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Abstract: In the medical field, due to their economic and clinical benefits, there is a growing inter-
est in minimally invasive surgeries and microscopic surgeries. These types of surgeries are often
recorded during operations, and these recordings have become a key resource for education, patient
disease analysis, surgical error analysis, and surgical skill assessment. However, manual search-
ing in this collection of long-term surgical videos is an extremely labor-intensive and long-term
task, requiring an effective content-based video analysis system. In this regard, previous methods
for surgical video retrieval are based on handcrafted features which do not represent the video
effectively. On the other hand, deep learning-based solutions were found to be effective in both
surgical image and video analysis, where CNN-, LSTM- and CNN-LSTM-based methods were
proposed in most surgical video analysis tasks. In this paper, we propose a hybrid spatiotempo-
ral embedding method to enhance spatiotemporal representations using an adaptive fusion layer
on top of the LSTM and temporal causal convolutional modules. To learn surgical video repre-
sentations, we propose exploring the supervised contrastive learning approach to leverage label
information in addition to augmented versions. By validating our approach to a video retrieval
task on two datasets, Surgical Actions 160 and Cataract-101, we significantly improve on previous
results in terms of mean average precision, 30.012 & 1.778 vs. 22.54 + 1.557 for Surgical Actions
160 and 81.134 + 1.28 vs. 33.18 =+ 1.311 for Cataract-101. We also validate the proposed method’s
suitability for surgical phase recognition task using the benchmark Cholec80 surgical dataset, where
our approach outperforms (with 90.2% accuracy) the state of the art.

Keywords: laparoscopic video processing; recurrent deep convolutional network; surgical video
retrieval; medical multimedia; temporal convolutional network

1. Introduction

In the medical field, interest in minimally invasive surgeries and microscopic surgeries
has grown at an enormous rate over the last few decades. Minimally invasive surgery is a
surgical technique which requires only small incisions to be made on the patient’s body
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instead of a large opening, as in case of open surgery. One of the small incisions made is
used to insert a small camera called an endoscope, and the surgical instruments needed to
perform the operation are inserted through other incisions [1]. Through the endoscope, a
high-definition view of the surgical site is displayed on a monitor in the operating room.
As a result, the surgeon performs the surgery by looking at a monitor that displays the
surgical site inside the patient’s body. In the field of medical endoscopy, some of the
areas are: esophagogastroduodenoscopy (EGD) (procedures in the gastrointestinal tract),
enteroscopy (operations performed on the small intestine), colonoscopy (procedures in the
colon), arthroscopy (operations performed on joints), laparoscopy (surgeries performed
in the abdomen), etc. The main advantage of the minimally invasive approach over open
surgery is that it causes less pain, scarring and patient trauma and it also reduces the risk
of infection, hospitalization time and recovery time. On the other hand, microsurgery is
a procedure that requires a microscope on small parts of the body. It is used in plastic
surgery, cataract surgery, reconstructive surgery involving the skin and muscles, and
surgery involving the ear, nose, and throat, etc. In the field of neurosurgery, microsurgery
has now become an important process in the treatment of vascular abnormalities as well as
cancerous tumors found in the brain.

Nowadays, in the hospital, surgery procedures are often recorded during the operation.
In some countries, these videos are also stored in an archive as enforced by law. These
recordings can be used in many ways: by young surgeons or medical students to learn
the basics of surgery [2], for in-depth analysis of patient disease, for surgical quality
assessment [3-5], for analytical self-examination for the surgeon, as an evidence of patients’
cases [6], etc. In the field of endoscopic surgery, the endoscope acts as an information
source for young trainees who view surgical procedures on a big screen in the surgery
room. Additionally, by viewing recorded surgeries later, trainees can further enhance their
knowledge. In microscopic surgery, the operating surgeon performs the operation using a
microscope, which allows only one trainee to follow the operation with an extra eyepiece
and, because of this, there is a hindrance in the teaching and training of young surgeons for
this type of surgery. However, microscopic surgery can also be recorded using mounted
cameras, and subsequently reviewed in full detail. However, manual searching for the
desired video is a tedious and error-prone task. Moreover, both minimally invasive surgery
and microscopic surgery typically require specific psychomotor skills that are hard to teach
and learn and directly affect the performance of the surgery. These types of surgeries also
pose a risk relating to human error due to their nature as high-performance and high-risk
undertakings. However, during surgery, these errors and microscopic events may go
unnoticed, which prevents the possibility of improvement in future cases. Therefore, it
is important to perform surgical error analysis to improve learning and quality control,
which will also promote patient safety [7]. With the help of recorded surgery videos, the
technical errors during surgery can be carefully examined, and the skill level of the surgeon
can also be evaluated [8,9]. One way to use these recordings is to perform a manual
search and manual inspection. However, this manual process of searching and inspection
is extremely labor-intensive and long-term. Therefore, there is a high requirement for
automated content-based surgical video analysis methods for both analysis and searching
for desired videos. Consequently, this would allow for investigating other medical research
questions in a postoperative manner.

In this work, our main contributions are:

e To support surgical quality assessment, the teaching and training of surgical proce-
dures, and other aforementioned applications, we propose a Content-Based Surgical
Video Retrieval (CBSVR) system based on a contrastive learning framework.

e A hybrid temporal embedding approach with adaptive fusion layer is proposed to
enhance spatiotemporal features from different modalities.

e  We propose a supervised contrastive learning approach to learn surgical video rep-
resentations which extends the general contrastive loss to consider positive samples
from the same label in addition to augmented versions.
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e Inaddition, we design video frame-level self-supervised learning to enhance the visual
feature learning when combined with spatiotemporal supervised contrastive learning.

e  With extensive experiments, we validate our proposed methodology on two publicly
available surgery video datasets along with an ablation study on a surgical phase
recognition task.

This paper is organized as follows: Section 2 gives a concise review of related works.
Section 3 briefly discusses the essential background information. In Section 4, the proposed
framework is elaborated in detail. Experimental settings are discussed in Section 5. The
results of the extensive experiments are reported and analyzed in Section 6. Further, the
proposed methodology is discussed in Section 7 with experimental outcomes. Finally,
Section 8 summarizes the conclusions with future research directions.

2. Related Work

Several works have been published in the last two decades in the field of surgical video
analysis [1,10]. Most of the earlier works [11-17] focused on the use of handcrafted features.
For instance, the author of [15] used a bag of words approach based on SIFT descriptors
for surgical phase recognition in minimally invasive surgery. Reference [16] utilized HOG
features for video-based surgical skills assessment. In addition, Allan et al. [17] used
SIFT, color-based SIFT and HOG as features for the surgical tool detection task. However,
these low-level features are not sufficient to capture subtle details in surgical videos. With
the deep learning revolution, recently proposed methods within the realm of medical
image analysis appeared to improve feature representation capability through the use
of CNN [18-20]. Meanwhile, since a surgical video is in fact a form of sequential data,
effectively capturing sequential dynamics in surgical video is important for workflow
representation. In this direction, several approaches have also been proposed that are
based on statistical models such as hidden Markov models (HMM) [12,21-23], conditional
random fields (CRF) [24,25], linear dynamical systems (LDS) [26], dynamic time warping
(DTW) [27], etc. Moreover, Cadéne et al. [28], Jalal et al. [29], and Twinanda et al. [30] used
HMM for modeling temporal information over computed CNN features. However, these
statistical methods generally neglect subtle and even significant motions in surgical videos.
Recently, some works [31-35] based on RNN have been proposed that work effectively
compared to traditional statistical methods. Additionally, works such as [36-38] in the
general domain have shown RNN to be effective in video representation.

Diverse attempts have been made in medical image retrieval [39]. However, video
retrieval in the medical domain has not yet attracted much attention. Some work has
been completed in this field by linking images to corresponding videos. For instance, [40]
proposed a video retrieval method based on local and global features (color, texture). The
authors of [41] and [42] used feature signatures constructed from the position, color, and
texture features to match corresponding videos for querying images. André et al. [43]
used the bag of visual words with video-mosaicking technique for endomicroscopic video
retrieval. Furthermore, Beecks et al. [44] proposed gradient-based signatures for image
and video linking. However, these static frame-based methods ignore the crucial temporal
dynamics present in the video, affecting system performance. Therefore, it is important to
incorporate motion information present in the video [45,46]. For instance, Syeda-Mahmood
et al. [47], Quellec et al. [48] and Quellec et al. [49] used optical flow for motion information.
Droueche et al. [50] proposed motion trajectory-based method for content-based medical
video retrieval. They used motion vectors from the MPEG-4 video stream to build trajecto-
ries and used the extension of DTW for video matching. Muenzer et al. [51] investigated
static frame-based features and dynamic-based features for laparoscopic video retrieval,
and also gave directions to fuse these features for better representation. Kletz et al. [52]
proposed flow-based and track-based descriptors for similarity searches that extend static
frame-based feature signatures to dynamically rich content. Moreover, Amanat et al. [53]
proposed a meniscal surgical video retrieval system based on the use of key points, statis-
tical, PCA-SIFT and PCA-GMM methods, and found that PCA-SIFT-based performance
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is better than others. In this method, a master frame is first extracted by a shot boundary
detector and then its SIFT description is computed followed by PCA for dimensionality
reduction. The author used Euclidean distance to match the input video to target video.
Furthermore, Schoeffmann et al. [54] proposed a video content descriptor for laparoscopic
video retrieval named motion intensity and direction descriptor (MIDD). In their proposed
method, they first estimated motion vectors using optical flow and then by quantizing these
motion vectors into different bins, they computed a motion direction histogram and used it
as a descriptor to represent the surgical sequence. In contrast to the above methods, our
approach explicitly exploits both spatial and temporal information present in the surgical
video without using optical flow under the unified single model. Additionally, we explore
the hybrid embedding learning approach to enhance spatiotemporal representations.

3. Background

Deeper CNNs s typically take longer to converge during backpropagation, which is due
to the rapid shrinking of the gradients toward input while backpropagating the loss, and
thus require a large number of iterations to update the parameters. He et al. [55] proposed
ResNet that overcomes the issue of training deeper CNNs by the use of a residual function.
In our proposed method, we follow the ResNet-18, which acts as an initial visual descriptor.
In general, it takes a 224 x 224 RGB image/frame and transforms through a number of
residual blocks to generate 512-dimension activation at the end by means of an average
pooling layer.

On the other hand, RNN is a special type of neural network that processes sequential
data. In general, as shown in Figure 1a, RNN processes the sequential data by looking at
the input as well as the output of the hidden state of the previous time step to synthesize
dynamics in data. However, for long sequences, the gradients can grow and decay expo-
nentially during training, which results in its limitation to learn long-length continuous
dynamics. To address this problem, LSTM is developed in [56] and emerged as successful
architecture in tasks related to natural language processing [57]. LSTM (see Figure 1b) uses
memory cells in long-range learning that tell the network what to remember and when
to forget. We use the LSTM module for learning temporal feature representation. The
major advantage of the differentiable recurrent models such as LSTM is that they can map
variable-length input such as video to single-label output (e.g., genre category) directly and
can also model complex temporal dynamics as demonstrated in [36].
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Figure 1. (a) Unfolded version of basic RNN; (b) LSTM module.

Temporal relationships can also be synthesized with temporal convolutions [58]. For
instance, [59] exploited residual 1D temporal convolutions and proposed a multi-stage
temporal convolutional network for surgical phase recognition. Additionally, Ramesh
et al. [60] proposed a multi-stage temporal convolutional network for the recognition of
phases in gastric bypass procedures. These methods are based on causal convolutions,
i.e., the prediction at current time step does not involve future information but only past
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information. This is achieved by convolving with applying padding at the single end, i.e., at
the past side. In Figure 2, the visualization of the causal convolution is shown. We used the
causal convolutions in our temporal convolution layer (with kernel size 1 x 3) to capture
temporal information in hybrid mode.

Hidden Layer
Y X

) D

L

Figure 2. Causal convolution.

Recently, contrastive learning [61] has emerged as an effective method for learning
robust representations in the image field. The general concept is to make an anchor-positive
pair closer in the embedding space, and to separate the anchor from the negative samples.
A deep network such as ResNet50 is used as an encoder to extract high-level features (of
dimension 2048), which are then projected to embedding space with a projection head
(with lower dimension, e.g., 256). As in [61], when no labels are used, positive pairs are
constructed with data augmentations, and negatives for the anchor are sampled randomly
from the mini-batch.

4. Proposed Methodology

The proposed CB-SVR system including training and retrieval process is illustrated
in Figure 3. The system has three core elements: video representation learning, feature
extraction and the retrieval process. Firstly, video representation learning is performed
by optimizing the weights in the proposed hybrid feature embedding learning model.
Second, video-level features are extracted by deploying the trained model to index the
database. Finally, similar surgery videos are retrieved for a given query surgical video
by matching the query’s video descriptor to the stored database’s index of features via
similarity measurement. All of the elements of the proposed framework are detailed in the
following subsections.
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Query Video

Video Representation Learning J Feature Extraction /
\4

= Feed-forward Video Frames
[¢= Buck i
of error signal

DONN

Query

Ndaptive Fusion —— N S
"""" ot Tnheritance TR
te :
r s B Contrastive
= wf{Ae S| Loss
= 4=
WE =
i 0 1 “Temporal - TCN
emporal I cnpor
Conmbornte | TON | Coneatenate

Results

Retrieval

INDEX

Figure 3. Overview of the proposed CB-SVR system.
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4.1. Video Representation Learning

Given a surgical video sequence Vi) = [Vl(]), Vz(]), s, Vt(]), s, Vn(])} € R"*"*¢ (where
V() indicates the jth surgical video in the database,  refers to the number of frames in each
video, and 7 x c is a spatial resolution of each frame), the goal of the video representation
learning method is to learn a compact descriptor or code for each surgical video. In order
to learn video representation directly from the surgical video itself, we adapt the deep
learning approach to learn long-range dynamics in a surgical video through the proposed
hybrid spatiotemporal embedding learning method.

4.1.1. Hybrid Spatiotemporal Contrastive Embedding Learning

This work proposes a hybrid spatiotemporal embedding learning (RDCN—-TCN—-CL)
method within a supervised contrastive learning framework (see Figure 4) to learn surgical
video representations. Inspired by [61], we propose exploring the supervised contrastive
learning method in the context of surgical video retrieval, where we leverage the label
information to construct positive pairs in addition to augmentations. We design the hybrid
model RDCN—-TCN—CL by combining CNN as spatial encoder and LSTM and temporal
causal convolution modules for temporal information analysis. We design an adaptive
temporal fusion layer which aims to pool the sequence of spatiotemporal features with
learnable weights. The pooled features are then fused together via an adaptive hybrid
fusion layer, which aims to fuse spatiotemporal features of different temporal modules by
applying appropriate weights. The entire model is trained under contrast learning which
includes video frame embedding learning and spatiotemporal embedding learning.
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Figure 4. Proposed hybrid spatiotemporal contrastive embedding learning for surgical video.
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The RDCN—-TCN—CL works by feeding T continuous frames of input surgical video

Vl(:]% into T shared deep CNNs (ResNet-18 in our case) to encode spatial information within

the pixels into rich features as a sequence of frame-level features SgJ)T which are then input

to the recurrent sequence learning module (LSTM) to learn temporal dependencies in the
()

surgical video. Specifically, a sequence of visual features S;'; is generated by passing
each time step t < T of video sequence Vt(] )
learnable parameter U as S t(] ) = fpenn, (V

through a feature transformation fpcyy with

U ), U). The transformation fpcnn corresponds
to the activations of the last layer (average pooling layer in our case) before the classification

layer in the deep CNN. The sequence SgJ)T is then input sequentially into a single-layer
LSTM with 512 hidden units, where the cell state ¢; and hidden state h; of LSTM for time
step t are updated as:

ir=0(QsiSt+ Quihi—1+ b) 1
ft:U(stSmL Qushi1+ bf) 2)
8= ¢(QugSi+ Qughi1+ by) ®)
ot = 0(Qs0oSt+ Qpoht—1+ bo) 4
= (fiOc 1+ it©g) @)
he = 01 © ¢(ct) (6)

where Q and b are the LSTM’s parameters; i, g, o are the input gate, input modulation
gate and output gate, respectively; f acts as the forget gate where c acts as the memory
cell; o and s are the sigmoid and hyperbolic tangent function, respectively; and ® refers to
element-wise multiplication.

To further enrich the feature descriptor of the surgical sequence 55]:%"' the temporal
causal convolutional layer is included in the proposed framework, consisting of 5 layers,
each consisting of 64 kernels with a kernel size of 1 x 3. The output of the temporal
convolutional layer is the same size as the input S 5])T and denoted as GgJ)T

Adaptive Fusion

For effective analysis of the surgical video content, the use of all hidden states of the
LSTM module as well as all time steps of the causal convolution module are critical. In
general, all segments of the video have different effects, and the simple temporal mean
pooling operation can ignore the important weights of different segments. To tackle this,
we design the adaptive temporal fusion (ATF) layer to learn these weights.

Let hyi.7 be the hidden states of the LSTM module and GiJ)T be the output of the

temporal causal convolutional layer. The output of the ATF layer for both modules is
computed as:

ATFsry = Y (hfj) ® alt) /T @)
t=1.T
t=1.T

where al; is the adaptive weight and © denotes element-wise multiplication.

ATFLSTM(j) and ATFTCN(f ) represent clip-level descriptors from two different tem-
poral modules. For effective fusion of these two features, we design the adaptive hybrid
temporal fusion (AHTF) layer. It consists of 1 fully connected layer. The output of AHTF
layer is computed as:

AHTFD = [((WarATFpy +b) @ a2) (| ((WarATFpy +b) ©a3)] )
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where WAF is the shared weight matrix, b is the bias term, and 42 and a3 are adaptive
weights for the LSTM and the temporal causal convolutional modality.

Contrastive Embedding Learning

The feature AHTFU) is passed through the fully connected layer z = Wyp AHTE() + b
(where Wyr € RIKI*d and b € RIKl are learnable parameters) followed by a 1.2
normalized layer.

v

Now, let z; be the L2 normalized feature vector corresponding to surgical video V.7,
and consider a positive pair (z], zpos) from the same class (and augmented versions) and
negatives (zj, Zneg) from different classes within the training minibatch, the probability of
zj being recognized as the category of its positive sample zpos as:

exp(zpos | zj)/ )

eXp (Zpos TZ]) /T) + 2 eXp (ZnegTZj) /T)
negeNG(j)

P(yj = ypos|zj) = (10)

where NG(j) is a set of negatives to the jth sample and 7 is temperature [61].

Let N refer to the training set of labeled surgical video sequences, i.e., (V, 1(T), yl)) e
where y is the label. Let PS and NG be sets of positive and negative samples. The goal is
to maximize the probability (10). This can be accomplished by optimizing the parameters
(U, Q) of the network’s visual and sequential components by minimizing the negative log
likelihood. The contrastive loss associated with (11) can be given as

Y. (—logP(y; = ypos|zj)) (11)

L =
VCL = |N| Z |PS( )| posePS(j)

which can be rewritten as:

Z (f log (exp (ZPOSTZ]')/T) / exp (Zpostj)/T) + Z exp (ZnegTZj)/T) )) (12)

posePS(j) negeNG(j)

By minimizing Equation (12), we end up in maximizing the cosine similarity between
zj and zp,s and minimizing the cosine similarity between zj and zpeq, where Yi = Ypos and
Yj # Yneg-

In addition to video-level contrastive loss (12), we also apply contrastive learning at the
frame level so that it can better learn the visual patterns essential for video representation.
We design the self-supervised learning task with the assumption that adjacent frames share
similar patterns with respect to distant frames. More formally, the required constraints for
embedding learning are:

foenn, (Vt(j)/ U) ~ fDCNN; i (Vt(QA, U)

for small A, and

Dist (fDCNNf (Vt(j , u),f DCNNj (Vt(er)A’ U)) < Dist (f DCNN; (Vt(j , u),f DCNNji ¢ (Vt(—{-)l“' U))

for I' > A, where Dist is the distance function (we used the L2 norm).
The contrastive loss for video frame embedding can be defined as:

Lpcy = Di5t<fDCNN[ (Vtm/ u)rfDCNNHA (Vt%)A, U)) + max{O, mc — Dist(fpcnn, <Vt(/'>, U) , fDCNNGr (Vt@rr U)) } (13)

The loss Lrc; will make fpenn, (Vt(j),l,l) and fpcNn;,, (Vt(fr)A, U) closer, while

fpenn, (Vt(j ), U) and fpcNn,, ¢ (Vtg)r/ U) are enforced to be separated by the margin mc.
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The total loss is given as:
Ler = Lver +ALfer (14)

We jointly optimize the entire parameters of RDCN—TCN—CL, with backpropagation
used to compute the gradient of the objective L with respect to all parameters (U, Q) over
minibatches N’ C N sampled from the training dataset N.

4.1.2. Training Details

Since the parameter scale of the spatial component of RDCN—TCN—CL is much larger
than that of its temporal component, it can quickly overfit on smaller training datasets. Addi-
tionally, the effectiveness of its temporal component depends on how its spatial component
extracts the features that are relevant to its temporal component. Therefore, to effectively
train the RDCN—TCN—CL, we initialize the weights of its spatial component with weights
trained on the ImageNet [62] dataset by leveraging the power of transfer learning. Further, we
initialize the recurrent weights of its LSTM module with orthogonal initialization [63] and the
TCN module as in [55]. The weights of adaptive fusion layer are initialized to 1. We train the
RDCN—-TCN—-CL network using backpropagation with Adam optimization [64] with (3, set
t0 0.9, B, set t0 0.999 and € = 10 x 108, and weight decay of 10 x 10~*. The neuron size of
embedding is set to 256. The learning rate is set to 1 x 10~*. The parameter A is set to choose
randomly from {t = 0:floor(T/4)} time step and I' from {t = T-floor(T/4):T}. Additionally, m. is
set to 2. Furthermore, in order to prevent overfitting, we also adopt undermentioned data
augmentation techniques and an early stopping strategy. We stop training after 100 epochs, as
the loss does not seem to decrease further.

During training, for each training batch, we apply three types of data augmentation,
namely cropping, rotation and horizontal flipping, to artificially enlarge the database. First, a
video clip of 24 (i.e., T = 24 without temporal downsampling) continuous frames is randomly
sampled from each video, after which it is converted to a 250 x 280 spatial resolution. Then,
the center crop of 240 x 260 is sampled from its randomly rotated variant within a range of
[—5, 5]. After that, the 224 x 224 crop is randomly sampled from it and fed to the network.
We also apply horizontal flipping with 50% probability before inputting it into network. Our
framework is implemented on MATLAB 2019b with NVIDIA Tesla K40c GPU.

4.2. Feature Extraction and Query Matching

Once the model is trained, its responses can be used as a feature representation for the
surgical video. The features from the LSTM component and TCN component in the trained
RDCN—-TCN—-CL model are extracted and fused via the adaptive fusion layer to represent
the surgical sequence.

To facilitate the retrieval process, the model’s responses as features are extracted from
each surgical video in the database using (9) and indexed in the database. Now, for a
given query surgical video g, which is represented as a feature vector obtained after feature
extraction, CB-SVR aims to select the X best videos from the database that resembles this
query video g. This is usually done by computing the similarity distance between the query
video and the videos in the database D. In this paper we utilize the cosine distance as
similarity measurement which is given as:

d d 2 d
JEE P L) - ER,
Deos(q,D) = — — -

£ (6,

where Fy, is the rth feature vector of query video g and Fp, is the rth feature of the jth video
in the database.

(15)
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1) Thread Cut

5. Dataset

We chose two publicly available datasets to evaluate the performance of our method:
Surgical Actions 160 [54] and Cataract-101 [65]. The Surgical Actions 160 dataset consists of
160 short video clips representing surgical actions in gynecologic laparoscopy. These video
clips are categorized into 16 distinct classes of surgical actions as depicted in Figure 5, and
the database has exactly 10 example clips for each action class. Each video clip is encoded
with H.264/AVC and is of approximately 5-second duration with a spatial resolution
of 320 x 240. In total, this dataset amounts to 19,181 frames. For our experiments, we
randomly selected ten splits, such that each split divided the dataset into two sets (training
and testing), and each set consists of 80 videos (5 videos per class in each set).

2) Injection

. P ——
5) Dissection Thermal

-
L 4
i .

8) Suction
11) Knot Pushing ) 12) K1otting
14) shn&, In 15) Endobag-In

mu

16) Endobag-Out
Figure 5. Overview of 16 different surgical actions in gynecologic laparoscopy.

On the other hand, the Cataract-101 dataset consists of 101 recorded cataract surgeries
performed by four surgeons [65] and annotated with ten surgical phases (as shown in
Figure 6) by the senior ophthalmic surgeon. Each video is encoded with H.264/AVC. In
total, this dataset amounts to 1.26 million frames with a total duration of 14 h and a spatial
resolution of 720 x 540. For our experiments, we prepared this dataset for the experiment
as follows: first, we extracted clips from each video according to the phase annotation given
with the dataset, resulting in 1265 total clips of 10 phases. Then, we randomly chose 5 splits
such that for each split, the training set and testing set consisted of 634 and 631 video clips,
respectively, as depicted in Table 1.

Training is performed using a training set and retrieval is performed on the testing set
with the leave one out rule (i.e., retrieval set does not include query video). As visible in
both Figures 5 and 6, the visual appearance of both datasets is very similar, which makes
retrieval of surgical videos an extremely challenging research area.

We adopted mean average precision (mAP) following [54] to evaluate the effectiveness
of the proposed approach, which is computed using (16).

Gq

qu k1

where G is the ground truth on query g. P;(k) is the precision of the top k retrieved videos,
Q is the set of all queries and B, (k) = 1if the item at rank k is relevant, and otherwise 0.
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3) Rhexis
-
4) Hydrodissection 5) Phacoemulsificiation 6) Irrigation and Aspiration
7) Capsule Polishing 8) Lens Implant Setting-Up 9) Viscous Agent Removal
10) Tonifying and Antibiotics
Figure 6. Overview of 10 different surgical phases in cataract surgery.
Table 1. Dataset (Cataract-101) preparation.
#Videos
Surgery Phase/Label — -
Training Testing

Incision 104 52 52
Viscous agent injection 232 116 116
Rhexis 104 52 52
Hydrodissection 101 51 50
Phacoemulsificiation 104 52 52
Irrigation and aspiration 120 60 60
Capsule polishing 110 55 55
Lens implant setting-up 105 53 52
Viscous agent removal 106 53 53
Tonifying and antibiotics 179 90 89
TOTAL 1265 634 631

6. Experimental Results and Analysis
6.1. Analysis of Training with Different Temporal Length Video Sequences

We first investigate the influence of learned RDCN—TCN—CL features on the retrieval
performance by selecting different temporal lengths (T = {8, 16, 24, 32}) of video sequence
inputs for training the RDCN—TCN—CL. As shown in Table 2, the mAP (averaged over
aforementioned splits) gradually increases with an increase in the temporal length of the
input sequence. This indicates that a longer input sequence for training gives a boost in
system performance. However, a input sequence length of 32 does not have a further
impact on the retrieval accuracy but costs more during training. Hence, we choose the
temporal length of 24 for a video sequence for training the RDCN—-TCN—CL network
under the CB-SVR system. Note that we do not downsample the video and use the original
sampling. Training with downsampled sequence (to increase the length of video) can be
further investigated.

Table 2. mAP % (mean = std.) when training under different temporal lengths of video sequence on
two datasets under the CB-SVR system.

Temporal Factor

8 16 24 32
Surgical Actions 160 2711 +£1.21 27.89 £1.12 30.012 £1.778  30.09 + 1.14
Cataract-101 78.43 £ 0.673 79.25 £ 0.556 81.13 £1.28 81.11 £ 1.08

Dataset
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6.2. Analysis of Different Temporal Pooling Strategies

Extracting discriminative video features is vital for our task. In this regard, we evaluate
the impact of two feature pooling methods (mean pool, max pool) on retrieval performance.
For this assessment, video features are computed by using with particular pooling method
in place of adaptive fusion. The retrieval performance (mAP averaged over aforementioned
splits) based on these methods is depicted in Table 3. The result shows that adaptive fusion
performs superiorly over the other two pooling methods with 30.012% mAP in Surgical
Actions 160 and 81.13% mAP in Cataract-101.

Table 3. mAP (averaged over aforementioned splits) of different feature pooling strategies on two
datasets under the CB-SVR system.

Dataset Max Pool Mean Pool Adaptive Fusion
Surgical Actions 160 27.64 £1.17 28.63 = 1.76 30.012 +1.778
Cataract-101 76.71 £1.21 79.72 £0.28 81.13 £1.28

6.3. Effectiveness of Combined Visual and Sequential learning

In order to demonstrate the effectiveness of RDCN—-TCN—CL as a combined vi-
sual and sequential features learnable network, we evaluate its performance with a se-
ries of experiments by exploiting ResNet-18 into its potential counterparts. These are:
(1) ResNet18g: ResNet-18 trained from scratch; (2) ResNet18gr: ResNet-18 fine-tuned from
an imagenet pre-trained model; (3) ResNet18prz + LSTM: trained on frame-level features
computed from a frozen imagenet pre-trained model; (4) ResNet18prz + LSTM + TCN:
trained with hybrid LSTM-TCN on frame-level features computed from a frozen imagenet
pre-trained model; and (5) RDCN — TCN — CLg: ResNet-18, LSTM and TCN jointly trained
end-to-end from scratch. We use the same training parameters for ResNet18g, ResNet18pr,
ResNetl8grz + LSTM, ResNet18grz + LSTM + TCN and RDCN — TCN — CLg as stated
in Section 4.1.2 for RDCN—-TCN—CL. We initialize the weights of ResNet18g and the
spatial component of RDCN — TCN — CLg as in [55]. Moreover, we train ResNet18g and
ResNet18grt in its purest form, i.e., we do not use dropout, but we follow early stopping and
all spatial data augmentation techniques (with temporal length of 1) to avoid overfitting as
stated in Section 4.1.2. The video features are extracted with spatial frame-level features
(extracted from respected average pooling layer) for ResNet18s and ResNet18pr. Likewise,
for ResNet18grz + LSTM, ResNet18grz + LSTM + TCN and RDCN — TCN — CLg, it fol-
lows the same procedure to extract video features as in RDCN—TCN—CL. All counterparts
with RDCN—-TCN—CL are performed on the aforementioned training and testing splits,
and the results are depicted in Tables 4 and 5 for the Surgical Actions 160 and Cataract-101
databases, respectively.

Table 4. Comparison between RDCN—-TCN—CL and other network architectures in terms of retrieval
performance (mAP =+ std.) on Surgical Actions 160 under the CB-SVR system.

Split ResNet18g ResNet18gr ResNetl18grz + LSTM ResNetl18grz + LSTM + TCN RDCN — TCN — CLg RDCN-TCN-CL
1 14.71 25.59 18.52 18.81 14.78 28.62
2 19.35 30.47 20.87 21.42 18.14 32.34
3 14.97 25.14 19.14 19.25 14.21 28.67
4 14.36 26.37 18.12 18.42 13.98 27.78
5 17.42 28.16 22.42 22.51 17.88 30.71
6 15.65 26.17 21.13 22.24 15.65 29.42
7 16.75 29.18 22.21 23.11 17.23 31.58
8 14.41 26.09 20.17 21.12 14.34 27.48
9 18.27 26.74 21.36 22.46 19.14 32.67
10 17.24 26.11 21.54 21.82 17.21 30.85
Mean =+ std. 16.31 + 1.660 27.002 + 1.623 20.548 + 1.431 21.12 + 1.601 16.256 + 1.787 30.012 + 1.778
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Table 5. Comparison between RDCN—TCN—CL and other network architectures in terms of retrieval
performance (mAP =+ std.) on Cataract-101 under the CB-SVR system.

Split ResNet18g

ResNet18gr ResNet18grz + LSTM ResNet18grz + LSTM + TCN RDCN — TCN — CLg RDCN-TCN-CL

5

46.48
46.25
42.56
48.68
51.35

Mean =+ std. 47.06 £ 291

73.75 53.89 54.32 55.26 81.35
74.66 54.25 55.29 57.45 79.25
73.02 53.83 54.96 50.96 82.73
74.67 54.13 56.01 52.90 80.14
75.81 54.37 56.15 51.96 822

74.38 £ 0.9438 54.27 £ 0.327 55.35 £ 0.677 53.70 £ 2.352 81.134 +£1.28

0.5000 -
0.4500 -
0.4000 A
0.3500 A
0.3000
0.2500
0.2000 A
0.1500 A
0.1000
0.0500 -

0.0000 -

In Tables 4 and 5, we can see that RDCN—TCN—CL achieves much better performance
than the other four methods. More analytically, in the context of retrieval performance
(mAP averaged over aforementioned splits), we can observe: (1) the importance of pre-
trained weights (in initializing the spatial component DCNN) when comparing ResNet18g
with ResNet18pt, and RDCN — TCN — CLg with RDCN—-TCN—CL; (2) the importance of
using temporal dynamics when comparing ResNet18s and RDCN — TCN — CLg (although
there is a little difference in their performance for the Surgical Actions 160 dataset, which
may be due to there being fewer training data than Cataract-101); (3) the effectiveness of
end-to-end training when comparing ResNet18prz + LSTM and RDCN—-TCN—-CL; and
(4) despite using both spatial and temporal dynamics, ResNet18grz + LSTM performs
worse than ResNet18pr. The underlying reason for this is that ResNet18pr is a domain-
specific version adapted to the surgical visual content, whereas ResNet18rrz + LSTM relies
on visual knowledge of the general domain and, therefore, is unable to synthesize true
temporal dynamics in the surgical video.

Further, Figures 7 and 8 depict the class-wise performance, where RDCN—-TCN—-CL
performs much better than other methods in all classes of Cataract-101, but in Surgical
Actions 160, we can see its performance degradation in some classes (e.g., Blunt Dissection,
Irrigation, Needle Positioning and Endobag-in). However, for such classes, ResNet18pt
performs better. The reason for this seems to be that these classes have some unique visual
patterns in the form of instruments and structural objects that are effectively captured with
static ResNet18pr descriptors, while for other classes which have strong subtle motions,
RDCN—-TCN—CL descriptors are able to capture them.

mResNet18; = ResNet18.; = ResNet18., + LSTM ResNet18.;, + LSTM + TCN RDCN-TCN-CLg = RDCN-TCN-CL

Figure 7. Class-wise comparison of Surgical Actions 160 between RDCN—-TCN—CL and other
network architectures, in the terms of retrieval performance (mAP averaged over 10 splits).
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Figure 8. Class-wise comparison of Cataract-101 between RDCN—TCN—CL and other network
architectures, in the terms of retrieval performance (mAP averaged over 5 splits).

6.4. Comparison with State of the Art

In Table 6, to demonstrate the superiority of the proposed methodology, we compare
our approach with previous methods on both datasets. We also compute the CNN responses
such as ResNet18 responses from the average pooling layer as a feature descriptor (denoted
as CNNR). Similarly, CNNA represents activations of the fc7 layer of the AlexNet [66],
and CNNG represents Googlenet [67] responses from the last pooling layer. For the CNN
features, we perform meanpool in the temporal dimension.

Table 6. Comparison with the state of the art on Surgical Actions 160.

mAP (Mean =+ std.)

Feature Descriptor Dim. Surgical Actions 160  Cataract-101

CNNA [66] 4096 20.011 £+ 1.531 20.44 +1.253
CNNG [67] 1024 21.82 £+ 1.064 22.16 £ 1.145
CNNR [55] 512 22.67 £1.192 23.18 £1.212
FS [41] 630 19.46 +1.631 20.11 +1.264
DFS [54] 810 20.75 £1.253 25.18 £1.152
MIDD [54] 25 22.54 + 1.557 33.18 +1.311
RDCN-TCN-CE 512 28.533 + 1.142 7527 £1.35

RDCN-TCN-Triplet 512 28.741 £ 1.334 77.36 +1.18

RDCN—-TCN—-CL 512 30.012 - 1.778 81.134 4 1.28

In Table 7, we can observe the impact of network depth on the retrieval performance
using the results obtained by CNNA (20.011 + 1.53)%, CNNG (21.82 £ 1.06)%, and CNNR
(22.67 £ 1.19)% for the Surgical Actions dataset and CNNA (20.44 + 1.253)%, CNNG
(22.16 £ 1.145)%, and CNNR (23.18 £ 1.212)% for the Cataract-101 dataset. Furthermore,
the handcrafted feature-based method [41] performs poorly compared to deep features
(e.g.,19.46 £ 1.631 vs. 22.67 £ 1.192) for surgical 160). With RDCN—-TCN—-CL descriptor,
we are able to outperform MIDD [54] with an mAP of 30.012 & 1.778 in Surgical Actions
160 and with a significant boost in mAP (81.13 &= 1.28 vs. 33.18 & 1.311) for Cataract-101.
Additionally, RDCN—-TCN—CL was found to be effective compared to RDCN-TCN-Triplet
and RDCN-TCN-CE, where RDCN-TCN-Triplet is trained under triplet loss and RDCN-
TCN-CE is trained under cross entropy loss.
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Table 7. Surgical workflow recognition performance on Cholec80.

Methods Accuracy Precision Recall
PhaseNet [30] 788 £ 4.7 713 +15.6 76.6 +16.6
EndoNet * [30] 81.7 £4.2 73.70 £ 16.1 79.60 £ 7.9
(EndoNet + LSTM) * [68] 88.6 £9.6 844+£79 847 £79
SV-RCNet [32] 853+73 80.7+7.0 835+75
MTRCNet * [33] 892+76 86.9 £ 4.3 88.0 6.9
TeCNO [59] 88.6 £7.8 86.5+£7.0 87.6 £6.7
NL-RCNet [34] 85.73 £ 6.96 82.94 +£6.20 85.04 £5.15
RDCN—-TCN-CE (R18) 8213 £ 6.7 7514 £9.1 7921 £7.1
RDCN—TCN—Triplet (R18) 83.04 £ 7.1 77.65 + 10.5 80.43 + 7.4
RDCN—-TCN—-CL (R18) 83.86 + 6.67 78.89 + 7.3 81.15+ 7.2
RDCN—-TCN-—CL (R50) 90.2 & 6.93 87.52 £ 6.88 85.65 £ 6.91

* means methods of multi-task learning with extra tool labels needed.

We further evaluate run time performance of RDCN—TCN—CL on Xeon E5 CPU.
Compared to MIDD, which can process 108 frames per second for feature extraction,
RDCN—-TCN—CL can process 40 frames per second. Although RDCN—TCN—CL is slower
than MIDD, it achieves higher performance than MIDD, and is a promising future approach.

6.5. Ablation Study in Context of Surgical Phase Recognition

Next, we also conduct an ablation study to analyze the effectiveness of RDCN—TCN—-CL
in surgical phase recognition. In this regard, we conduct the experiment on a large dataset
named cholec80 dataset [68] and compared the performance with the state of the art.
Cholec80 consists of eighty recorded videos of cholecystectomy surgeries captured at 25 fps.
All videos are annotated with seven phases and seven tools. Following [32,33,68], we used
40 videos as a training set and the rest as a test set. Since additional annotations such as tool
presence labels are generally not available and single-task approaches are more practical in
real-world applications, we only employ the phase labels. Further, we downsample the
training videos from 25 fps to 1 fps. The video frames are first resized to 250 x 250 and
follow the same data augmentation as mentioned in Section 4.1.2.

The loss for the surgical phase recognition task with contrastive loss can be defined as:

Lp =

INIZZ( log (3 )) + |N|ZZ(—10g( M) +La (17)

j=1t=1

where 9§] ) is the predicted probability of the tth frame of the jth video for the LSTM module
and yff ) is the predicted probability of the tth frame of the jth video for the TCN module.

Hybrid predictions are used to compute phase scores. The results are reported
in Table 7, where we explore the triplet loss (RDCN-TCN-Triplet) and cross entropy loss
(RDCN-TCN-CE) methods in (14); however, RDCN—-TCN—CL performs better. With
ResNet50 as a backbone, RDCN—-TCN—-CL outperforms all other methods with 90.2%
accuracy (we retain the imagenet pretrained weights of Convl_x to Conv4_x residual
blocks in R50 while training). We also plot the bar chart (see Figure 9) of average F1 scores
computed for each phase. We can observe that RDCN—TCN—CL gradually improves the
F1 score performance in almost all phases compared to other baselines.
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Figure 9. Comparison of the baseline on Cholec80 dataset. We report average F1 scores for each
phase, P1 to P7.

7. Discussion

The automated retrieval system for the long-term archives of recorded surgeries is a
key component for tasks such as surgical error analysis, surgical skills assessment, and post-
operative disease analysis. In this paper, we present a content-based surgical video retrieval
system (CB-SVR) to address these tasks. In contrast to previous methods for surgical video
retrieval, which are based on handcrafted features, we utilize a deep learning approach
to extract discriminative features from surgical videos for video retrieval. Specifically,
we propose exploring a supervised contrastive learning framework under which surgical
representations are learned on the top of ResNet via a hybrid LSTM-TCN module into
a single end-to-end trainable network (i.e., RDCN—-TCN—-CL), whose activations are
used to represent the surgical video. By fusing LSTM-TCN via the adaptive fusion layer,
RDCN—-TCN—-CL ends up exploring both spatial and enhanced temporal information to
represent videos. We also incorporate video frame embedding learning to further enhance
the visual features needed for video representation. As the main concerns of the proposed
RDCN—-TCN-CL, the training setting of the network should be carefully determined
after extensive consideration of system performance. To train RDCN—-TCN—CL, we have
shown that the length of the input video sequence affects the learning ability and therefore
affects the retrieval performance. Therefore, we chose the temporal length of 24 frames
for the video sequence to train the network. Additionally, increasing the length with
downsampling can be investigated in future works. Meanwhile, to avoid overfitting,
we also used data augmentation techniques to increase the database size. Furthermore,
with extensive experiments, we demonstrated the effectiveness of RDCN—-TCN—CL in
end-to-end training, where RDCN—TCN—CL performs much better than its counterparts.
Finally, compared to the state of the art, we demonstrated the superiority of the proposed
approach for representing surgical videos in the context of video retrieval. Although
RDCN—-TCN—CL is slower than the state of the art, its performance is high with adequate
speed. We also conduct the ablation study, where our model outperforms the state of the
art in the surgical phase recognition task. With the proposed method, RDCN—-TCN—-CL
as an attempt to exploit contrastive learning (with a deep learning approach) for video
retrieval in the medical domain; we believe that it can be used to effectively analyze other
medical videos, and will inspire further investigation in surgical video retrieval.

8. Conclusions

In conclusion, we present a deep learning approach for content-based surgical video
retrieval. We explore the supervised contrastive learning approach to learn surgical rep-
resentations. Further, to strengthen the surgical representations, we propose a hybrid
approach which combines LSTM and temporal convolutions to learn temporal features
under supervised contrastive learning framework. We exploit ResNet and LSTM and
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TCN in a unified single joint model, i.e., RDCN—-TCN—-CL, to learn surgical video repre-
sentations. We train the RDCN—TCN—CL under a contrastive learning approach where
we explore both spatiotemporal embedding and video frame embedding learning, and
the generated high-quality spatiotemporal features from the RDCN—TCN—CL model
are used to retrieve similar surgical videos. With extensive experiments, we validate our
proposed methodology on public surgery video datasets, where it outperforms the state
of the art in retrieval and phase-recognition tasks. For retrieval, the proposed method
achieves the mean average precision of 30.012 £ 1.778 vs. 22.54 £ 1.557 36 for Surgical
Actions 160 and 81.134 £ 1.28 vs. 33.18 & 1.311 for Cataract-101. For the phase-recognition
task, the proposed method achieves 90.2% accuracy for the Cholec80 surgical dataset. For
future work, we consider including training on larger database, with large batch sizes to
improve the feature learning ability. Additionally, more self-supervised methods need to
explore enhancing feature learning, and hashing is a worthy option that can be used for
fast retrieval.
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