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Abstract: Direction of arrival (DOA) is one of the essential topics in array signal processing that
has many applications in communications, smart antennas, seismology, acoustics, radars, and many
more. As the applications of DOA estimation are broadened, the challenges in implementing a DOA
algorithm arise. Different environments require different modifications to the existing methods. This
paper reviews the DOA algorithms in the literature. It evaluates and compares the performance of the
three well known algorithms, including MUSIC, ESPRIT, and Eigenvalue Decomposition (EVD), with
and without using adaptive directional time–frequency distributions (ADTFD) at the preprocessing
stage. We simulated a case with four sources and three receivers. The sources were well separated.
Signals were received at each sensor with an SNR value of −5 dB, 0 dB, 5 dB, and 10 dB. The angles
of the sources were 15, 30, 45, and 60 degrees. The simulation results show that the ADTFD algorithm
significantly improved the performance of MUSIC, while it did not provide similar results for the
ESPRIT and EVD methods. As expected, the computation time of the algorithms was increased by
implementing the ADTFD algorithm as a preprocessing step.

Keywords: direction of arrival; DOA estimation; MUSIC algorithm; ESPRIT algorithm; eigenvalue
decomposition; ADTDF

1. Introduction

The direction of arrival (DOA) is one of the critical topics in array signal processing.
Initially, the DOA was estimated for wireless signals impinging on an array of antennas.
Bartlett presented early attempts in 1950 as a periodogram analysis of continuous spec-
tra [1]. Later, Schmidt proposed the Multiple Signal Classification (MUSIC) [2] algorithm
in 1986, which is used extensively in DOA estimation. The MUSIC algorithm estimates
the frequency content of the received signal using the eigenspace method. In 1989, Roy
et al. [3] proposed a new approach known as “the estimation of signal parameters using
rotational invariance techniques” (ESPRIT), which exploits the underlying rotational invari-
ance among signal subspaces induced by an array of sensors with a translational invariance
structure. It has several advantages over the MUSIC algorithm [3]. Over the years, other
researchers proposed many methods and improvements regarding the MUSIC and ESPRIT
algorithms and their parameters [4,5]. Advances in machine learning algorithms allowed
researchers to develop deep networks for DOA estimation.

The application of DOA is widespread in communication [6], smart antennas, seismol-
ogy, oceanography [7], acoustics, surveillance, hearing aids, teleconferencing [8], radars,
and sonar [9]. As the applications of DOA estimation were broadened, the challenges in
implementing the algorithm also arose, such as increased computation time and memory
requirements. Different environments require different modifications to the existing meth-
ods. In a real-time environment, computational time and cost play an essential role in the
application as the military needs the fastest algorithm to estimate the DOA. One of the
problems associated with DOA estimation is determining the DOA when there are fewer
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sensors than the number of sources. This is considered an under-determined case in DOA
estimation.

2. Literature Review

Tho et al., proposed a new method to estimate the DOA in an under-determined
scenario, which used a combination of noise floor tracking, onset detection, and coherence
tests to identify the dominant source in the time-frequency (TF) bin robustly. The most
significant eigenvectors of the covariance matrix corresponding to these bins were clustered
next. The DOA sources were estimated based on the cluster centroids [10]. Furthermore,
some DOA estimation techniques are specifically designed for the environments being used.
Dey et al. [11] proposed an application of smart headphones that enabled the selective
passing of speech sounds in the environment. Their algorithm was divided into two parts:
the first part was a robust far-field speech detection algorithm for noisy environments.
The second part was source localization. The application of this technique was a smart
headphone system in which a user could be listening to music over headphones and hear
speech from a specified direction.

Array structure plays an essential role in DOA estimation. Shi et al. reported that
a coprime array, with a different coarray structure, increased the number of degrees of
freedom. The proposed sparse reconstruction-based algorithm estimated DOA. In order to
improve the power estimation, they modified the sliding window method and removed the
spurious peaks in the reconstructed sparse spatial spectrum. Their work showed promising
results in DOA and power estimation with achievable degrees of freedom [12]. Zhou
et al. proposed a coprime array incorporating compressive sensing. The received signals
were compressed by a random compressive sensing kernel to minimize the dimension;
then, high-resolution DOA estimation was performed on the compressed measurements.
The study verified the computational effectiveness of the method [13]. However, some
DOA estimation operations do not consider the spatial relevance among the partitioned
coarray statistics [14]. A recent study proposed a coupled coarray tensor canonical polyadic
decomposition (CPD)-based 2D DOA estimation to address this. The work used shift-
ing coarray concatenation to factorize the partitioned fourth-order coarray statistics into
multiple coupled coarray tensors for the coprime L-shaped array. The number of degrees
of freedom (DOF) was increased [14]. Coprime sensor arrays were used in the far-field
DOA estimation of the uncorrelated radar signals [15] in order to increase the DOF. The
work used the Cuckoo search, which provided an increased number of DOF with low SNR
values [14].

Hioka et al. [16] proposed a DOA algorithm depending on the angular resolution
and array structure in human–machine interfaces and speech recognition. The efficiency
of the proposed algorithm was superior to that of the classical algorithms. Basikolo
et al., used a non-uniform circular array to estimate DOA. They used the Khatri-Rao (KR)
subspace approach to eliminate spatial noise covariance and estimate DOA with increased
degrees of freedom. Using a non-uniform circular array and KR subspace approach, an
increased degree of freedom was achieved in estimating the DOA. Because of this, both
overdetermined and underdetermined DOA estimation became possible [17]. Xu et al. [18]
explored a rectangular array for DOA estimation. The real-valued propagator method
was utilized to estimate two-dimensional DOA in their work. As a result, their algorithm
provided better angle estimation performance. Zhai et al. [19] employed an unfolded
coprime linear array to suppress the ambiguity problem. The received signals from the two
sub-arrays were stacked to derive the complete signal subspace. The authors introduced a
reduced dimensional MUSIC algorithm (RD-MUSIC) for noncircular signals impinging on
the two sub-arrays, which increased the noncircular signals’ accuracy [19].

Feng et al., 2001, proposed a DOA estimation algorithm for wideband signals [20].
Their algorithm used fast chirplet-based adaptive signal decomposition to build a time–
frequency covariance matrix. Subspace fitting was conducted similar to that of traditional
MUSIC and ESPRIT algorithms. The authors overlapped the narrow and wideband inco-
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herent subspace and built a general TF matrix in this work. A wideband DOA estimation
algorithm using fast Chirplet-based adaptive signal decomposition was projected based on
the differences. The advantages of using this algorithm were that there was no restriction
for array structure with very low complexity and robust performance.

Time-frequency analysis provides information in both the time domain as well as
in the frequency domain. One such method used spatial TF distributions in a wideband
scenario. This approach used spatial pseudo-Wigner–Ville distribution to analyze the time
and frequency domain signals. The proposed method outperformed methods for FM
signals and performed significantly better for wideband signals [21].

Bouri proposed a method using factorizations of a sample cross-spectral matrix for
detecting and localizing the sources. This technique did not use eigenvalue decomposition
to reduce computational cost and improve performance [22].

Mohan et al., suggested a new method to localize multiple speech sources with small
arrays using a coherence test [8]. The authors proposed two methods: (1) narrowband
spatial spectrum estimation at each bin followed by summation of directional spectra across
time and frequency and (2) clustering low-rank covariance matrices and averaging the
covariance matrices within the clusters [8]. However, there are many other approaches
used to estimate DOA via different methods. Nishiura et al. [23] designed two other
methods apart from the classical methods to estimate the DOA. The first method was
DOA estimation based on a cross power spectrum phase and the second method was a
statistical sound source identification algorithm based on the Gaussian mixture model.
The above methods were used to localize the source signal by enhancing multiple sound
signals. A microphone array had to be steered, for which the delay-and-sum beamformer
method was employed to localize the source [23]. Sawada et al., proposed an approach for
DOA estimation using independent component analysis. They reported that independent
component analysis identified source signals from their mixture. The work stated the main
advantage of independent component analysis over the MUSIC algorithm was that it could
be applied even when the number of sources was equal to the number of sensors [24].
Matsuo et al., implemented a histogram mapping method to estimate the DOA of multiple
speech signals.

The significant advantages of the histogram mapping method included low computa-
tional complexity and no requirement for the preliminary DOA estimates [25]. The authors
introduced a mechanism to delete narrowband components present in the vector analysis.
Swartling et al. [9] improved a statistical method known as steered response power with
phase transform (SRP-PHAT) for DOA estimation. SRP-PHAT uses second-order statistics
through cross power spectra to navigate a beamformer, searching for a maximum power
output [9]. A peak in the beamformer was aimed towards the acoustic source with the
highest power. Swartling et al. stated that fourth-order statistics provided a route to
distinguish speech from noise. The fourth-order statistics provided superior performance
compared to the second-order statistics, but the computation complexity doubled.

Wang and Zhang developed an iterative positioning algorithm to solve the link block-
age problem in mmWave communication systems. As the first step, they used random
beamforming and maximum likelihood estimation to estimate the angle of arrival and the
angle of departure. Their proposed iterative algorithm achieved centimeter-level position-
ing accuracy [26].

Compressed sensing (CS) methods, on-grid, off-grid, and grid-less, use the signal
sources’ characteristics in the spatial domain. On-grid and off-grid methods have grid
mismatch problems resulting in performance loss [27]. However, these two methods have
less computational complexity. On the other hand, gridless methods perform better but
have higher computational complexity [28].

In recent years, machine learning-based DOA estimation algorithms were proposed,
including deep neural networks (DNN) and convolutional neural networks (CNN) [29–33].
Kase et al., developed a DNN-based DOA estimation of two targets [29]. They used a
correlation matrix Rxx as an input and tested the proposed DNN for a case with two
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targets, and both narrowband signals from the targets were uncorrelated and had equal
power. DNN-based methods require training. Kase et al. generated the training data
by changing the SNR in pre-determined patterns in the range of 0–30 dB. They reported
that the designed DNN achieved very high performance for the same case. This verified
the well-known fact that the DNN-based solutions’ performance highly depends on the
training data and is susceptible to overfitting problems.

Liu et al. [30] proposed DOA estimation for underwater acoustic signals with different
waves using a CNN architecture that uses the covariance matrix Rxx as the input array.
To prevent the neural network from dealing with complex numbers, they divided the
covariance matrix into two channels: real number and imaginary number layers. After
training, the method was tested under a scenario in which different array elements were
simulated under different water environment conditions with SNR of 20 dB, 10 dB, 0 dB,
and −10 dB. The paper reported accuracy rates comparable to the MUSIC algorithm and
reduced the estimation time of the DOA by 10 times less than the MUSIC algorithm. Liu
et al. argued that their proposed CNN-based DOA estimation method was “far better than
the traditional MUSIC algorithm” and was especially suitable for the underwater acoustic envi-
ronment [30]. The environment’s complex and changeable characteristics require a shorter
calculation time and good accuracy in DOA estimation. However, the authors missed that
the neural network-based DOA estimation algorithms’ performance exclusively depends
on training data, and complex and changeable environment characteristics negatively affect
such algorithms.

There are several preprocessing techniques performed before DOA estimation, such
as speech enhancement based on the subspace method [34], blind source separation [35,36],
sub-band-based clustering [37], and the adaptive directional time–frequency distributions
(ADTFD) method [38].

The technique introduced by Asano et al. [34] constituted two stages corresponding to
the different types of noise. In the first stage, ambient noise, which was less directional, was
reduced by eliminating the noise-dominant subspaces. In the second stage, the spectrum
of the target source was extracted from the multi-directional components. Visser et al.
proposed a method for speech enhancement in a noisy environment. A practical application
in a car was experimented with [35]. Their approach included combining two techniques,
namely blind source separation and speech denoising, using hybrid wavelet independent
component analysis. Blind source separation exploited the time correlation of speech
signals captured by microphones. Blind source separation was used to locate the point
source. Independent component analysis was used for the adaptive denoising of the
separated signals. Mitianoudis et al., also used blind source separation for audio source
separation. The authors introduced a technique for unmixing audio sources in an auditory
scene [36]. Khan et al., reported that ADTFD performed well in analyzing close signal
components compared to the other preprocessing methods. The ADTFD optimized the
direction of the kernel at each point in the TF domain to obtain a clear representation, which
was then exploited for DOA estimation [38].

Postprocessing methods may be employed after DOA estimation. Some of the com-
monly used postprocessing methods are postfiltering algorithms. Habets et al. [39] pro-
posed a postfiltering algorithm for the spectral enhancement of speech signals. A feature
of this technique was reduced interference. Gu et al., suggested a technique that used the
QR decomposition-based recursive least square (QRD-RLS) technique as postprocessing.
QRD-RLS was used to estimate the DOA from the autoregressive sources estimated em-
ploying the Kalman filter. Auto-regressive modeled sources provide excellent temporal
information, enabling the QRD-RLS technique to estimate the DOAs. [40].

In the literature, Khan et al. [38] reported that the algorithm was applicable to sub-
space-based DOA methods. However, they assessed the ADTFD only for MUSIC. One
of the goals of this paper is to compare the performances of three well known DOA
estimation methods, including MUSIC, ESPRIT, and Eigenvalue Decomposition (EVD), by
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implementing ADTFD in the preprocessing stage. Another goal is to overview the existing
DOA algorithms.

The paper is organized as follows: Sections 2 and 3 overview the studied DOA
estimation algorithms. Section 4 explains the implementation of the ADTFD preprocessing
method. Case-specific experimental results and discussions are presented in Section 5.

3. DOA Estimation Algorithms
3.1. The MUSIC Algorithm

Schmidt (1986) proposed the MUSIC algorithm [2], which is a subspace-based method.
MUSIC stands for multiple signal classification. The MUSIC algorithm provides asymptoti-
cally unbiased estimates of the number of signals, directions of arrival (DOA), strengths
and cross-correlations between the directional waveforms, polarizations, and strength of
noise or interference. The model in Figure 1 states that the waveforms received at the
M-array elements are linear combinations of the D incident wavefronts and noise.

X(t) = As(t) + w(t) (1)
x1
x2
.
.

xM

 =

 a11(θ1) · · · a1D(θD)
...

. . .
...

aM1(θ1) · · · aMD(θD)




F1
F2
.
.

FD

+


w1
w2
.
.

wM

 (2)

X = AF + W (3)

XT(t)= [x1(t), . . . , XM(t)] (4)

WT(t) = [w1(t), . . . , wM(t) ] (5)

Figure 1. DOA estimation using the MUSIC algorithm.

Vector F represents the incident signals in amplitude and phase at some arbitrary
reference point. Vector W is the sensed or generated noise. Matrix A, in Equations (1)–(3),
contains elements aij such as i = 1, 2, . . . , M and j = 1, . . . , D. The columns in matrix A
are called mode vectors and represent responses to the direction of arrival, for example,
θj is the direction of arrival of the jth signal. The solution of the DOA of multiple signals
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includes locating the intersections of the a(θ) continuum with the range space of A. The
covariance matrix of the X vector is M×M and is defined as

Rxx , XX∗ = AFF∗A∗ + WW∗ = ASA∗ + λS0. (6)

Note that (.)* is used to denote the Hermitian conjugate or complex conjugate transpose
operation. The MUSIC algorithm assumes that incident signals and noise are uncorrelated.
The D×D matrix S may be diagonal and singular. In the case of the number of wavefronts,
D is less than the number of array elements M, ASA∗ is a nonnegative definite, and its rank
is less than M. The Equation (7) is satisfied when λ is one of the eigenvalues of Rxx in the
metric of So. λ is the minimum eigenvalue λmin ≥ 0.

|ASA∗| = |Rxx − λS0| = 0 (7)

Rxx = ASA∗ + λminS0 (8)

If the elements of the noise vector W are mean zero,

Rxx = ASA∗ + σ2 I (9)

the signal correlation matrix is not necessarily diagonal since the incident signals are either
somewhat correlated or uncorrelated. This method implies either knowing the number
of incoming signals in advance or searching the eigenvalues to determine the number of
incoming signals. If the number of signals is D, the number of signal eigenvalues and
eigenvectors is D, and the number of noise eigenvalues and eigenvectors is N = M− D
(M is the number of array elements). Rxx is an M × M matrix. After the computation
of the array correlation matrix, Rxx, we must find the eigenvalues and eigenvectors for
Rxx. From the eigenvectors computed, D eigenvectors are associated with the signals, and
N eigenvectors are associated with the noise. We further deal with the N eigenvectors
associated with the noise that have the smallest corresponding N = M− D eigenvalues
from the set of eigenvalues of Rxx. For uncorrelated signals, the smallest eigenvalues are
equal to the variance of the noise. The following equation defines the noise subspace.

EN = λD, . . . . . . λM−1 (10)

The eigenvectors of the signal subspace and the noise subspace are orthogonal to each
other. This is the essential observation of the MUSIC approach. Since the steering vectors
corresponding to signal components are orthogonal to the noise subspace, the DOA of the
multiple incident signals can be estimated by locating the peaks of the spatial spectrum
given by

PMUSIC(θ) =
1

a∗(θ)EN E∗N a(θ)
. (11)

The flowchart of the MUSIC algorithm is summarized in Figure 2. The MUSIC
algorithm’s performance is different when the received signals are different. The MUSIC
algorithm fails to detect correlated input signals as the response of the MUSIC is not sharp
at the peaks while it is sharp in the case of the uncorrelated input signal [16].
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Figure 2. Flowchart for the MUSIC algorithm.

3.2. The ESPRIT Algorithm

Another subspace-based algorithm, which was an improvement over the MUSIC
algorithm, was proposed by Roy et al. (1989) [3]. ESPRIT stands for the estimation of signal
parameters via rotational invariance techniques. It does not require knowledge of the array
geometry and does not involve an exhaustive search through all possible steering vectors to
estimate DOA. Hence, it reduces the computational and storage requirements significantly
compared to the MUSIC algorithm. ESPRIT exploits an underlying rotational invariance
among signal subspaces induced by an array of sensors with a translational invariance
structure. This algorithm is more robust for array imperfections than the MUSIC algorithm.
Consequently, the computational complexity and storage requirements are lower [6]. It also
explores the rotational invariance property in the signal subspace created by two subarrays
derived from the original array with a translational invariance structure. Unlike the MUSIC
method, ESPRIT simultaneously estimates the number of antenna elements and DOAs.
Figure 3 illustrates the ESPRIT algorithm’s DOA estimation with multiple sources.

Figure 3. Multiple source DOA estimation using the ESPRIT algorithm.
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Although the ESPRIT algorithm has many advantages, it is not entirely general, as it
has restrictions on planar wavefronts and pairwise matched co-directional doubles. ESPRIT
describes the array as being comprised of two subarrays, X and Y, to exploit the sensor
array’s translational invariance property. The subarrays X and Y are identical but physically
displaced by a known displacement vector. The received signals are represented as:

xi(t) = ∑D
k sk(t)ai(θk) + wxi(t) (12)

yi(t) = ∑D
k sk(t)ejω0∆sinθk/cai(θk) + wyi(t). (13)

sk(.) is the kth signal as received at the reference sensor of the X subarray. θk is the
DOA of the kth source relative to the direction of the translational displacement vector. ∆ is
defined as the magnitude of the displacement vector between the two arrays, and c is the
speed of propagation in the transmission medium. wxi(t) and wyi(t) are the noise signals
in the ith doublet for the subarrays, respectively.

X = AF + Wx (14)

Y = AΦF + Wy (15)

The auto-covariance matrix Rxx and the cross-covariance matrix Rxy are defined as
below.

Rxx , XX∗ = AFF∗A∗ + WxW∗x = ASA∗ + σ2 I = ASA∗ + λmin I (16)

Rxy , XY∗ = AFF∗Φ∗A∗ = ASΦ∗A∗ (17)

Φ = diag
[
ej∅1 , . . . , ej∅D

]
and ∅k = ω0∆sinθk/c. (18)

Once Φ is calculated, the DOAs are calculated as:

θk = arcsin{c∅k/ω0∆}. (19)

3.3. Eigenvector Clustering Algorithm

Eigenvector clustering is another method used for DOA estimation [10]. Preprocessing
is a critical step to eliminate noise vectors in the covariance matrix. The method uses the
short-time Fourier transform (STFT), noise floor tracking, onset detection, and coherence
test. DOA estimation is performed using the data from the cluster centroids. The array
structure is also specified in this method. A triangular array with three microphones at a
right angle is employed. The STFT of the multi-component signal is the first step to esti-
mating the time-frequency (TF) bins in each frequency component. A speech enhancement
method is used to select TF bins based on the speech enhancement method using a certain
threshold value [7,9]. The onset is marked by a sudden rise in the energy of particular fre-
quency bands and is used to detect sudden sound activity. Many onset detection functions
detect the changes in one or more signal properties, considering that signals, specifically
audio, have constantly changing properties such as amplitude, noise, onsets, offsets, and
vibration. The onset of a signal increases the energy in the time domain [41] and in the
frequency bands that other properties do not have. Therefore, an increase in energy in
some frequency bands can be employed as an indicator of onset [16]. The coherence test
proposed by Mohan et al. [8] is applied to select rank-1 TF bins. Rank-TF bins are selected
since only one source dominates that particular TF bin. It means that only TF bins with a
possibility of the incoming signal are present. The DOAs can be estimated from the cluster
centroids after clustering the largest eigenvectors, based on the structure of the steering
vectors and the microphone arrangement. Once noise-tracking and onset detection are
performed, the method selects rank-1 TF bins, and most of the covariance matrices can
be approximated. Eigenvalues and eigenvectors of the covariance matrix are determined.
The algorithm clusters the normalized matrix into several clusters equal to the number of
sources. Finally, the DOAs are estimated.
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4. Adaptive Directional Time–Frequency Distributions (ADTFD)

Many applications use non-stationary signals that exhibit time-varying frequency spec-
tra. The spatial time–frequency distribution (STFD) is a well-known approach for analyzing
non-stationary multi-sensor signals. Since the STFD matrices contain high energy points in
the TF domain, they result in a robust DOA estimation against noisy disturbances [42–45].
Many studies reported improved DOA estimation for the conventional MUSIC algorithm
by replacing covariance matrices with the STFD matrices [42,43,46]. The selection of the
TF presenters for the sources improves the DOA estimation, where the number of sensors
is less than the number of sources, which is called an under-determined case. In such
cases, separate STFDs are constructed, each corresponds to one source, and they are used
to estimate DOAs [47,48]. The estimated instantaneous frequency (IF) is used to obtain
the sources’ TF presenters. Spatially averaged time–frequency distribution (TFD) of sen-
sor information is employed to estimate the IF [47,49,50]. The benefits of TFDs can be
summarized as follows:

(a) In traditional signal representations, time and frequency are mutually exclusive,
and each representation is non-localized with respect to the other representation. Only one
domain representation may become insufficient for complex problems. In such cases, the
distribution of time and frequency may present additional information.

(b) TFDs allow the analysis of the signals representing the signal characteristics such as
relative amplitudes, IF, complexity, flatness, and energy distribution in the TF domain [51].

The resolution of the TFD plays an essential role in DOA estimation, mainly when the
sources are closely located. Both the STFD and TF filter approaches heavily depend on the
TFD’s resolution, which has higher computational cost and memory requirements. A DOA
approach using the ADTFD, proposed by Khan et al., provided good improvements for
non-stationary signals and the MUSIC algorithm [38]. The algorithm, illustrated in Figure 4,
consists of several stages, including calculating and averaging TFDs, IF estimation, and TF
filtering. Quadratic TFD is used to analyze the signals. The estimated IF components are
used to design TF filtering [33,38].

Figure 4. Illustration of the ADTFD algorithm with the DOA estimation stage.

4.1. Spatial Averaging of TFDs

Wigner–Ville Distribution (WVD), Wz(t, f ), is used to calculate the TFDs of a signal. It
is defined as

ρz(t, f ) ≡Wz(t, f ) = Fτ→ f

{
z
(

t +
τ

2

)
z∗
(

t− τ

2

)}
. (20)

z(t) is the analytic associate of the signal, and it is complex. WVD is used to study
non-stationary signals. Considering that DOA deals with non-stationary signals, WVD
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becomes useful in DOA estimation. Averaging TFDs is performed by dividing ρz(t, f ) by
the number of array elements.

ρavg(t, f ) =
1
M

M

∑
i=1

ρzi(t, f ) (21)

Postprocessing is performed to preserve the energy of weak TFD components while
resolving the closely-spaced components. It allows accurate IF extraction. An adaptive
smoothing kernel is applied to the ρavg(t, f ) in order to resolve close components of the
signal. Then, the ADTFD is defined using the average TFD and the second derivative
directional Gaussian filter.

4.2. Multi-Component Analysis

Multi-component analysis consists of IF estimation and TF filtering. The IF of a signal
indicates the dominant frequency of the signal at a given time. The peaks of the multi-
component signal in the TF domain are used to estimate the IF. The peaks are calculated by
setting the first and second derivatives of the ADTFD to zero. The phase is estimated by TF
filtering on the estimated IFs [38].

5. Special Case: Experimental Results and Discussions

We simulated a case that had four sources with three receivers. The sources are well
separated and represented as follows:

s1(t) = e2πi(0.05t+ 0.1∗t2
2∗128 +

0.2∗t3
3∗1282 ) + w(t) (22)

s2(t) = e2πi(0.1t+ 0.1∗t2
2∗128 +

0.2∗t3
3∗1282 ) + w(t) (23)

s3(t) = e2πi(0.4t+ 0.1∗t2
2∗128 −

0.5∗t3
3∗1282 ) + w(t) (24)

s4(t) = e2πi(0.45t+ 0.1∗t2
2∗128 −

0.1∗t3
3∗1282 ) + w(t). (25)

w(t) represents the Gaussian noise. Signals are received at each sensor with an SNR
value of −5 dB, 0 dB, 5 dB, or 10 dB. The angles of the sources are 15, 30, 45, and 60 degrees.
The performances of the reviewed DOA methods, MUSIC, ESPRIT, and Eigenvalue De-
composition (EVD), are given in Tables 1 and 2 with and without the ADTFD algorithm,
respectively. The EVD algorithm performed better than the MUSIC and ESPRIT algorithms
in estimating the DOAs without the ADTFD under different SNR values. Corresponding
mean square error (MSE) values in dB are depicted in Figure 5. The EVD algorithm’s
MSE values were around −11 dB, while the ESPRIT algorithm’s MSE values were around
−3 dB. The MUSIC algorithm produced a steady MSE of about −8.2 dB for different SNR
values. The ADTFD algorithm in the preprocessing stage improved the MUSIC algorithm’s
performance significantly. On the other hand, the ESPRIT and EVD algorithms did not
benefit from the ADTFT. The DOAs are given in Table 2. The MSE versus SNR plot for the
DOA algorithms with the ADTFD for different SNR values is shown in Figure 6. The MSE
values of the MUSIC were calculated below −22 dB with the ADTFD.
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Table 1. DOA estimation results without using the ADTFD algorithm.

DOA Estimation without ADTFD Algorithm

SNR
(dB)

MUSIC ESPRIT EVD

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

−5 dB 35 35 35 35 0 2 74 0 13 32 40 67

0 dB 36 36 36 36 0 9 58 0 18 22 43 58

5 dB 37 37 37 37 0 14 49 0 6 31 39 79

10 dB 37 37 37 37 0 14 49 0 12 45 45 83

Table 2. DOA estimation results using the ADTFD algorithm.

DOA Estimation with ADTFD Algorithm

SNR
(dB)

MUSIC ESPRIT EVD

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

−5 dB 18 30 50 58 0 8 59 0 15 39 41 62

0 dB 16 34 43 57 0 10 56 0 17 32 49 66

5 dB 16 29 42 59 0 18 44 0 19 54 31 41

10 dB 16 30 44 61 0 9 57 0 3 28 32 48

Figure 5. SNR vs. MSE plot of the MUSIC, ESPRIT, and Eigenvalue Decomposition algorithms
without the ADTFD preprocessing algorithm.
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Figure 6. SNR vs. MSE plot of the MUSIC, ESPRIT, and EVD algorithms using the ADTFD.

We can see the effect of the ADTFD preprocessing algorithm on each DOA method
more clearly in Figures 7–9. The ESPRIT and EVD methods’ MSE values did not improve
with the ADTFD. The average unoptimized computation time for ADTFD using the MUSIC
algorithm is 1.83 s and for the EVD is 1.66 s on a system using 16 GB RAM. The results are
summarized in Table 3.

Figure 7. SNR vs. MSE plot of the MUSIC algorithm with and without ADTFD (solid line and the
dashed line represents the cases without ADTFT and with ADTFD, respectively).
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Figure 8. SNR vs. MSE plot of the ESPRIT algorithm with and without ADTFD (solid line and the
dashed line represents the cases without ADTFT and with ADTFD, respectively).

Figure 9. SNR vs. MSE plot of the EVD algorithm with and without ADTFD (solid line and the
dashed line represent the cases without ADTFT and ADTFD, respectively).
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Table 3. Computation time for the DOA estimation algorithms.

Method Without ADTFD With ADTFD

MUSIC 0.30 s 1.83 s

ESPRIT 0.10 s 1.54 s

Eigenvalue decomposition 0.21 s 1.66 s

6. Conclusions

This work reviewed the DOA estimation algorithms in the literature. Furthermore, it
simulated a case that had four well-separated sources with three receivers. Signals were
received at each sensor with SNR values of −5 dB, 0 dB, 5 dB, and 10 dB. The angles of
the sources were 15, 30, 45, and 60 degrees. The performances of the MUSIC, ESPRIT,
and Eigenvalue Decomposition (EVD) algorithms were evaluated and compared with
and without using the ADTFD algorithm. The ADTFD algorithm is a preprocessing step
before the DOA estimation. It was originally developed for the MUSIC algorithm, but its
effects on the other DOA estimation methods are not often studied. Our simulation results
showed that the EVD algorithm performed better than the MUSIC and ESPRIT algorithms
in estimating the DOAs without the ADTFD under different SNR values. However, the
ADTFD algorithm improved the performance of the MUSIC algorithm significantly while
not affecting the other DOA estimation methods. As expected, the computation time of the
methods increased by using the ADTFD algorithm.
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