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Abstract: Recommendation systems have lately been popularised globally. However, often they need
to be adapted to particular data and the use case. We have developed a machine learning-based
recommendation system, which can be easily applied to almost any items and/or actions domain.
Contrary to existing recommendation systems, our system supports multiple types of interaction data
with various modalities of metadata through a multi-modal fusion of different data representations.
We deployed the system into numerous e-commerce stores, e.g., food and beverages, shoes, fashion
items, and telecom operators. We present our system and its main algorithms for data representations
and multi-modal fusion. We show benchmark results on open datasets that outperform the state-of-
the-art prior work. We also demonstrate use cases for different e-commerce sites.

Keywords: recommendations; machine learning; deep learning; multi-modal representation; data
representation; embeddings; data fusion

1. Introduction

Recommender systems aim to suggest relevant items to users. As items here, we mean:
movies to watch, texts to read, products to buy, or anything else, depending on industries.
Undoubtedly, the systems are present at almost every large e-commerce store or platform,
spanning diverse sectors from garments through jewellery to food.

Multiple frameworks and algorithms exist to build recommender systems. The choice
of the optimal approach strongly depends on the types of data available, the distributional
properties of the data, modalities considered, and business use cases [1–5]. It is usually
impossible to adjust existing algorithms to include a new modality of data or a new type
of attributes. Hence, a vast majority of existing recommender systems consider only a
single kind of interaction, e.g., clicks or purchases; yet, even in this simple scenario, the
generalisation of performance to various datasets seems doubtful [6].

Outside of the currently used data range, businesses desire systems based on predic-
tors derived from variables generated through automatic analysis of customers’ voices
(audio) and observations of how customers interact with the merchant’s websites and
mobile and offline ecosystems. Unlike existing solutions, it is expected to use these vari-
ables in real-time with data from other channels, thus significantly increasing the systems’
effectiveness and expanding its functionality. Improving customer behaviour predictive
analytics effectiveness is a crucial challenge for many businesses.

This paper describes our innovative recommender system that utilises a multi-modal
fusion of multiple interaction types (e.g., clicks, purchases, adding a product to a cart) and
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multiple attribute modalities (audio, video, images, text, other behavioural and sequential
data). Our system provides a very efficient framework for combining, deploying, and
evaluating recommendation algorithms and scenarios utilising rich, multi-modal, and
multi-view data sources. First of all, we clarify the requirements for a next-generation
recommender system as follows:

• utilising multiple input interaction types (e.g., clicks, purchases, add-to-cart, geo-locations),
• using multiple input attribute modalities (e.g., text, image, video, other),
• ease of adding new back-end algorithms,
• effective deep learning models for visual search, recommendations with and without

session information, which outperform state-of-the-art techniques,
• employing specialised techniques to fuse multiple modalities,
• high efficiency and scalability (services architecture),
• convenient infrastructure for model evaluation and performance measurements.

This work presents our contributions to recommender systems: algorithms for efficient
graph embedding, visual data embedding, and multi-modal data fusion. We tested our
recommendation deep learning networks fed with data transformed with our embedding
approaches and their fusion. We also describe how we utilise these algorithms in the
system’s overall architecture and use cases.

In the following, Section 2 describes our motivation and related work. Then, we
describe our recommendation system architecture and the data workflow in Section 3.
Then, main features, such as multi-modal embeddings and their fusion technology, are
sketched in Sections 4.1 and 4.3, respectively. Subsequently, we present a few tests with
state-of-the-art (SotA) benchmarks (Section 5). Finally, we add a description of our inter-
face, recommendation analytics, and a few use cases from our production deployments
(Section 6).

2. Motivation and Related Work

The recommendation system aims to help users find the products they need, manage
their budget efficiently, and make purchase decisions faster. It is usually achieved by
showing related offers and recommending similar products to those they have viewed,
suggesting the following products to consider or complement a shopping cart [7,8].

For many years, multiple established recommendation algorithms have operated,
ranging from simple heuristic-based methods (such as KNNs) through Collaborative
Filtering to deep learning architectures [6,9–11].

Different algorithms are helpful in different input data settings, use cases, and sce-
narios. Common similar items recommendations based on text and numeric data involve
preparing suggestions (i.e., other items or actions to take) considering the context of a single
item. Personalised recommendations suggest the products considering the context of users’
buying preferences and their behavioural profiles (based on long- or short-term history).
The system analyses page visits, transactional data, and product feeds (product metadata)
to prepare these suggestions. There are also other types of recommendations, i.e., cross-sell,
top products, and last seen offers. A set of recommendation scenarios (which we also use
as default settings in our system) are shown in Figure 1.

In practice, the recommendation techniques are often mixed depending on the en-
vironment and various factors, e.g., vendor domain, website construction, user history,
and current season or time of day. They should be adjusted experimentally and measured
constantly. Thus, a highly self-adjustable system to the type and modality of data is crucial
for coping with many deployments and using recommendation techniques effectively.

A relatively new trend in building recommendation systems is the latent factor-based
approach (LF), i.e., manipulating the latent space of deep learning or other models. The
first step is to transform the data, uni- or multi-modal ones, into latent space and then
utilise algorithms for recommendation purposes. LF is highly efficient in filtering desired
information even from high-dimensional and sparse data [12]. Nevertheless, existing LF
model-based approaches mostly ignore the user/service additional data and are susceptible
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to noises in data. A remedy is a data-characteristic-aware dense latent factor model [13].
Combining a density peaks-based clustering method into its modelling process, it is less
sensitive to noises based on the dense LFs extracted from the initially sparse data. Addition-
ally, the current trend in recommender systems incorporates a latent-factor-analysis-based
online sparse-streaming-feature selection algorithm to estimate missing data and, after that,
select features. It can significantly improve the quality of streaming feature selection [14].

Figure 1. Diagram of different recommendation scenarios depending on the site within an e-
commerce platform.

Recently, session-based recommender systems (SBRSs) have proven their effectiveness
in the recommender systems research area [15]. Content-based and collaborative filtering-
based recommender systems usually model long-term and static user selections. SBRSs aim
to capture short-term and dynamic user preferences to provide more timely and precise
recommendations sensitive to the change in the session contexts. Amongst SBRSs, the item
session-based recommenders and the attribute session-based recommenders (ASBRs) utilise
the item and attribute session data independently. The feature-weighted session-based
recommenders can combine multiple ASBRs with various feature weighting schemes and
overcome the cold-start item problem without losing performance [16]. This research and
our system comprise algorithms considering users’ sessions’ long- and short-history and
utilising the item and attribute feature space operating in latent space.

3. Our System Overview

Our system is prepared to utilise many recommendation scenarios expressed with
business rules: different types of recommendations, goals, or filtering expressions. These
business rules in recommendation campaigns are consumed by the recommendations
facade, together with data from a vendor’s platform (taken from its API). Then the business
rules written with a dedicated language are parsed. The system runs its logic and obtains
or filters item (product) meta-data from the master-item database—dedicated product
catalogue. The master-item database items (e.g., product, telecom services meta-data)
are kept, along with their attributes and rich data types such as images. The conceptual
diagram of the architecture is presented in Figure 2.
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Figure 2. A general architecture of our recommendation platform.

Although most of the system works in real-time, the offline part is also present but
limited to model training. Algorithms are trained on two primary data sources. The first
one is a data lake into which events of different types and origins are being ingested through
an events stream; to name a few events types: screen view from a mobile app, product add
to cart from a web page, offline transactions, etc. The second source is the above-mentioned
master item meta-data database. Of course, the recommendation models also influence
the final recommendation logic used to serve recommendations as a request from vendors’
platforms triggered by specific user events, e.g., adding a new product to a cart or viewing
particular product categories.

4. Our Data Embedding and Fusion
4.1. Graph Data Embedding

Our algorithms can be fed with various kinds of input data. The system analyses users’
long- and short-term interaction history and also item meta-data. For this purpose, we use a
multi-step pipeline, starting with unsupervised learning. For images and texts, off-the-shelf
unsupervised models may be used. We identify graphs of user-entity interactions (e.g.,
user-product, user-brand, user-store) and compute multiple graphs or network embeddings
for interaction data.

We developed a custom method Cleora for massive-scale network embedding for
networks with hundreds of billions of nodes and tens of billions of edges [17]. (The module
responsible for the data embedding method is shown in light blue in our system diagram
in Figure 2.) The task of network embedding is to map a network or a graph into a
low-dimensional embedding space, while preserving higher-order proximities between
nodes. In our datasets, nodes represent interacting entities, e.g., users, device IDs, cookies,
products, brands, and title words. Edges represent interactions with a single type of
interaction per input network, e.g., purchase, view, hover, and search. Thus, the input data
is assembled from interacting entities and raw interactions—an edge list for simple- or
hyper-graphs.

Similar network embedding approaches include Node2Vec, DeepWalk, and RandNE [18].
These approaches exhibit several undesirable properties, which our method addresses.
Thanks to the right design of the algorithm and highly optimised implementation, our
method allows for:

• three orders of magnitude improvement in time complexity over Node2Vec and
DeepWalk,
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• deterministic output—embedding the same network twice results in the same embeddings,
• stable output with regard to small input perturbations—small changes in the dataset

result in similar embeddings,
• inductive property and dynamic updating—embeddings for new nodes can be created

on the fly,
• applicable to both networks and hyper-networks—support for multi-node edges.

Our custom method works as follows: first, we initialise node vectors (Q matrix)
randomly via multiple independent hashing of node labels and map them to the constant
interval, resulting in vectors sampled from uniform (−1, 1) distribution. Thus, we achieve
deterministic sampling. Empirically, we determine that dimensionality of 1024 or 2048 is
enough for most purposes. Then, we calculate a Markov transition matrix (M), representing
network connectivity [19]. In the case of hyper-graphs, we perform clique expansion by
adding virtual edges. Final node embeddings are achieved by multiplying M ∗Q iteratively
and L2-normalising them in each intermediate step. The number of iterations depends on
the distributional properties of the graph, with between three and five iterations being a
good default range.

The algorithm is optimised for enormous datasets:

• the Markov transition matrix M is stored in COO (co-occurrence) format in RAM or
memory-mapped files on disk;

• all operations are parallelised, concerning the embedding dimensions because dimen-
sions of vectors Q are independent of each other;

• the M ∗Q multiplication is performed with dimension-level concurrency as well;
• clique expansion for hyper-graphs is performed virtually, only filling the entries in the

M matrix;
• star expansion is performed explicitly, with a transient column for the virtual nodes in

the input file.

The algorithm’s results are entity embeddings contained in the Q matrix. The creation
of inductive embeddings (for new nodes) is possible from raw network data using the
formula M′ ∗Q, where the M′ represents the links between existing and new nodes and
the Q represents the embeddings of existing nodes.

It is worth noting that the algorithm performs well on interaction networks and short
text data, primarily product meta-data. We consider words in a product title as a hyperedge
in this setting. It corresponds to star expansion, where product identifiers are virtual nodes
linking title words.

4.2. Other Embeddings

Our pipeline can efficiently utilise embeddings calculated with the latest techniques
of language modelling, e.g., ELMO and BERT embeddings, which are helpful, especially
for longer texts. Another data source is visual data (shape, colour, style, etc.), i.e., images.
To prepare visual data feed for our algorithm, we use state-of-the-art deep learning neural
networks [20,21] customised for our use [22,23]. Indeed, any unsupervised learning method
that outputs dense embeddings can be adapted and inputted into our general system
pipeline (see Figure 2).

4.3. Multi-Modal Fusion

With unsupervised dense representations coming from multiple, possibly different
algorithms representing products or other customer entities, we need to aggregate them
into fixed-size behavioural profiles for every user.

Our algorithm performs multiple feature space partitionings via vector quantisa-
tion [24]. The algorithm involves ideas derived from Locality Sensitive Hashing and Count-
Min Sketch algorithm, combined with geometric intuitions. This approach results in sparse
representations, which exhibit additive compositionality due to Count-Sketch properties
(for a set of items, the sketch of the set is equal to the sum of separate sketches) [25,26].
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In our algorithm, all the input modalities and data views (all embedding vectors) are
processed independently. Finally, all the results are concatenated into one matrix, called a
sketch. The significant advantage of this fusion algorithm is the ability to shorten repre-
sentations of multiple objects into a much smaller joint representation—the matrix, which
allows for easy and fast subsequent retrieval of participating objects in an analogous way to
Count-Min Sketch. For example, the user’s purchase history can be represented in a single
sketch, the website browsing history as another sketch, and the sketches concatenated.

Subsequently, sketches containing user behavioural profiles serve as input to relatively
shallow (1–5 layers) feed-forward neural networks. The neural network’s output is also
designed as a sketch, with the same structure as the input ones.

Training is accomplished with a cross-entropy objective. Output sketches are nor-
malised across the width dimension. During inference, we perform a sketch read-out
operation, as in a classic Count-Min Sketch, exchanging the minimum operation to geomet-
ric mean, effectively performing averaging of log probabilities [26].

5. Experiments on Open Datasets

In our experiments, we tested recommendations in different scenarios: (1) based on
visual similarity—retrieving either the same or similar fashion items, (2) user-history-based
models for general purpose (not only fashion), (3) feature-based recommendations (based
on users’ likes and item attributes).

We tested our proprietary deep learning models for recommendations based on
visual similarity on big, open datasets commonly used in this field, i.e., DeepFashion
and Street2Shop [20,27]. The DeepFashion dataset [28] contains over 800,000 images; we
utilised a Consumer-to-shop Clothes Retrieval subset that contains 33,881 unique clothing
products and 239,557 images. The Street2Shop dataset [29] comprises over 400,000 shop
photos and 20,357 street photos (204,795 distinct clothing items).

On the Street2Shop dataset, we compared our models to two SotA deep learning
approaches introduced in [20]. The SotA models comprise two stages: a clothing item
detector using the Mask R-CNN detection architecture and dedicated deep learning archi-
tecture. We used: (1) a single model—three-stream Siamese network architecture trained
with triplet loss and (2) an ensemble model concatenating outputs from the single model
and another deep learning, directly optimising the average precision of retrieving images.
On the DeepFashion dataset, we compared a deep learning network that was fine-tuned on
this training sub-set using the standard triplet loss introduced by [21].

The chosen measures were standard in the employed task of fashion retrieval. They are:
mean average precision (mAP) and accuracy at N-th place in the given ranking (Accuracy
at N, Acc@N) defined in [20]. In our experiments, we used N = 1, 20, 50, i.e., we measured
Acc@1, Acc@20, Acc@50, to compare our results with SotA. Our approach achieved higher
results in general and in various garment categories as well (see Table 1 and [22,23]).

Table 1. Comparison of performance on our models and published SotA in visual similarity research.
The chosen metrics are commonly used in the task [20].

Dataset—Street2Shop

Model mAP Acc@1 Acc@20

single model [20] 26.1 29.9 57.6
ensemble model [20] 29.7 34.4 60.4
our custom single model 37.2 42.3 61.1

Dataset—DeepFashion

Model Acc@1 Acc@20 Acc@50

single model [21] 27.5 65.3 76.0
our custom single model 30.8 69.4 78.0
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For a history/session-based recommendations comparison with SotA, we used a
framework—testing procedures and datasets published in [30]. Table 2 presents the com-
parison on two e-commerce datasets, RETAIL and DIGI, containing about 60,000 and 55,000
users’ sessions, with a mean number of events per session of 3.54 and 4.78, respectively.
The utilised metrics and cutoff point equal to 20 (measures for 20 items—@20—in the
recommendation results) also follow the research from [30]. Precision (P) and Recall (R)
are counted by comparing the objects of the returned list with the entire remaining session,
assuming that not only the immediate next item is relevant for the user. In addition to
Precision and Recall, we also report the Mean Average Precision metric (mAP), if the
immediate next item is part of the resulting list (Hit Rate, HR), and at which position it is
ranked (Mean Reciprocal Rank, MRR).

We compared our model with other SotA methods, such as SKNN, STAN, and VSTNN.
The SKNN is a simple session-based nearest-neighbours method that is claimed by research
in [30] as a competitor to deep learning in many scenarios. The STAN (called Sequential
and Time-Aware Neighbourhood, STAN) is based on the SKNN, taking more information
about the users’ sessions into account. The VSTAN is an extension and combination of the
SKNN and the STAN with a sequence-aware item scoring; it was proposed and proved to
be SotA in [30]. Our results are also better or comparable to the results of these methods
(see Table 2).

Table 2. Comparison of performance on our models and currently published SotA in session-based
recommenders research. Metrics are commonly used in the task [30].

Dataset—RETAIL

Model mAP@20 P@20 R@20 HR@20 MRR@20

STAN [31] 0.0285 0.0543 0.4748 0.5938 0.3638
our model 0.02936 0.05405 0.48513 0.60349 0.34454

Dataset—DIGI

Model mAP@20 P@20 R@20 HR@20 MRR@20

SKNN [32] 0.0255 0.0596 0.3715 0.4748 0.1714
VSTAN [32] 0.0252 0.0588 0.3723 0.4803 0.1837
our model 0.02586 0.06037 0.37408 0.47722 0.16645

Preliminary results regarding featured recommendations (without user history) show
that our proprietary models are comparable to SotA in the field (Precision above 20%—
P@20; we used the benchmark published in [33], see also [24]). It is much higher than the
recent neural approaches, FastAI recommender (achieving only 16.8%), but still lower than
Neural Collaborative Filtering (NFC), with 32%. We utilised for this test the MovieLens 20M,
as it is the most extended version from the MovieLens datasets [34]; it contains information
about almost 140,000 users, giving over 20 million ratings for over 27,000 movies.

Indeed, our algorithms offer significant speed benefits over other neural competitors.
For example, our models on the MovieLens dataset take 20 s to train and 14 s to return
predictions for 6000 users and 4000 movies (around 23,000,000 user/movie combinations in
total). It is faster than recent neural approaches: FastAI recommender or NFC. Accordingly,
our method achieves comparable results with [33], using the same hardware (see Table 3).

Table 3. Time comparison [s, in seconds]: training and prediction times for data of about 6000 users
and 4000 movies (around 23,000,000 user/movie combinations in total).

Approach Training Time [s] Prediction Time [s]

Ours 20 14
FastAI recommender [35] 901 57
Neural Collaborative Filtering, NCF [36] 790 50
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6. Use Cases

In current production deployments in A/B tests, our platform achieves 20–30% im-
provements in average order size (AOS) and 10–60% improvements in average order value
(AOV) in comparison to the system without our custom deep learning-based recommen-
dations. Of course, the numbers vary significantly depending on the quality of product
and user data, recommendation visibility, and vendors’ website structure. Figures 3–5
show our different recommendation scenarios in various product categories, i.e., visually
similar products and personalised recommendations based on user interactions in various
e-commerce platforms. Table 4 provides an example of data about user history and rec-
ommendations in the electronics category. Figures 6 and 7 illustrate our recommendation
analytics, which provide a customised interface to show aggregated results.

Figure 3. Recommendation box at main page of a service—personalised on user interactions in the
same session. (The figure is from a Polish vendor, so there is a comma instead of a dot in numbers).

Figure 4. Recommendation box—cold start in a session based on previous user behavioural history.

Figure 5. Recommendation box—visually similar dresses. (The figure is from a Polish vendor, so
there is a comma instead of a dot in numbers).
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Table 4. Examples of recommendations for our personalised recommenders in electronic products.
We can also see complementary products that fit very well to the viewed product.

User history:
Page Visit: HUAWEI P20 Lite Smartphone Pink
Page Visit: HUAWEI P20 Lite Smartphone Pink
Our recommendations:
HUAWEI P20 Lite Smartphone Pink
HUAWEI P20 Lite Smartphone Black
HUAWEI P20 Lite Blue Smartphone
MYSCREEN Lite Edge tempered glass for Huawei P20 Lite Black
HUAWEI Transparent case for Huawei P20 Lite Transparent
MERCURY Jelly Case for Huawei P20 Lite Transparent
HAMA Crystal Clear Cover case for Huawei P20 Lite Transparent
HAMMER case for Huawei P20 Lite Black
HUAWEI Smart Cover for Huawei P20 Lite Black
User really bought later: HUAWEI P20 Lite Smartphone Pink

User history:
Transaction: KARCHER RM 500 cleaner for 500 mL glass
Our recommendations:
KARCHER WV 5 Premium window cleaner 1.633–453.0
KARCHER WV Classic 1.633–169.0 window washer
KARCHER WV 2 Premium window cleaner 1.633–430.0
KARCHER RM 500 cleaner for 500 mL glass
KARCHER telescopic lance for WV window washer
KARCHER cleaner RM 503 500 mL
KARCHER microfiber pad for WV window washer (2 pieces)
KARCHER cleaner in 500 mL canister (RM561)
User really bought later: KARCHER WV 5 Premium window cleaner 1.633–453.0

User history:
Page Visit: Smartphone APPLE iPhone 11 Pro Max 256 GB Space Gray
Page Visit: Fridge HAIER A3FE737CMJ
Page Visit: Washing machine AEG LTX7E272P
Page Visit: Smartphone APPLE iPhone 11 Pro Max 256 GB Space Gray
Page Visit: Smartphone APPLE iPhone 11 Pro Max 256 GB Night green
Page Visit: Smartphone APPLE iPhone 11 Pro Max 256 GB Space Gray
Our recommendations:
Smartphone APPLE iPhone 11 Pro Max 256 GB Star Gray
Smartphone APPLE iPhone 11 Pro Max 256 GB Night green
Smartphone APPLE iPhone 11 Pro Max 64 GB Star gray
HOFI Glass Pro + tempered glass for Apple iPhone 11 Pro Max
Hybrid glass HOFI Hybrid Glass for Apple iPhone 11 Pro Max Black
APPLE Silicone Case for iPhone 11 Pro Max Black
APPLE Leather Case for iPhone 11 Pro Max Black
SPIGEN Neo Hybrid case for Apple iPhone 11 Pro Max Navy-silver
Watch Dogs 2 Game PS4
User really bought later: Smartphone APPLE iPhone 11 Pro Max 256 GB Star Gray
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Figure 6. Recommendation analytics interface—aggregated results.

Figure 7. Recommendation analytics plot—viewed and clicked recommenations.

7. Conclusions

This paper presents our custom recommendation system, our algorithms for preparing
data representations and their fusion for multi-modal, multi-view data; and deep-learning-
based recommendation models. Our sketch representation for multi-modal data can be
applied to any embeddings learned in an unsupervised way, allowing for compact repre-
sentation with additiveness. Our recommendation algorithms achieved high results across
multiple e-commerce stores, and we exceeded state-of-the-art results on open recommenda-
tion datasets. Additionally, we illustrate use cases of our system with different scenarios
and data feeds. Incidentally, deploying our system in a new e-commerce store takes about
one workday, thanks to a modular architecture easily adaptable to clients’ APIs and data
feeds of different formats.

Future work focuses on product propensity models, demand forecasting, improved
search personalisation, and recommendation of non-product entities (e.g., coupons,
offers, and brands).
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