	Conclusions
	References

