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Abstract: Deep learning is becoming a fundamental piece in the paradigm shift from evidence-based
to data-based medicine. However, its learning capacity is rarely exploited when working with small
data sets. Through transfer learning (TL), information from a source domain is transferred to a
target one to enhance a learning task in such domain. The proposed TL mechanisms are based on
sample and feature space augmentation. Thus, deep autoencoders extract complex representations
for the data in the TL approach. Their latent representations, the so-called codes, are handled to
transfer information among domains. The transfer of samples is carried out by computing a latent
space mapping matrix that links codes from both domains for later reconstruction. The feature space
augmentation is based on the computation of the average of the most similar codes from one domain.
Such an average augments the features in a target domain. The proposed framework is evaluated in
the prediction of mortality in patients in end-stage renal disease, transferring information related to
the mortality of patients with acute kidney injury from the massive database MIMIC-III. Compared
to other TL mechanisms, the proposed approach improves 6–11% in previous mortality predictive
models. The integration of TL approaches into learning tasks in pathologies with data volume issues
could encourage the use of data-based medicine in a clinical setting.

Keywords: transfer learning; deep learning; mortality prediction

1. Introduction

In the era of Big Data, deep learning (DL) is becoming a fundamental piece in the
paradigm shift from evidence-based medicine to data-based medicine [1]. The increased
availability of information, storage and processing capacity, and DL’s capability to exploit
complex relationships has allowed DL to significantly impact medical applications sup-
ported by Big Data [2]. Although the adoption of technologies that enable the collection
of high volume of data in a clinical setting is growing, most medical centers do not have
the infrastructure or the volume of patients to benefit from the learning capacity of DL [3].
Thus, integrating information from multiple health centers could significantly improve
learning tasks in pathologies usually supported by a small volume of data. Implementing
strategies for transferring data among domains could trigger DL solutions in a clinical
setting and bring us closer to adopting data-based analysis for supporting clinical decisions.

The process of adapting and transferring knowledge among domains is known as
transfer learning (TL) [4]. The interest in TL in the medical field is increasing. In electronic
health records (EHR), such as clinical images and biosignals, DL integration in a TL en-
vironment is proving to be an option that provides remarkable benefits [5–8]. Due to the
capacity to exploit complex relationships that data may have and the data structures in such
applications, e.g., spatial dependencies or time series, specialized artificial neural networks
(ANN) are commonly used. In such applications, the common TL approach pre-trains an
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ANN with data from one domain. Then the learned parameters are extracted for later use
in applications in other domains [9–11]. However, this kind of approach is not suitable
for data that contain heterogeneous structures because the procedure mentioned above
constrains the input to be similar across domains. That is the case for applications that use
other types of EHRs, such as those that collect medical measurements of patients in a tabu-
lar way. Although there are solutions that incorporate such data into TL approaches [12,13],
they use statistical analysis, which does not exploit complex relationships that the data may
have. Thus, alternatives that include DL in TL solutions in pathologies with the type of
data mentioned above are still an open issue.

Transferring knowledge from high volume data sources to small datasets would allow
DL to enhance learning tasks and be used to address class imbalance issues. This effect
occurs because of the sudden changes in the patient’s health condition. The volume of
information generated for such events is smaller than the one associated with the rest
of the follow-up. This effect commonly occurs in pathology prediction [14], rare event
detection [15], or mortality prediction [16]. In previous work for mortality prediction for
patients in end-stage renal disease (ESRD) [17], data imbalance was evidenced. There was
a data imbalance in the range of 76 to 94%. Those issues cause low generalization of the
learning models on the imbalanced samples, resulting in models whose performance is not
acceptable for incorporation into clinical practice.

This work proposes a TL framework that uses information from a massive data source
for supporting tasks in pathologies with a small data volume. The framework consists of
two TL mechanisms used for sample and feature space augmentation in a target domain.
Autoencoders (AE) are used to link both domains as a knowledge extraction mechanism.
From AEs, latent representations of data, the so-called codes, are used as information
bridges. For the sample increasing mechanism, they are used to create a feature mapping
matrix used to transfer samples for a source domain to the target one. For the feature
space augmentation, the TL mechanism is based on the computation of the average of the
most similar codes of the target with the ones generated in the source domain. This TL
framework is evaluated for the improvement of mortality predictive models in patients
in ESRD. Volume and data imbalance issues are tackled with information extracted from
patients with acute kidney injury (AKI) from the massive database medical information
mart for intensive care III (MIMIC-III) [18]. According to our knowledge, this is the
first solution that integrates ANNs into a TL framework for solving learning tasks for
kidney diseases.

The main contributions of this work are as follows:

• Explore the benefits of using a DL approach to TL in the clinical setting;
• Improve predictive models of mortality in ESRD patients by incorporating knowledge

from a more extensive data set;
• Tackle the class imbalance issue through a solution based on TL.

The rest of the manuscript is structured as follows: Section 2 shows all the necessary
components for the proposed TL framework Section 3 shows the performance of several
experiments, and Section 4 presents the discussion, remarks on such results, and the
conclusion of this work.

2. Materials and Methods

This section contains the necessary components to support the proposed TL frame-
work. Classic AEs are the backbone of the knowledge extraction in the proposed framework.
Moreover, two extensions of AEs widely used in the TL environment are also addressed
because they are used for performance comparison with the proposed method. Then, a
method that has inspired part of the proposed framework is briefly explained. Finally, the
problem that the methods can address is formally defined. Next, the necessary components
to understand the proposed TL framework are described.
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2.1. Autoencoders

An AE is a type of ANN with a mirrored structure that replicates input data x to the
output of the network x′ with a minimum error. This mechanism allows extracting complex
relationships that the data may have into the network’s hidden layers. The deeper the ANN,
the more complex the representations are, and usually, more data are needed for avoiding
overfitting issues. Figure 1 shows a basic and a deep AE. An AE can be divided structurally
into two components: encoder and decoder. The encoder acts as a mapping function fθ that
transforms the input x into higher representation level h. Such representation is commonly
referred to as a code. The code is mapped back to reconstruction using another mapping
function g

θ
′ called decoder.

AE

h

x'x

!f !g '

Deep AE

h = f (x) = s( Wx + b)!
x' = g  (x) = s( W'h + b')!'

!g
(1)

!g  
(2)

f (1)

!1 1 2
' '

h

x x'

f (2)

!2

Figure 1. Structure of single- and multi-layer AE.

The training of an AE is an iterative process whose purpose is to find proper param-
eters for the network that minimize the error between the input and its reconstruction.
The parameters that are trained are θ = {W, b} and θ

′
= {W′, b′}, where W refers to the

weights of the network and b their bias. To find the minimum error, the input of the AE is
forward propagated through the network. Each unit in the network combines the outputs
of the previous layer linearly, and its output is modified by a non-linear function (s). This
non-linearity allows deep architectures to extract complex representations from massive
data. Once the propagations reach the output layer, a cost function L is computed, and
the weights of the AE are updated with the gradient of the error through the network
following the back-propagation algorithm [19]. In this work, mean squared error is used as
a lost function:

L =
1
N

N

∑
i=1

∥∥xi − x′i
∥∥2, (1)

where xi represents a sample i, and N is the total samples in a dataset.
Other alternatives that have shown outstanding performance using AEs in a TL

environment are based on the application of stacked denoising AEs (SDA) [20] and its
extension marginalized SDA (mSDA) [21]. For the SDA, denoising AEs (DA) are trained.
This type of AEs minimize the error between the input and a corrupted version, hence
its name. To create the stack of DA, n DAs are trained. The first DA is trained with the
corrupted version of the input, the second DA takes as input the code of the previous DA,
and so on, as is shown in the left side of Figure 2. The training of each level follows the
same process as a normal AE. At the end of the n trainings, the respective codes are used to
create the final stacking that is shown in the right side of Figure 2.
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Figure 2. SDA, mSDA, and how their latent representations are used to create the final stack.

On the other hand, the term marginalized in mSDA refers to the addition of noise to the
inputs xi in the iterations of the training process, e.g., different examples may be corrupted
in every iteration. Thus, taking this into account, the cost function is transformed to:

L =
1

NM

M

∑
j=1

N

∑
i=1

∥∥∥xi − x′i,j
∥∥∥2

, (2)

where x′i,j represents the jth corrupted version of xi.

Then, with X = [x1, . . . , xn] ∈ Rdxn, its m-times repeated versions X = [X, . . . , X], and
its corrupted version X̃, Equation (2) is reduced as:

L = tr
[(

X−WX̃
)>(

X−WX̃
)]

, (3)

and its minimization solution can be expressed as:

W = PQ−1 with Q = X̃X̃
>

and P = XX̃. (4)

With a large m, i.e., m → ∞, the bias estimation is reduced but the computational
cost increases. To mitigate this issue, mSDA includes corruption probability p to a vector
probability q = [1− p, . . . 1− p, 1] ∈ Rd+1. qi represents the probability of a feature i
surviving the corruption. Thus, the expectation for Equation (4) can be computed and W
can be expressed as follows:

W = E[P]E[Q]−1 with E[P]i,j = Si,jqj, S = XX> and, (5)

E[Q]i,j =

{
Si,jqjqj i f i 6= j
Si,jqi otherwise.

(6)

With W, nonlinear function s is applied, then nonlinear features can be extracted as
h = s(Wx). Such nonlinear functions may include tangent hyperbolic (tanh), sigmoid, or
Rectified Linear Unit (ReLU).

2.2. Hybrid Heterogeneous Transfer Learning

The so-called Hybrid Heterogeneous Transfer Learning (HHTL) proposed in [22] is
a TL framework for transferring knowledge between two heterogeneous domains using
mSDAs. HHTL solves a learning task related to labelling samples from one domain using
information from the other one. The target domain is defined as DT =

{(
xTi , yTi

)}n2
i=1,

and the source domain as DS =
{

xSi

}n1
i=1, where xSi ∈ RdSx1 and xTi ∈ RdT x1 are the data

and yTi labels; n1 and n2 are the totals of the samples, and dS and dT their features. The
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information to be transferred is the hidden representations extracted from mSDAs for each
domain. mSDAs are trained in both domains with k (k = 1, . . . , K) hidden layers, as is
illustrated in Figure 3. Then, latent representations HS,1, . . . , HS,k and HT,1, . . . , HT,k are
extracted and then related through mapping matrices, Gk, as is shown in Figure 3. These
matrices acts as TL bridges for the hidden representations in both domains. To find each
Gk, they minimize the objective:

min
Gk

∥∥HS,k −GkHT,k
∥∥2

+ λ‖Gk‖2. (7)

Once Gk is computed, new samples X∗S along with its hidden representations H∗S,k
can be transferred to DT , i.e., H∗S→T,k = GkH∗S,k. S → T refers to the transfer from
DS to DT . Then, to solve the learning task, they create a new feature space with the

hidden representations of DT , i.e., ZT =
[
H>T,1 . . . H>T,k

]>
. Then, a classifier {(ZT , yT)}

is trained. With the latent transferred representations, a similar feature space ZS→T =[(
H∗S→T,1

)>
. . .
(

H∗S→T,k

)>]>
is created. Finally, with the trained classifier, they predict

over ZS→T the labels for DS samples.
Part of the sample augmentation for the proposed approach is based on the computa-

tion of Gk, with the difference that we only use it to relate the codes of the AEs and not the
rest of the latent representations of each hidden layer. Hence, we compute a single G.

Source Target
XS = HS,1 

HS,2

HS,k

HT,1 = XT

HT,2

HT,k

G1

G2

Gk

Figure 3. HHTL for transferring hidden representations, H, between source and target domain. H
are extracted from trained mSDAs.

2.3. Problem Definition

Given a set of labeled data from the source and target domains, DS =
{(

xSi , ySi

)}n1
i=1

and DT =
{(

xTi , yTi

)}n2
i=1, respectively, where xSi ∈ RdSx1 and xTi ∈ RdT x1 are the data and

ySi and yTi their labels; n1 and n2 are the total of samples, and dS and dT are their features.
The aim of TL in this work is to improve the learning task in DT with information from
DS. The transfer of knowledge is carried out by managing codes of trained AEs from both
domains in two manners. The first one follows the next steps:

• Transfer samples from one domain to another through the computation of a feature
mapping matrix G, as in HHTL.

• Map codes from one domain to the other one using G.
• Transfer a sample x∗S to DT through Gh∗S, where h∗S is the code of x∗S.

The second mechanism attempts to increase the feature space of DT with the average
of the most similar codes, computed by a similarity metric, the Euclidean distance between
the codes, that compares each code from DT with the entire set of codes from DS. The
increase in samples and features may reinforce the learning task in DT . Figure 4 shows a
scheme of the mechanisms that are used to enhance the learning task in DT .
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Figure 4. Scheme of proposed method for transfer of samples between domains and feature space
augmentation to support learning tasks in the target domain. In the training stage, codes are extracted,
and G and average codes (AVG codes) are computed as TL bridges between both domains.

2.4. Proposed Method

The proposed approach is motivated by the availability of massive sources of medical
data and the potential benefits of integrating them to encourage the adoption of data-based
medicine. This integration makes it possible to exploit the learning capacity that DL has
on massive data. Thus, two TL mechanisms were proposed to improve performance in
learning tasks in a clinical setting. Specifically, the predictive ability of mortality predictors
for patients in ESRD was evaluated using a TL framework. It was proposed to apply TL
approaches to augment both samples and feature space in mathb f DT using information
from mathb f DS. As mentioned above, these mechanisms can address class imbalance
problems to improve the predictive ability of previous work for mortality models in ESRD.

In the proposed framework, both domains contained labeled samples. AEs were used
to extract data representations into their codes for sample and feature space augmentation.
Thus, the framework relied on two main components:

• Sample augmentation using a mapping matrix G, encoder and decoder functions in
both domains to transfer and reconstruct codes from DS in DT ;

• Feature space augmentation based on the computation of the average of the most
similar codes.

2.4.1. Sample Augmentation—TLCO

For augmenting samples in DT , a three-stage TL mechanism was used. Initially, from
both domains, AEs were trained, and the codes were extracted to compute a mapping
matrix G, as in HHTL. It is worth mentioning that, unlike HHTL, in our approach, we
reinforce knowledge transfer by considering the reconstruction of the codes of one domain
using the decoders of the other domain. We refer to this method as TL by codes or TLCO. In
a second stage, G is used to transfer codes from DS. Thus, H∗S, produced by data X∗S in DS
were first transferred to DT . Then, the decoder function in DT reconstructed the transferred
codes in such a domain. The parameters of the decoder function of trained AEs in each
domain allowed the reconstruction of their codes. The decoders in the opposite domains
and the mapping matrix between the codes can be used as a reinforcement mechanism for
cross-domain knowledge transfer. Once the samples were reconstructed, they were used to
increase DT . This last step tackled the class-imbalance issue. Figure 5 illustrates how this
TL mechanism was carried out using datasets from kidney diseases. Detailed steps of the
proposed method are also provided in Algorithm 1.
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Figure 5. Scheme of proposed method for transfer of samples between domains and the support of a
learning task in the target domain using TLCO.

Algorithm 1: Increasing samples using TLCO

Input: Data from both domains, λ = 0.001: DS =
{(

xSi , ySi

)}n1
i=1,

DT =
{(

xTi , yTi

)}n2
i=1

1 Train AEs with XS and XT . Extract encoder (e) and decoder (d) functions from
both domains, and the latent representations-codes Z:

ZS = eS(XS), X′S = dS(ZS)
ZT = eT(XT), X′T = dT(ZT);

2 Learn heterogeneous feature mapping G:

min
G
‖ZS −GZT‖2 + λ‖G‖2;

3 Augment samples in DT with samples from DS:

X∗S→T = G>X∗S
X∗T =

[
XT X∗S→T

]
, y∗T = [yT yS]

Note: S→ T refers to the transfer from DS to DT .

4 Train a classifier f with {(X∗T , y∗T)}

Output: Classifier f

2.4.2. Feature Space Augmentation—TLAV

For feature space augmentation, the TL mechanism was based on the computation of
averaging the most similar codes from DS to codes in DT . We refer to these as the average
codes or AVGcodes. They increase features for every sample in DT . We refer to this approach
as TL by AVGcodes or TLAV. As the information that best represents the data after AEs’
training is encapsulated in their codes, this approach used the AVGcodes as extra features
that may enhance the predictive capacity of learning models.

The proposed method is summarized into three stages (see Figure 6). Initially, AEs
were trained in both domains, and their codes were compared. For TLAV, it is hypothesized
that similar codes represent similar information even from different domains. Thus, every
code from DT was compared with all the codes from DS. The Euclidean distance was
computed as a similarity metric for the comparison (see Equation (8)). Then, the most
similar codes were filtered based on a similarity threshold, ε, which indicates the percentage
of the most similar codes. Based on ε, sets of n3 (as in Figure 6) codes from DS were
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extracted for each code in DT . Then, in the second stage, the codes’ sets were summarized
in their average to find a more robust representation. Finally, the AVGcodes were merged,
then concatenated to the samples in DT , and finally, such new feature space was used to
perform the learning task in DT :

d(hS, hT) =

√
n

∑
i=1

(hSi − hTi)
2. (8)

I. AE training-Similarity threshold

Source-AKI

eAKI

Target-ESRD

II. AVG codes computation

dAKI

eESRD

dESRD

n1 x f n2 x f

Code 1
Code 2

Code n2

n3 x h

n1 x h n2 x h

Codes comparison

n3 x h

n3 x h

AVG for code 1

AVG for code 2

AVG  for code n2

AVG codes

III. Feature space augmentation

ESRD + AVG codes

Most similar
codes 

!
Codes

filtering

n3 = int(n1*    ) !

Figure 6. Scheme of proposed method for transferring AVGcodes from DS to DT using TLAV.

2.5. Experimental Setup

This section presents all the necessary components and evaluates the proposed TL
framework in predictive mortality models for patients in ESRD. Initially, we describe the
datasets where the TL mechanisms are evaluated. Then, to compare the benefits of TLCO
and TLAV, we modify HHTL for sample and feature space augmentation, as its initial
learning task was to label unlabelled data in the target domain. In the description of the
experiments it is explained how HHTL is modified. The experiments performed and their
respective evaluations are presented at the end of the section.

Datasets

For this work, two datasets related to kidney disease were used. The learning tasks
in both datasets are related to mortality prediction, one for the follow-up of patients in
ESRD and the other one to patients with AKI in ICU. The objective is to improve predictive
mortality models for patients in ESRD with data from patients with AKI. Next, they are
described in detail.

ESRD: Information for DT is part of a previous study for predicting mortality in ESRD
patients [17]. Data were collected from the Information System of the Parc Tauli University
Hospital, from the Haemodialysis (HD) Unit at the Nephrology Department from 2007 to
2018. Data transfer process was passed through the ethics committee (Code 2018/508) and
subsequently anonymized following the usual protocol. Information from the follow-up
of 261 patients in ESRD from the beginning of hemodialysis treatment until the deceased
event was collected. The feature space includes categorical and continuous measurements
from laboratory tests, diagnoses, and variables measured during the hemodialysis sessions.
In total, there are 53 features. During their follow-up, such patients have generated 8229
samples. Four datasets were generated based on the date of death of the patients. Hence, the
mortality models have labels associated with 1, 2, 3, and 6 months before the death event.

AKI: The dataset for DS has been extracted from MIMIC-III database [18]. Such a mas-
sive database contains information from more than 40,000 patients in ICU. From MIMIC-III,
patients with AKI were filtered based on the kidney disease improving global outcomes
(KDIGO) clinical practice guideline [23]. Information from 4152 patients with 31 features
were extracted. The total of samples in such cohort contains more than 125,000 samples.



Electronics 2022, 11, 1447 9 of 14

Their follow-up includes demographics, diagnoses, laboratory tests, physiological mea-
surements during the ICU stay, and the in-hospital mortality label.

3. Results

To evaluate the predictive capacity of the TL mechanisms in the mortality models for
patients in ESRD, several experiments are defined based on the method of transferring
knowledge. As AEs are the backbone of the proposed TL framework, we initially compared
the performance of a deep AE with an mSDA applying TLCO and TLVA. Then, we compare
the methods with HHTL. HHTL is modified in this work for sample and feature space
augmentation. Next, the setups for mSDA and HHTL are listed:

• Deep AE vs. mSDA: We designed a baseline to choose which type of AE better suits
the data. We train deep AEs with two hidden layers for the encoder and decoder
functions. Then a two-level mSDA is trained. The codes are extracted from the deep
AE to perform TLCO and TLAV. For mSDA, the hidden representations from the
second level are extracted as codes, and TLCO and TLAV are applied to them.

• HHTL: HHTL has been widely compared with other approaches in the TL literature,
showing a better performance than its competitors [22]. The modified versions of
HHTL, for sample and feature space augmentation are based on the management
of the hidden representations for the levels of the trained mSDAs. As stated in
Section 2.2, such hidden representations are extracted from hidden layers to create
new feature spaces:

ZT =
[
H>T,1 . . . H>T,K

]>
, and ZS→T =

[(
H∗S→T,1

)> . . .
(

H∗S→T,k

)>]>
, (9)

then sample augmentation is carried out adding samples from AKI to ESRD in their
respective new feature space, i.e., Zsamples = [ZT ; ZS→T ]. As HHTL is a method to
transfer samples, for feature space augmentation, as in the proposed approach, we
use the averages of the most similar hidden representations from ZS→T to augment
ZT , i.e., Z f eatures =

[
ZT AVGZS→T

]
.

The performance of the experiments is evaluated on the learning task in ESRD. The
area under the receiver operating characteristic (AUROC) curve is used as a metric to find
the best models in the experiments. AUROC relates the sensitivity and specificity of a
classifier. Its values lie between 0 and 1, with 1 being the perfect classifier and 0.5 being a
random one. The baseline performance and classifiers used in this work are based on long
short-term memory ANNs, used in the previous work for every mortality horizon [17]. All
the reported experiments used five folds for cross-validation. Two sets of experiments have
been defined to determine the performance of the proposed methods.

3.1. TLCO—Sample Augmentation

In ESRD data, the class imbalance varies according to the mortality horizon. Infor-
mation on how the sample labels are computed can be found in the previous study [17].
Table 1 shows the class imbalance caused by each mortality horizon. To implement TLCO,
initially, AEs with two hidden layers are trained for both datasets. Then, their codes are
extracted. The hyperbolic tangent (Tanh) activation function is used for the hidden layers
and the Sigmoid for the output layer in AKI. For the ESRD dataset, rectified linear unit
(ReLU) activation function for hidden layers and Sigmoid at the output layer were used.
Dropout of 0.1 and batch normalization were applied in the hidden layers of the AEs to
avoid overfitting. Once the AEs are trained, the mapping matrix G is generated using
codes from both domains. Then, the codes from AKI are transferred to the latent space of
the ESRD domain using G. Finally, transformation is reconstructed using the decoding
function of the trained AE in ESRD. For mSDA, a Tanh was used as a non-linear function
to compute the codes. Next, three experiments are listed to find the best performance for
the mortality predictors.



Electronics 2022, 11, 1447 10 of 14

Table 1. Imbalance of samples for the prediction of mortality in patients in ESRD. Class 0 and Class
1 refer to samples in alive and deceased classes, respectively.

Mortality Class 0 Class 1 Imbalance (%)

1 7734 495 93.6
2 7488 741 90.1
3 7251 978 86.5
6 6632 1597 75.9

• Code dimension: The dimensions of codes in both domains are evaluated to find a
high-level representation of the data that allows us to transfer valuable information.
Thus, the combination of dimensions that presents the best overall performance for
the prediction task is empirically found. In Figure 7a, it is denoted the dimension
of the codes for the deep AE in AKI and ESRD as S_∗ and T_∗, where ∗ refers to
the dimensions of the code, e.g., S_30 and T_40 refers to the combination of having
trained AEs with codes of dimension 30 and 40 for AKI and ESRD, respectively. It is
also shown the performance of mSDA. Moreover, it should be noted that in mSDA,
the dimension of the codes has the same input data dimension, which is why only
one predictor is observed for mSDA in the figure. In addition, it can be appreciated
that most of the combinations present a higher performance than the baseline one.
Although mSDA outperforms better than most predictors, the deep AE with 30 and
80 codes in AKI and ESRD offers a better predictive capacity than mSDA.

• Sample augmentation in ESRD: This experiment evaluates how the increase in sam-
ples in the training set affects the predictive models of mortality in ESRD. For this
experiment, three possible scenarios were defined. Initially, the data imbalance in
ESRD is intentionally increased. Thus, only Class 0 in AKI samples are transferred
to the ESRD training set. This transfer is carried out to evaluate whether an adverse
effect is linked to the increase in data imbalance. In the second scenario, the training
set samples are increased, but only those that belong to AKI Class 1 are transferred. In
this case, the aim is to balance the imbalanced class. Finally, in a third scenario, both
classes are transferred from AKI to ESRD. Therefore, we evaluate both the effect of the
increase in samples and the reduction in the data imbalance in the predictive models.
Table 2 shows how the data imbalance varies for each scenario. In Figure 7b, it can
be appreciated that increasing samples in the training set of the ESRD data does not
imply, in most of the scenarios, a reduction in the predictive models performance. On
the other hand, when the number of samples increases, the learning models present a
better predictive capacity considering the imbalance ratio.

• Comparing with HHTL: To evaluate the performance of HHTL, the number of trans-
ferred samples was adjusted following the third scenario in the previous experiment.
Thus, in Figure 7c it can be appreciated that although HHTL for upsampling or
HHTL4S improves the base predictive models, it has a lower performance than that
found by deep AE.
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(a) (b) (c)

Figure 7. Comparison results transferring samples from AKI to ESRD using TLCO: (a) shows the
performance of mSDA and TLCO modifying dimension of codes in source (S) and target (T) domains;
(b) shows three possible scenarios to tackle data imbalance in ESRD; (c) compares proposed solution
with HHTL.

Table 2. Imbalance in ESRD generated by increasing training samples in ESRD from AKI. Scenarios 1,
2, and 3 refer to the transfer of samples from Classes 0, 1, and combining both classes, respectively.

Mortality Generated Data Imbalance (%)
Scenario 1 Scenario 2 Scenario 3

1 95.2 73.4 80.0
2 92.6 69.2 77.1
3 90.1 74.9 74.2
6 82.7 52.3 65.7

3.2. TLAV—Feature Space Augmentation

In the performance evaluation of TLAV, the same hyperparameters for training AEs
as in TLCO are used for TLAV and its competitors. With TLAV, the augmented feature
space is based on the computation of AVGcodes. As a recall, such AVGcodes are computed
based on the comparison of each code in ESRD with all the codes in AKI. Each comparison
generates a set of codes that are filtered by a similarity threshold (ε) and summarized into
AVGcodes. Parametric analysis and comparison with mSDA configuration and HHTL for
feature augmentation (HHTL4F) are carried out. Thus, three experiments were performed
to find the best models that enhance the learning task in ESRD. Next, they are addressed.

• Code dimension: The first parameter that controls the behavior of TLAV is the di-
mension of the codes (dim_h). This parameter reflects the ability of AEs to represent
information in latent spaces under the TL methodology of TLAV. In this experiment,
ε is set to 0.4. Figure 8 shows scenarios where the input information is compressed
or dispersed according to the value of dim_h. It can be appreciated that bottleneck
type deep AEs offer better overall performance than sparse type deep AEs. The best
solution is the one with dim_h = 10.

• Tuning similarity threshold (ε): With Euclidean distances from ESRD and AKI codes,
a proportion of these codes is chosen using ε. ε controls the amount of more similar
AKI codes used to compute the average one. Once every set of codes from AKI are
extracted, their AVGcodes are computed and used to increase the feature space for
each ESRD sample. Table 3 shows the performance of the predictive models varying
ε. It can be appreciated that increasing the number of codes for the computation of
their average reflects a slight improvement in the predictive models. However, from
an ε of 0.3 or 0.4, more codes do not imply a considerable increase in the predictive
models. Compared with its competitors, TLAV based on deep AEs presents a better
performance when more codes are included for the average computation. Using the
three methods, taking 40% of the most similar AKI codes for each ESRD code presents
the most balanced performance for mortality prediction. TLAV with deep AEs is the
best option to increase the feature space in ESRD.
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Figure 8. Evaluation of TLAV changing the dimension of the codes.

Table 3. Comparison results applying TLAV with mSDA and HHTL4F using AVGcodes concept and
varying similarity threshold ε. In bold, the best predictive models for each mortality horizon.

Mortality
ε TL Method 1 2 3 6

mSDA 0.857 0.839 0.816 0.761
0.01 HHTL4F 0.878 0.824 0.820 0.757

TLAV 0.887 0.849 0.816 0.758

mSDA 0.856 0.840 0.809 0.761
0.1 HHTL4F 0.879 0.831 0.818 0.759

TLAV 0.891 0.854 0.816 0.763

mSDA 0.859 0.834 0.811 0.760
0.2 HHTL4F 0.891 0.834 0.819 0.758

TLAV 0.901 0.857 0.820 0.761

mSDA 0.863 0.841 0.820 0.760
0.3 HHTL4F 0.895 0.837 0.822 0.758

TLAV 0.906 0.860 0.823 0.765

mSDA 0.877 0.842 0.819 0.758
0.4 HHTL4F 0.894 0.835 0.821 0.760

TLAV 0.909 0.862 0.823 0.763

mSDA 0.875 0.842 0.818 0.759
0.5 HHTL4F 0.891 0.836 0.819 0.759

TLAV 0.904 0.861 0.821 0.765

3.3. TLAV—HHTLM

In the last experiment, TLAV is combined with TLCO. Such a combination is performed
in a cascade way. The parameters that control TLCO and TLVA are found in previous
experiments. Thus, in the first stage, the ESRD feature space increases using TLAV. Then,
TLCO is applied to this new version of ESRD to increase the number of samples. Table 4
presents the performance of the combination, compared to the literature methods and the
best predictors by TLAV and TLCO separately. It can be seen that the combination of the
two proposed methods has a considerable influence on the performance of the predictive
models for short-term mortality.
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Table 4. Final comparison of the proposed TL framework. TLAV-TLCO is the cascade version of the
TL proposed methods. In bold the most relevant results for each mortality predictor.

Mortality Baseline TLCO TLAV TLAV-TLCO

1 0.873 0.891 0.909 0.939
2 0.813 0.845 0.862 0.909
3 0.798 0.838 0.823 0.853
6 0.752 0.778 0.765 0.764

4. Discussion

This work has explored a novel TL alternative based on sample and feature space
augmentation based on TLCO and TLVA. Information was transferred from a massive
data source and improved predictive mortality models in ESRD patients. The transferred
information was extracted in the codes of both domains. It was shown that transferring
knowledge from another data source directly improves the learning models using codes
from AEs. The conducted experiments have shown that deep AEs extract better complex
relationships for the available domains than mSDAs.

For the experiments related to sample augmentation, it was found that TLCO provided
an improvement from 2–5% in AUROC when both classes are transferred from AKI. It
was evidenced that increasing just the imbalance in most models does not deteriorate the
predictions’ performance. Reducing data imbalance provides a considerable improvement
for the learning models, although the predictive ability in the data increases considerably
when both classes are included in the upsampling.

For the case of feature space augmentation, it was evidenced that increasing the
information in ESRD with the AVGcodes improves the performance of the learning models
even when other alternatives such as mSDA or HHTL are used. Moreover, TLAV was shown
to generalize better than TLCO in predictive models for a 2-month mortality horizon. It
was evidenced that the dominant parameter that controlled the performance of the learning
models was the dimension of the codes. In the case of threshold ε, from the inclusion of
40% of the codes from AKI, it is enough to guarantee an increase in performance among
2–6% compared to the baseline models.

Finally, the results obtained showed that the proposed framework can improve the
predictive capacity of mortality models in ESRD and that they can be complementary
to each other. If these two are combined, the performance of these models increases
considerably (6–11%). Such improvements in the performance of the mortality predictors
could imply that incorporating this type of solution into clinical setting brings us closer to
incorporating data-driven solutions to support medical staff in the early detection of events
such as mortality.
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