Broadband and Wide-Angle Performance of a Perfect Absorber Using a MIM Structure with 2D MXene

Yue Jia 1, Chunmei Song 2, Yunlong Liao 2 and Houzhi Cai 1,*

1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; onlyjiayue@hotmail.com
2 International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, China; 15130842118@163.com (C.S.); yl.liao@outlook.com (Y.L.)
* Correspondence: hzcai@szu.edu.cn

Abstract: Due to the extraordinary optoelectronic properties and surface-rich functional groups, MXene has shown great promise in many applications, such as electromagnetic shielding, catalysis, sensors, ultrafast photons, etc. In this work, we propose a wide-angle absorber based on a metal-insulator-metal (MIM) metamaterial consisting of MXene. By optimizing the design, the absorption efficiency can be further improved throughout the entire wavelength range. More importantly, the absorber exhibits high-efficiency broadband and wide-angle (20–80°) absorption in the near-infrared range (NIR: 1.1–1.7 µm) by numerical calculation. It is foreseeable that the excellent absorption characteristics and easy-to-manufacture structure of the designed absorber will bring some inspiration to the absorption device in the NIR and its practical application.

Keywords: perfect absorber; MXene; MIM structure

1. Introduction

With the development of science and technology, perfect absorbers have played a significant role in more and more fields, especially in solar cells, photoelectric detection, military stealth, etc. [1–4] In general, noble metals (such as Au and Ag) have been widely used as plasma absorbers [5,6]. Recently, two-dimensional (2D) materials, such as graphene, have been used as a promising absorbing material because of their unique light-absorption properties [7]. In addition, researchers have proposed many kinds of structures based on 2D materials to improve the absorption of photons [5,8,9]. For instance, we proposed a one-dimensional (1D), topological, photonic crystal heterostructure with graphene, which achieves perfect absorption in multiple channels [9]. The use of plasmon resonance in 2D materials for creating metasurface devices is an especially interesting research topic [10,11]. In fact, the absorption bandwidth is a heavy parameter for the absorber. However, a large amount of current research work relies on complex, 2D periodic structures to achieve miniaturized broadband, multi-channel, and other technical parameters [12]. In addition, the adjustable perfect absorber is an important aspect [13,14]. However, complex, multilayer, patterned structures have certain problems in quantitative production, and their manufacturing costs are relatively high. Therefore, developing the perfect absorber with a simple structure and economic cost is a key research direction.

More recently, the rising star of the 2D material family, 2D MXene, a ternary carbide or nitride with an anisotropic laminated structure, has successfully attracted the attention of a large number of researchers. Two-dimensional MXene has the general formula M_{n+1}X_nT_X, where n = 1, 2, or 3, M is a transition metal (e.g., Ti, Sc, V, Zr, Mo, Cr, and Nb), X is N or C, and T_X is a surface functional group (e.g., OH, O, and F). Ti_3C_2T_X, as the most common and frequently studied member of the MXene family, has been applied in many fields due to
Electronics 2022, 11, 1370

We define the filling factor \(f \) as the length of the ridge divided by the grating period \(\Lambda \). For a one-dimensional periodic grating structure, the parameters affecting system performance mainly include the width of the grating, the thickness of the dielectric layer, and the grating period. Taking TM polarized light as an example, the magnetic field of the incident light and the induced magnetic polaron resonate at this time so that the energy can be effectively confined in the absorber. Figure 2a shows the structure of the absorption diagram when \(f \) changes from 0.1 to 0.9, and it was found that, when \(f \) gradually increases, the absorption performance mainly includes the width of the grating, the thickness of the dielectric layer, and the grating period.
increases, the absorption of the structure also increases. Figure 2b plots the absorption when \(f > 0.9 \). It was found that, when \(f \) was increased again, the overall absorption was basically unchanged and showed a slight downward trend. This may be because, as \(f \) increases, the relative area of the entire structure receiving light decreases. In fact, \(f = 1.0 \) is the flat structure of MXene, which also shows that the grating structure of MXene has a better absorption effect than the flat structure. When \(f = 0.9 \), the whole band has an absorption of 82%, which is the optimal solution for the absorption effect of the structure. Figure 3a shows the relationship between wavelength and absorption under different dielectric-layer thicknesses. It was found that the dielectric layer was too thin, and the absorption decreased (<60%). When \(d \) is between 280–290 nm, the absorption rate is as high as about 85%. The effect of the surface plasmon resonance cannot be excited under the change of the angle. Figure 3b shows that, when \(d > 280 \) nm, as the thickness of the dielectric layer increased, a resonance redshift occurred in the absorption. This redshift was due to the excessively thick dielectric layer, which resulted in a guided mode resonance (GMR) formed by the upper MXene grating and the dielectric layer, and the lower dielectric layer and the MXene plate [36,37].

![Structure diagram](image)

Figure 1. (a,b) Structure diagram. Variation of absorption with angle for different \(f \); (c) relative shift of resonance angle with change of \(n_a \); (d) resonance angle.

In order to reveal the physical mechanism of the proposed broadband absorber, we calculated the electric and magnetic field energy distributions of the absorption spectrum at a wavelength of \(\lambda = 1.55 \) \(\mu \)m. Figure 3c,d show the absorption spectra in TE and TM modes in the electric field \(E_x \), respectively. It was found that the electric field energy was about four orders of magnitude greater than the magnetic field energy, suggesting that electric field resonance dominates broadband absorption. We can see from Figure 3c,d that the energy of the electromagnetic field is hardly distributed on the MXene at the bottom. The electric field distribution in Figure 3c is mainly concentrated on the top of the grating, especially the grating slits, the corner portions of the MXene, and the intermediate dielectric layer. The electric field distribution indicates that the appearance of the cavity mode is due
to the MXene’s local surface plasmon resonance (LSP) and the structure’s guided mode resonance (GMR). It can be seen from Figure 3d that the magnetic field distribution is mainly concentrated on the top. In the above studies, we found that increasing the fill factor \(f \) can increase the absorption rate of the absorber, while the etching depth of the waveguide rib has no significant effect on the absorption rate (Figure 4c). In the grating structure, generally through the structure, adjust to an asymmetrical groove profile or multi-layer step grating to improve the absorption coupling efficiency \([38–42]\). Therefore, we considered setting the waveguide rib etching depth \(h \) to different heights and found that the absorption was significantly enhanced. Here, we consider setting the waveguide rib etch depth to a different height.

![Figure 2](image-url)
Figure 2. (a,b) Effect of filling factor \(f \) on wavelength and absorption performance.

![Figure 3](image-url)
Figure 3. (a,b) Effect of dielectric layer thickness \(d \) on absorption performance; (c) electric field distribution \((\lambda = 1.55 \, \mu m)\); (d) magnetic field distribution \((\lambda = 1.55 \, \mu m)\).
was found that changing the absorption of the structure when the other parameters of the structure's guided mode resonance (GMR). It can be seen from Figure 3d that the magnetic field distribution is mainly concentrated on the top. In the above studies, we found that, when the fill factor increases, it can increase the absorption rate of the absorber, while the absorption is stable; the two improved nearly 14%. In order to more clearly show the system performance under this asymmetric structure, we show the relationship between the wavelength and the absorption as \(f \) changes in Figure 5b,c, respectively. Taking \(f = 0.4 \) and \(f = 0.2 \) as examples, the wavelength and absorption under other conditions have a similar relationship. It was found that, when \(f \) is reduced, it only affects the minimum value of energy absorption in the shorter wavelength range (1.0–1.2 \(\mu \)m) and has almost no effect on the band greater than 1.2 \(\mu \)m.

Figure 4. (a,b) Structure diagram; (c) effect of \(h \) on wavelength and absorption performance under TM polarization; (d) effect of \(h \) on wavelength and absorption performance under TE polarization.

Figure 4a,b shows the structure we designed. One should note the change in the absorption of the structure when the other parameters of \(h_2 \) remained the same as those in Figure 1a. We defined relative height \(N = h_2/h_1 \). Figure 4c,d shows the effect of waveguide rib etch depth on absorption in TM and TE polarization mode. Since only TM polarization supports surface plasmon resonance, it is seen that the absorption in TM mode varies with wavelength: the absorption rate fluctuated (Figure 4c), while the wavelength in TE mode had no effect on absorption (Figure 4d). In order to compare the waveforms under TM and TE polarization more intuitively, the angle of incidence was kept at 50° (Figure 4c,d). Although the excitation mechanism under the polarization of TM and TE is different, it can be seen that the change trend of the two is consistent; that is, as \(N \) increases, the absorption rate increases. Because \(f \) is calculated based on periodic boundary conditions, we maintain the same as the optimal structural parameters in Figure 1 (\(f = 0.9 \)). We changed the waveguide rib etch depth, which is equivalent to linearly superimposing two single grating structures with different waveguide rib etch depths. Figure 5a shows the absorption change of the structure at the symmetrical height and the asymmetrical height (\(n = 4 \)). It was found that changing \(h_2 \) does improve the absorption. It can be seen that, after greater than 1.3 \(\mu \)m, the absorption is stable; the two improved nearly 14%.

In order to more clearly show the system performance under this asymmetric structure, we show the relationship between the wavelength and the absorption as \(f \) changes in Figure 5b,c, respectively. Taking \(f = 0.4 \) and \(f = 0.2 \) as examples, the wavelength and absorption under other conditions have a similar relationship. It was found that, when \(f \) is reduced, it only affects the minimum value of energy absorption in the shorter wavelength range (1.0–1.2 \(\mu \)m) and has almost no effect on the band greater than 1.2 \(\mu \)m.
show the relationship between the wavelength and the absorption as f changes in Figure 5b,c, respectively. Taking $f = 0.4$ and $f = 0.2$ as examples, the wavelength and absorption under other conditions have a similar relationship. It was found that, when f is reduced, it only affects the minimum value of energy absorption in the shorter wavelength range (1.0–1.2 μm) and has almost no effect on the band greater than 1.2 μm.

Figure 5. (a) Comparison of wavelength absorption; (b,c) relative changes in absorption when h_2 changes ($f = 0.1$ and $f = 0.4$).

2.3. Wide-Angle Analysis

In the previous discussion, we observed the absorption characteristics of this structure over a wideband. In order to investigate whether the structure has more perfect performance, we studied its wide-angle absorption performance because surface plasmon resonance can only be excited in TM mode, and it has been shown in Figure 4d that TE mode cannot effectively achieve perfect absorption. Therefore, we only discuss the wide angle of the absorption performance of the structure in TM mode. The simulation results show that the etching depth of the asymmetric waveguide rib ($n = 5$) can reach an absorption rate close to 1.0, while the symmetric structure ($n = 1$) can only achieve an absorption rate of about 90% at most with $\lambda = 1.55 \text{ μm}$ and $f = 0.5$ (See Figure 6a). In Figure 6b,c, we show the corresponding energy absorption diagrams of symmetric and asymmetric structures at $\lambda = 1.55 \text{ μm}$ and $\theta = 50^\circ$. There is only a small difference between the two structures.

Finally, we compare the other near-infrared bands based on the MIM structural properties of the absorber (Table 1). It can be seen from Table 1 that the absorber we designed based on the MIM structure has both broadband and wide-angle absorption performance, and the structure is simple, which is expected to be applied in actual production.

Table 1. Comparison of different absorbers based on the MIM structure in the near-infrared band.

<table>
<thead>
<tr>
<th>Structure Shape</th>
<th>Absorption Band</th>
<th>Incident Angle</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc</td>
<td>narrow band</td>
<td>fixed angle of incidence</td>
<td>[43]</td>
</tr>
<tr>
<td>Rectangle</td>
<td>dual band</td>
<td>wide incidence angle</td>
<td>[44]</td>
</tr>
<tr>
<td>Disc</td>
<td>wide band</td>
<td>fixed angle of incidence</td>
<td>[45]</td>
</tr>
<tr>
<td>Rectangle</td>
<td>three band</td>
<td>fixed angle of incidence</td>
<td>[46]</td>
</tr>
<tr>
<td>rectangle</td>
<td>wide band</td>
<td>wide incidence angle</td>
<td>this work</td>
</tr>
</tbody>
</table>
Figure 6. (a) Effect of angle absorption performance at $\lambda = 1.55 \, \mu m$ for symmetric and asymmetric structures; (b,c) absorption energy diagrams for symmetric and asymmetric structures.

3. Conclusions

In our work, we have designed a broadband and wide-angle perfect absorber based on the new two-dimensional material, MXene. Compared with other similar absorbers, it performs excellently. The highlight of our work is to couple the extraordinary performance of the two-dimensional MXene with an asymmetrical grating to achieve a surprising effect. The absorption rate exceeds 80% in the angle range of at least 50–80, and the first rate of more than 80% can be achieved in the entire band of 1.1 $\mu m − 1.7 \, \mu m$. In addition, it is simple and easy to manufacture, and miniaturized structures are more likely to be used in practical applications. It is expected that our research can be applied to equipment and heat radiators in the field of photovoltaic design.
Author Contributions: Y.J. is work on Conceptualization, and Writing Original Draft, C.S. is work on Investigation, Y.L. is work on Software, and H.C. is work on Project administration. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by National Natural Science Foundation of China (NSFC) (11775147); Guangdong Basic and Applied Basic Research Foundation (Nos. 2019A1515011474 and 2019A1515110130); Shenzhen Science and Technology Program (Nos. JCYJ2021032409500720, JCYJ20200109105201936 and JCYJ[2019]0808115605501).

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

3. Chao, C.-T.C.; Chau, Y.-F.C.; Chiang, H.-P. Enhancing plasmonic effect in periodic nanometal square prisms with fences and cavities for refractive index and temperature sensing applications. *J. Nanoparticle Res.* 2020, 22, 297. [CrossRef]
Electronics 2022, 11, 1370

36. Chau, Y.-F.C.; Chao, C.-T.C.; Huang, H.J.; Anwar, U.; Lim, C.M.; Voo, N.Y.; Mahadi, A.H.; Kumara, N.; Chiang, H.-P. Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results Phys. 2019, 15, 102567. [CrossRef]

