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Abstract: Network function virtualization (NFV) enables network operators to save costs and flexibil-
ity by replacing dedicated hardware with software network functions running on commodity servers.
There is a high need for network acceleration to achieve performance comparable to hardware, which
is vital for the implementation of NFV. The necessity of NFV acceleration stems from the lengthy
packet delivery path following virtualization and the unavailability of generic operating system
designs to serve network-specific scenarios. Therefore, the software approach alters the operating
system’s processing architecture through Kernel Bypass or offload packet processing to hardware. A
typical classification scheme divides it into two main categories based on technology with software
and hardware. Only these two categories can be utilized to rapidly and easily establish a classification
system. However, it is difficult to suggest the specifics and peculiarities of any acceleration approach
during real-world operation. For a more comprehensive classification of NFV acceleration, we refer
to the ETSI NFV architectural framework in this research. As the framework clearly illustrates, the
technical infrastructure layer of NFV and the corresponding management roles provides a compre-
hensive and intuitive view of the differences between these acceleration technologies, solutions, and
initiatives. Additionally, we conducted an analysis to identify opportunities for improvement in
existing solutions and propose new research programs. We expect that NFV will increasingly rely on
cloud services in the future. Since cloud services do not offer a choice of hardware, our acceleration
method will be primarily software-based.

Keywords: network function virtualization; network acceleration; ETSI NFV framework

1. Introduction

Network functions virtualization (NFV) enables enhanced flexibility and cost-saving
by substituting software deployed on commodity servers for hardware network facilities.
NFV uses virtualization technology to reconstruct network functions and deploy on stan-
dard infrastructure hardware, which allows for rapid scalability and meets carrier-grade
operational specifications. Furthermore, in the place of designated hardware, NFV utilizes
software that can be dynamically deployed, scaled, and migrated as an intermediary, thus
providing a flexible and programmable infrastructure.

However, physical network devices have limited scalability because they only run on
proprietary hardware appliances. Replacing application-specific integrated circuit (ASIC)
hardware can be seriously detrimental to performance, affecting primary performance
such as throughput and latency, which in turn impacts the overall end-to-end application
performance [1]. Performance issues are mostly related to the packet delivery path. When
moving packets from the network interface controller (NIC) to the driver, the packets need
to pass through a ring buffer before moving to the poll queue to be read by the process,
hence the latency in delivery. Moreover, this process requires multiple I/O operations,
resulting in reduced performance. The latency in resolution is due to the CPU’s time-
division multiple access (TDMA) architecture, which requires the CPU to perform content-
switching non-stop when processing request flows of different lengths, which causes
overheads in processing.
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For accelerating the network performance on NFV, recent research has focused on ac-
celerating virtual network functions (VNF) and addressing performance issues at different
levels. For example, studies [2–5] include improving software architecture, optimizing the
entire data packet transmission process from the NIC to the network stack, or offloading
part of the packet-processing process to programmable hardware. Typically, these solu-
tions fall into two categories: software-based solutions such as kernel bypass, zero-copy,
or hardware-based offload techniques [6–8]. Because both technologies will be used in
tandem at times, it is difficult to effectively convey the distinctions between each accel-
eration approach. A typical example is the service chain, which was previously classed
as a software acceleration technique for using algorithms to improve the path taken by
user requests through websites. Therefore, we follow the NFV architectural framework
from the European Telecommunication Standards Institute (ETSI) in this research to ac-
commodate a broader degree of acceleration research. The ETSI NFV framework allows
re-identifying whether the acceleration method is at the infrastructure or management
layer. In the infrastructure layer, the acceleration optimizes the interaction of various virtual
network functions (VNFs) within an element management system (EMS). However, the
management layer’s virtualized infrastructure manager (VIM) performs path optimization
between various EMSs. The example indicates that the acceleration technology should
apply to one or several EMSs, which were previously unable to detect only on the classi-
fication within hardware and software. Additionally, we also cover industrial products
and solutions to demonstrate the viability of advancing the adoption of NFV as a realistic
management framework.

The primary contribution of this research was to employ the ETSI Framework as the
classification’s major axis. The framework’s operability and practicality enable more precise
identification of the characteristics and applications of each accelerated research strategy.
Simultaneously, we observe that cloud-based infrastructure has progressively become the
major deployment environment for NFV. This implies that, while hardware acceleration
approaches are successful, they may not be appropriate for cloud situations with restricted
hardware alternatives. As a result, this paper’s study will concentrate on the software
method, which is also one of our innovations.

The rest of the paper is structured as follows. Section 2 describes the ETSI NFV frame-
work and how the acceleration methods will be mapped to the management framework.
Sections 3 and 4 will break down the acceleration technologies into subcomponents based
on the ETSI NFV framework’s two infrastructure and management categories. Furthermore,
Section 5 extends the examination of future acceleration trends and directions and Section 6
concludes the paper.

2. Taxonomy Methods with ETSI Management Framework

With the growth of NFV technologies, network operators urgently want easy access
to these solutions. However, most suppliers vigorously advertise their NFV solutions,
emphasizing their own business and competitive advantages. Due to this, there is no single
management standard for these solutions and no unified interface for the higher layer
network element to use, which network operators dislike. ETSI is a non-profit, independent
standards body focused on telecommunications in Europe. The members are equipment
makers and Internet service providers. ETSI develops global standards for information and
communication technologies (ICTs), such as fixed, mobile, radio, convergent, broadcast,
and Internet technology. ETSI’s NFV architectural framework is ETSI’s recommended
implementation of NFV governance, which shows in Figure 1. We take the framework
as the primary cornerstone of our taxonomy investigation due to its depth of coverage
and realizability.

The left part of Figure 1 illustrates how virtualization techniques abstract hardware
into components capable of performing a single network function. From the bottom–up,
physical resources are converted into virtual resources via virtualization techniques, and
then virtual resources are logically divided into the virtualization network function (VNF).
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Because network functions are regarded as elements, they will be provided in the element
management system (EMS). When the network components are available, they connect
to the service provider’s business and operation support system (OSS/BSS) to provide
services. It is worth noting that although container technology abstracts the hardware
via a technique other than virtual simulation, the concept is still a form of virtualization.
The right side of the Figure corresponds to the management positions associated with
each of these processes. To begin, the virtualization of hardware requires a coordinator
to translate resource requirements into matching hardware, which is the responsibility of
the virtualization infrastructure manager (VIM). Then, the EMS responds to managing
the lifetime of VNF while providing services, and requirements are passed onto the VNF
manager for processing. Finally, once the service is available for OSS/BSS, the NFV
orchestrator will coordinate the EMS assistance required.

Figure 1. NFV reference architectural framework.

2.1. ETSI NFV Infrastructure Architecture

We examine the classification of acceleration concerning infrastructure components in
terms of the work they perform. The infrastructure consists of EMS, VNF, and NFVI. EMS
is a collection of VNFs that emulate the various network hardware functions. VNFs can run
on one or multiple virtual machines (VMs). Generally, each EMS controls one or multiple
corresponding VNFs at once. NFVI is the most basic infrastructure in the NFV architecture
and mainly consists of three function blocks: virtualized resources, virtualization layer,
and hardware resources. Hardware resources include computing power, storage, and
networking (for example, routers, wired or wireless connections). The virtualization layer
between the virtualized and hardware integrates software with hardware. Once hardware
resources are virtualized, they become virtual resources that VNF can dynamically request.

We classified the components associated with the acceleration studies as Figure 2.
The VNF is the infrastructure component between the network service and the entity and
provides the most significant acceleration benefits. Since VNFs are derived from the same
design as PNFs, the PNF is usually accelerated through operating system tuning, operating
system network module tuning, or hardware acceleration. VNF adopts the same strategy,
except the acceleration from hardware-provided offloads is replaced by virtual hardware
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via the hypervisor, such as a virtual switch module in the hypervisor that sends packets
directly to the virtual machine’s NIC.

Figure 2. The accelerating solutions based on NFV infrastructure.

As the core of the whole NFV framework, VNFs are the most studied for acceleration
since they are the central object of the overall NFV. It is because acceleration on VNF
delivers the most value to the NFV as a whole. VNF can be thought of as network functions
implemented in a virtual machine or container. We can abstract that the packet’s process
flow components are the virtualized hardware resources, the virtual machine’s operating
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system, and the network stack. Therefore, in VNFs, we classify the related functions into
network acceleration in VNFs, virtualization I/O framework, and OS network stack. The
network acceleration in VNFs is a technique for increasing network performance by utiliz-
ing virtualized hardware resources. The virtualization I/O framework is a classification of
how to tune the operating system to support the network, whereas the OS network stack
studies how to tune the operating system’s network modules.

The acceleration mechanisms of EMS are dependent on their architecture, which is
typically composed of one or more VNFs. EMS must manage VNF rapidly and efficiently
in this deployment architecture. The majority of service chain acceleration algorithms can
resolve crosstalk between several VNFs. Remember that this concept will be presented
again in the VNFM. The contrast is that in the VNFM, wherein the optimization logic for
the service chain is resolved after external processing. The EMS is optimized internally
via automated optimization, so accelerated research in EMS is concerned with optimizing
the service chain. The optimization approach can be classified into conventional routing
enhance approaches, EMS with a middlebox for control optimization, and the novel kernel
technique, eBPF. Routing technology facilitates seamless communication between the VNF’s
several subnetwork components. Middlebox employs a distinct control plane and data
plane architecture to create a micro-SDN architecture within a single EMS. The eBPF is a
novel approach for accelerating the development of kernel modules, which can significantly
reduce the time required to meet EMS criteria.

NFVI can be directly interpreted as a hypervisor because NFVI is in charge of packet
delivery to the virtual machine. The common acceleration occurs in a virtual switch. We are
going to organize the studies to improve the intelligence of the software Switch, including
enhancing the packet delivery path, directly integrating with the hypervisor, and enhancing
the Switch-related functions. The acceleration associated with the infrastructure is detailed
in the following section.

2.2. ETSI NFV Management Architecture

The NFV management and orchestration function blocks are critical for the overall
control and coordination of the NFV technology architecture. It is primarily composed
of three components: the NFV orchestrator (NFVO), the VNF manager (VNFM), and the
virtualized infrastructure manager (VIM). We organize the NFV acceleration to correspond
to the ETSI NFV framework as Figure 3.

The role of VIM is to communicate and coordinate between NFVI as at the bottom
components. A typical strategy is to accelerate network capability through cross-node
work. SDN gives an excellent example of separating the control and data planes to achieve
flex-scale network capacity in response to network loads dynamically. VIM’s adminis-
tration designs for managing virtual switches distributed across NFVIs include packet
flow acceleration methods. Traffic steering acceleration is a noteworthy strategy [8]. By
applying efficient steering models in the virtual switch, it is possible to reduce inter-core
communications and deal with more complex scenarios in traffic steering. Furthermore,
given the statefulness of a large number of NFs, this acceleration is critical for attaining
high-performance service chains.

When software and hardware resources are required, the NFV MANO coordinates,
validates, and authorizes the request for resources and manages the lifecycle of EMS,
which includes operations such as the instantiation, scaling, updating, querying, and
termination of VNFs. In addition, the NFV MANO is responsible for network policy
management, performance measurements, the collection and transfer of relevant events,
and the allocation of infrastructure-related resources, for instance, adding resources to
virtual machines, improving energy efficiency, and reclaiming resources. The development
of multi-vendor and multi-service NFV systems entails that relevant services and overall
operations will require large amounts of data processing and operations. Therefore, NFV
MANO must identify and reference relevant data when managing process coordination.
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Figure 3. The accelerating solutions based on NFV management framework.

The middle tier, VNFM, as the name implies, manages the life cycle of the VNF. It
includes VNF deployment templates, VNF service cascade forwarding diagrams, NFVI
information models, and various service-related information. The standard VNFM man-
agement tools nowadays are relatively simple in function. Therefore, many studies have
tried to incorporate intelligent processing into their designs, such as placement problems.
We will also introduce more studies in subsequent sections.

3. Accelerations in NFV Infrastructure
3.1. Virtualized Network Function (VNF)

Understanding the packet delivery process within the OS network stack helps with a
more fundamental understanding of network stack issues. In Appendix A, we succinctly
organize the OS packet processing procedure. The general I/O architecture of the operating
system is the root cause of network latency. Therefore, adapting a general-purpose archi-
tecture to meet the needs of a network with particular features is a common optimization
strategy. As mentioned in the previous section, we subdivided the acceleration methods of
VNF into OS network stack, virtualization I/O framework, and network acceleration in
VNF. We discuss the related solutions in each of these categories in the rest of the section.

3.1.1. Os Network Stack
Direct Memory Access

Direct memory access (DMA) is mainly adequate for accelerating the packet processing
of a single machine. However, NFV, through hardware abstraction, requires two indepen-
dent hosts to exchange packet processing between them. Therefore, the packet exchange
between two OSs has to go through the OS network stack, which requires substantial server
resources and bus bandwidth. Furthermore, the data are copied and moved back and forth
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between memory, processor cache, and network controller cache, which burdens the CPU
and the server’s memory.

Checksum Offloading

Network transmission protocols such as IP, TCP, and UDP need checksum to verify
packets. The CPU does checksum calculation (sending) and verification (receiving), which
does affect the CPU, as producing a checksum involves every byte of data in the calculation.
For a 100 Gbps network, the CPU needs to calculate approximately 12 GB of data. In
order to reduce this burden on the CPU, modern NICs support checksum calculation
and verification. Kernel packets can skip the checksum by waiting until the NIC receives
the packet, computing it according to the network protocol rules, and then filling in the
checksum in the relevant place.

New API/Receive Side Scaling

When the DMA is loaded into the packet, the NIC issues an interrupt request (IRQ) to
the CPU, allowing the CPU to continue. The CPU must process the interrupt handler for
each IRQ that is triggered. Suppose that the NIC generates an IRQ each time it gets a packet.
In that case, the CPU will spend considerable time executing the interrupt handler and will
be able to recover only one packet from the ring buffer after processing. Even though the
interruption interval is brief, it significantly impairs performance. Newer kernels employ a
new API (NAPI) method to identify whether to use a pure interrupt or a poll query based
on the number of packets to be handled to combine IRQs and reduce call count. A similar
approach is called receive side scaling (RSS), which effectively reduces interrupts with a
multi-core processor setup. NICs possessing RSS compatibility have multiple reception
queues. Thus, NICs can use different queues to receive network flows. These queues are
allocated to different CPUs to divide the load and improve network transmission efficiency.

Scatter/Gather

Scatter/gather is a commonly used acceleration method known as vector addressing,
which mainly accelerates the packet sent. In simple terms, this means that a reader can
read data from multiple separated memory addresses during data transfer, rather than
continuously reading data from one buffer. For example, a kernel retains the original data
after receiving it from the application. Then, it computes the protocol header of each layer
in another memory address and notifies the NIC driver to copy the data from these two
memory addresses to reduce unnecessary copy processes.

TCP Segmentation Offload

TCP segmentation offload (TSO) is a method for transferring data over a network that
is similar to TCP. It lets apps deliver data of any length to TCP. TCP is a transport layer
protocol that does not deliver accurate user data to the lower protocols. Instead, data can be
segmented and sent in segments to ensure reliability, efficiency, and optimal transmission.
TCP (L2) and IP (L3) data segmentation is data fragmentation. TCP breaks massive data
into smaller portions based on the maximum segment size (MSS) before sending a packet to
the IP layer. Due to the MTU limitation, the IP protocol separates the data from the higher
layer into numerous portions.

3.1.2. Virtualization I/O Framework

Along with OS network stack advancements, network acceleration via virtualization
is an active research field. However, because virtualization lacks the operating system’s
priority execution, it is easy to incur inefficient I/O due to the long path to convey data
from the operating system to the hypervisor. Because of this, research in virtualization
technology, I/O efficiency, and processing has historically been a critical field of study. The
following sections outline the data and network I/O difficulties and the accompanying
acceleration techniques.
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DPDK

Numerous endeavors alleviate the time of context switching using techniques with
kernel bypasses. DPDK [9] is a collection of data plane libraries and network interface
controller (NIC) drivers for high-speed packet processing. Using DPDK libraries and
application program interfaces (APIs) in userspace, the program can constantly poll instead
of managing packet arrivals via interrupts. For minimizing locking overhead, DPDK’s
lock-free rings are based on the Linux kernel’s lock-free ring buffers, which support both
one-to-one and many-to-many producer/consumer models. Thread affinity refers to DPDK
associating threads with logical cores to minimize the context switching and boost CPU
cache hit rate. DPDK employs per-core memory in NUMA to ensure cache consistency and
uses 2 MB and 1 GB big pages to minimize the possibility of TLB misses. Finally, DPDK
is hardware-independent, as it provides a programming framework that works with any
processor. Moreover, DPDK can achieve tenfold the performance of packet processing, with
a throughput of more than 80 Mpps on a single processor.

PF_RING (DNA)

The primary goal of PF_RING is to reduce packet copy time during transmission.
PF_RING polls the NIC for packets and stores them in ring buffers to accomplish this.
Userspace applications then read packets directly from the rings using the Linux New API
(NAPI). This technique, however, requires two polling times for NAPI and the application,
which uses additional CPU cycles. To reduce the CPU consumption for polling packets,
PF_RING DNA copies packets from the NIC to ring buffers by NIC NPU instead of NAPI.
As a result, it performs better, but the disadvantage is that only one program may access
the ring at a time, and apps must swap packets to spread them.

Netmap

Netmap [10] significantly reduces or eliminates overheads associated with per-packet
memory allocations, system calls, and packet copying by adding three optimization tech-
niques: buffer preallocation, big batch processing, and shared buffers. These are used to
accelerate packet transmission across the NIC to userspace applications. Notably, netmap
offers two modes that enable users to specify whether packets should be routed through
the host stack [11]. In contrast, the netmap mode enables packets to be delivered directly
to an application using the netmap API. Netmap’s implementation requires only minor
modifications, does not require any specialized hardware, and can easily hit the line rate
on a 10G NIC with a 64B frame size [10].

P4

P4 [12] is a high-level programming language designed to develop protocol-independent
packet processors that act as a general-purpose, flexible interface between switches and
controllers for matching header fields and parsing packets. In addition, P4 provides a
straightforward API for configuring the switch’s physical implementation. In summary, P4
can accomplish three objectives:

• Protocol independence: switches should be capable of handling packets of varying
formats.

• Reconfigurability: the controller can parse and process packets with programming.
• Target independence: programmers can describe the functions that process packets

without knowing the hardware implementation details.

In comparison to more widely used programming languages (such as C or Python),
P4 is a domain-specific language that provides high-level abstraction for network program-
ming and improves network data forwarding via a collection of carefully built features.
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Click

Click is a widely used software router that supports flexible and modular configuration.
A click router is composed of numerous parts, each of which processes packets in order
to carry out a certain router function [13]. Due to Click’s modular nature, it is easy to
extend it. Apart from routing, Click can be used for rapid prototyping and new protocols.
Researchers have made significant attempts to enhance the performance of Click with the
development of RouteBricks [14], DoubleClick [15], Click-on-osv [16], and FastClick [17]

3.1.3. Network Acceleration in VNFs

We give a comparison at Table 1. To improve the efficiency of packet delivery, VNFs
use the same strategies as PNFs, such as zero-copy, NUMA, and other architectures. Drivers
such as virtIO and pnet provide a standard equipment model. To good effect, they use
I/O acceleration mechanisms commonly found on PNFs, such as zero-copy or NUMA.
ClickOS [18] and NetVM [19] are all examples of research that optimizes packet transfer
between the NIC and the VM, as well as between VMs. Due to the length of time required
for development, simulation technology used to produce VNF technology is still the
preferred alternative.

IX [20] relies on multi-queue NICs to securely hash incoming packets, and operating a
large number of NFs in the data plane eliminates synchronization overhead. Offloading is
also well-known for significantly reducing CPU utilization in VNFs. vTurbo offloads tasks
to a turbo core, a time-sliced slice segregated from the CPU core. Offloading workloads to
a dedicated turbo core decreases the latency associated with VM core access. Therefore,
vTurbo significantly increases the network throughput at the application level.

Table 1. Network acceleration in VNF.

Name Strategies Effectiveness Advantage Disadvantage

IX Separates control plane
and data plane

On a 10GbE experiment
using short messages, IX
outperforms Linux and
mTCP by up to 10× and
1.9× respectively for
throughput

High I/O performance,
while maintaining the key
advantage of strong
protection offered by
existing kernels

Only support
hardware-based
hypervisor

vTurbo
Implement CPU
scheduler to enhance
vCPU

Increase of 63–200% for
TCP, 300% for UDP
throughput and 75% to
82% for disk write and 26%
for disk read

The improvement supports
all I/O behavior

The implementation
needs evolved
hypervisor

NetVM

Using NUMA-aware
and DPDK design to
improve network
performance

Inter-VM communication
using NetVM can achieve a
line-rate speed

Only requires a simple
descriptor to be copied via
shared memory, which
then gives the VM direct
access to packet data stored
in huge pages

Cannot share CPU
loading in multicore
platform

ClickOS
A Xen-based software
platform optimized for
middlebox processing

Linux throughput
increases from 6.46 Gb/s to
9.68 Gb/s for 1500B
packets and from
0.42 Gb/s to 5.73 Gb/s for
minimum-sized packets

Resource using optimized
with Small (5MB), boot
quickly (approximately
30 milliseconds) and add
little delay
(45 microseconds)

Only supports
Xen-based hypervisor

3.2. Element Management System (EMS)

The basic unit of a network service is the element management system (EMS). Com-
pared to the accelerated notion of VNFs, it can perform network processing at a higher
level, which means that several VNFs can operate in the same EMS. Linking VNFs to
analytical services is the most straightforward approach to deploying an EMS. However,
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EMS may need to pass user network flow via multiple VNFs. As previously stated in our
classification scheme, EMS places a premium on interoperability and control amongst VNFs.
The Middlebox provides a more detailed view of network traffic than the VNF, which will
behave differently in practice. In more detail, route enhancing refers to optimizing the flow
or forwarding components. Thus, by evaluating the service chain of user requests, the EMS
may determine the flow of VNF. For a more clear comparison, we organized the solutions
as Table 2.

Table 2. The acceleration solutions in EMS by routing enhance.

Name Strategies Effectiveness Advantage Disadvantage

NFP

Allows parallelized NF
to boost the
performance of service
chains

Decreases latency with 35.9% Enables network function
parallelism

Lack of policy
specification scheme to
represent more
complex NF
composition rules

MicroNF

A disaggregated packet
processing architecture
facilitating the
deployment of VNFs
and SFCs

Reaches a throughput of
2.08 Mpps or 3.67 Gbps

Supports existing solutions
including batched I/O and
zero-copy I/O

Does not support
complex VNFs

Slick
Designs and
implements various
VNFs based on Click

10–15% of optimal placement
and outperforms random
placement for varying
number of flow sizes

Proposes a secure
middleware framework

Does not support multi
application

StatelessNF
Using DPDK and
OpenFlow-based
network

Reach a throughput of
10 Gbit/sec, with an added
latency overhead of between
100 µs and 500 µs

Supports failover which
does not disrupt ongoing
traffic

Only supports limited
scenario

NetBricks
Enhances I/O
efficiency by
zero-copying

64B packets copying can
result in a performance drop
of up to 3 times

Provides the same memory
isolation as containers and
VMs

The supporting
scenario is simple

P4nfv
P4 for programming
protocol-independent
packet processors

On average, 108.43 packets
are lost during the migration
of the NAT which
corresponds to a service
disruption of 0.217 s

Ensures the liveness of
functions and acceptable
performance degradation
when functions are
migrated

Only supports P4 based

PacketMill Efficiently manages
packet metadata

Increases throughput (up to
36.4 Gbps–70%)

Reduces latency up to
101 us

Needs hardware
support

E2

Allows developers to
rely on external
framework-based
mechanisms for
common tasks

Offers a 25–41% reduction in
CPU and a 1.5–4.5×
improvement in overall
system throughput

A single controller handles
both the management and
interconnection of NFs

Not a standard NF
management
framework

OpenBox Decoupling the control
plane of a NF

Increase from 86 90%
performance and reduce
35 50% overhead

Effectively decouples the
control plane of NFs from
their data plane

Lack of security
support

FastClick
Integrating a faster
Click with both
Netmap and DPDK

Exhibits up-to about 2.3×
speed-up

Boasts improved
abstractions for packet
processing

Does not support
middlebox

SNF

Synthesizes NF service
chains by removing the
redundant operations
(i.e., packet and I/O
operations)

Achieves line-rate 40 Gbps
throughput (up to 8.5×
greater)

Eliminating redundant I/O
and repeated elements

Only applicable to
fairly limited service
chains

CoCo

Provides a
performance-aware
approach for deploying
modularized SFCs

Reduces the total DB by
2.46× compared to random
strategy and by 1.64×
compared to greedy strategy

Consolidate and provides a
performance-aware
placement algorithm to
place MSFCs

Only scales out the
element that is
overloaded and to
reduce the scaling
overhead
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3.2.1. Routing Enhance

Routing enhance provides many advantages, including the reuse of applications and
software and geographic dispersion. However, developing a new EMS continues to be a
painful process that requires developers to continually rediscover and reapply the same
set of optimizations. At the same time, existing approaches for providing isolation across
NFVs (through VMs or containers) incur significant performance costs. NetBricks [21] takes
inspiration from data analytics frameworks when developing NFVs and creating a modest
collection of customizable network processing pieces. Likewise, NetBricks adopts type
checking and safe runtimes to offer isolation in software rather than relying on hardware
isolation. Simultaneously, the processing of this flow is abstracted as an np-problem, laying
the groundwork for future study in this area.

The study in Ref. [22] examined how to identify the next user flow item at each
network stage. These pathways in the table will be replaced when they discover a more
advantageous site in the process beyond. The table where these paths are recorded is
called the matching action table. Since the table can track the operational status of each
NF record in real-time, adjusting the order of NFVs and eliminating repetitive tasks can
resolve different NFVs, resulting in reduced operational delays. PacketMill [23] demon-
strates the use of specialized DPDK buffers and optimized code to minimize unnecessary
memory access. Therefore, user stream metadata are more efficiently managed due to
better buffer-local performance. This adds to implementing network services at 100 Gbps
and is more significant in software on commercial hardware. As previously indicated,
there is forwarding component optimization in addition to flow optimization, in which the
forwarding components influence the flow design to some extent. The NFP [24] of the flow
process duplicates data elimination processing. After identifying the critical performance
factors, instruction-level parallelism can process the user flow in parallel. Using the basic
NFP infrastructure to consolidate packets for processing avoids consuming additional
network bandwidth resources. It also supports NFP with a zero-copy of packet delivery
mechanisms.

Click is a novel way to provide configurable routing. Because of its scalability, many
studies were conducted around Click. Slick [25] also sees value in constructing custom,
fine-grained flow processing blocks that can be reused across NFVs. It also advocates the
development of high-level control software that determines who conducts the processing
and the traffic routes across processing blocks. Fastclick [26] is capable of processing
network traffic at up to 40Gbps and uses dynamic programming to accelerate the suggested
network function parallelism. Coco [27] is a lightweight and optimized flow consolidation
framework designed to optimize the performance and resource consumption efficiency
of SFC flows in NFV. CoCo solves the challenge of integrating parts by implementing a
performance-aware placement algorithm based on 0–1 secondary planning. Furthermore,
CoCo proposes a novel push-aside scaling method to avoid performance degradation when
scaling. In contrast, StatelessNF [28] makes significant performance compromises due to
all state accesses being remote.

Graph algorithms help solve large-scale and complex flow topologies, and the same
approach is also practical for packet acceleration processing. Ref. [29] provides a straight-
forward graph-merging algorithm that treats the initial request flow as a pGraph, and a
directed acyclic graph with a single path. The graph indicates the path length; the path is
then integrated into the flow volume of a single strategy map, and the flow and passing
nodes are changed accordingly. Ref. [30] extends the study of graph-merging approaches
by developing an algorithm for segmenting the flow into terminals, classifiers, modifiers,
shapers, and statics, as well as for minimizing the path length between the graph’s input
and output terminals.

3.2.2. Middlebox

When a user’s service request runs through many VNFs in the back end, it is evident
that efficiency will suffer if each user flow must transit through all the VNFs. Therefore, it
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is common to adjust the path of user service requests to accelerate the network services.
For instance, the same paths can be merged into optimized ones by analyzing the user
service flow with algorithms. This component, which is placed between the user’s service
requirements and the actual provision of network services, is called a middlebox. The
main idea is disaggregating packet processing. Ref. [31] extends middlebox disaggregation
by decomposing VNF into independently deployable, loosely linked, lightweight, and
reusable packet processors. As shown in Table 3, VNFs are then created by combining these
deployable NFVs into a packet processing pipeline.

Table 3. The acceleration solutions in EMS by middlebox.

Name Strategies Effectiveness Advantage Disadvantage

SpeedyBox

Optimizations in a
service chain to
eliminate processing
redundancy.

Reduces the latency by 59 %
and achieves 2.1× processing
rate

Optimizations in a service
chain to eliminate
processing redundancy.

Only support NFs can
decouple in service
chain.

CoMb

Implements low-level
processing components
for capturing packets,
parsing packet headers
and reconstructing TCP
sessions

CoMb reduces the network
provisioning cost 1.8–2.5×
and reduces the load
imbalance by 2–25×.

Built and managed as
standalone devices

Mainly focuses on
consolidating NFs

Polycube In-kernel packet
processing applications

31.8×, 7.5× and 1.4× factor,
respectively, for nftables with
tables and OVs

A very small overhead
compared to vanilla eBPF
applications

Performance is not as
good as DPDK

eVNF

Leaves the simple but
critical tasks inside the
kernel with XDP and
lets complex tasks be
processed outside XDP

Improves the number of
completed requests per
second by 1.4× times

Allows building VNFs
with both speed and
flexibility

Only considers one
VNF per VM.

CoMb [32] is designed and managed as separate devices squander infrastructure hard-
ware and network management resources. On the other hand, consolidated middleboxes
share a common hardware platform, necessitating a re-architecture of CoMb software-
centric middleboxes at the device and network layers. The CoMb implementation supports
low-level processing components such as packet capture, header parsing, and TCP session
reconstruction. However, establishing performance isolation, security, and fault tolerance
when running many reusable NF modules on the same hardware platform is challenging
due to CoMb’s failure to solve implementation concerns (software design and performance
optimization). In practice, an abstract controller called Speedybox [33] is constructed at
the top level, followed by the creation and improvement of an allocation algorithm with
detection capabilities via delay detection processing.

eBPF is a ground-breaking technique originating in the Linux kernel that enables the
execution of sandboxed programs within an operating system kernel. It is used to safely
and efficiently enhance the capabilities of the kernel without modifying the kernel source
code or loading kernel modules. Polycube [34] is a software framework designed to bring
NFV to in-kernel packet processing applications with eBPF. Polycube offers unprecedented
flexibility and customization. It allows the building of arbitrary and complicated network
function chains with efficient in-kernel data planes and flexible userspace control planes
that are isolated, persistent, and composable. Furthermore, cubes are polycube network
functions that may be dynamically produced and injected into the kernel networking stack,
easing debugging and introspection, two essential aspects in contemporary cloud settings.
eVNF [35] takes XDP to build the firewall (eFW), deep packet inspection (eDPI), and load
balancer (eLB), demonstrating that eVNF may dramatically improve service throughput
while reducing latency and CPU utilization.
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3.3. Network Functions Virtualization Infrastructure (NFVI)

As mentioned previously, the acceleration with NFVI is mainly related to the network.
We give a comparison in Table 4.

Table 4. The acceleration solutions in NFVI.

Name Strategies Effectiveness Advantage Disadvantage

Hyper-Switch

Removes the costs of
hypervisor entries and
guest announcements
by using state-aware
batching of packets

Achieves a peak of 81 Gbps
as compared to only 31 Gbps
under Xen and 47 Gbps
under KVM

Combines the advantages
of both driver domains and
hypervisors while
eliminating the software
overheads for achievable
I/O performance inherent
in hypervisors

Not supported in every
OS

BESS

A modular framework
for software switches to
overcome the severe
contradiction between
limited NIC abilities

No experiment

Makes it possible for a user
to customize the packet
processing by using a
number of modules

Does not support
multi-core architecture

VALE A virtual local Ethernet
software

This can achieve very
high-speed communication
between different types of
VMs (up to 20 Mpps within a
short frame)

Both QEMU and KVM
hypervisors have to be
modified to accommodate
the new network backend.

Not supported with
Xen

CuckooSwitch

Compacts the
forwarding table
lookup based on the
design of cuckoo
hashing

Can process 92.22 Mpps for a
packet size of 64B when
using eight 10 Gbps Ethernet
interfaces

Employs DPDK to achieve
high throughput for packet
processing when handling
a great deal of L2 rules

Losing flexibility in
switching logic

mSwitch

Extends the VALE
switch to provide a
logically separated
switching fabric and
the switching logic

A modified OvS with minor
code changes results in an up
to 3 times speedup

High-performance packet
I/O and secure data path
using memory buffers
between virtual ports

Does not receive entire
batches of packets
instead of having
per-packet semantics

SnabbSwitch

The implementation of
vhost-user as well as
the use of a trace
compiler

Throughput with 13.78 Mpps
while the theoretical
maximum for a 10G Ethernet
device is 14.8

Proven to outperform
OvS-DPDK and can yield
almost the same
performance as
hardware-based solutions
such as SR-IOV

Does not support
multicore CPU
platform

3.3.1. Hypervisor Related

Given that NFVI serves as the primary infrastructure for the functioning of VNF, the
primary bottleneck is determining how to expedite communication between VNFs. For
instance, NFVI will build the fundamental components of virtual switches to manage
virtual switches across several hypervisors. Hyper-switch [36] is a prototype for Xen
that compares its performance with the default network I/O architecture used by Xen
and the vhost-net architecture used by KVM. The hyper-switch prototype outperformed
both, especially where network connectivity between VMs was required. ClickOS [18] is
another Xen-based software middlebox architecture and is also a software-based Ethernet
switch with built-in efficient, high-performance, and highly concurrent hash tables to create
compact and swift FIB searches.

3.3.2. Distributed Switch

Another option to accelerate the distributed switch is to optimize the single switch’s
I/O processing. The acceleration technology can implement by kernel or kernel-bypass.
For accelerating in the kernel, the VALE switch [37] is an in-kernel virtual switch using
the netmap pipe to provide a direct connection between two virtual machines. The virtual
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machine gains exclusive access to the host’s physical devices. The most used technique
with kernel-bypass is related to DPDK but implemented on an open switch. OvS-DPDK is a
kind of accelerated OvS with DPDK datapath that bypasses the host kernel by utilizing the
DPDK libraries. It appears as though the DPDK PMD driver is creating a userspace vSwitch
on the host. Therefore, OvS-DPDK can deliver up to ten-fold the native OvS. BESS [38] is a
modular framework for software switches that address the severe incompatibility between
limited NIC capabilities and changing user needs. This enables developers to include NIC
functionality into their products with minimal performance overhead.

3.3.3. I/O Enhance

When performing a software-based switch, the additional capacity is required to
minimize collisions in hash tables and avoid locking costs while allowing several threads
to read from the forwarding table simultaneously. I/O enhancements are helping in
dispatching the packets to the virtual NIC. CuckooSwitch [39] is a software-based Ethernet
switch that is built around a memory-efficient, high-performance, and highly concurrent
hash table that enables compact and quick forwarding information base (FIB) lookup.
CuckooSwitch combines a novel hash table design to develop a best-in-class software
switch. SnabbSwitch [40] is a virtual switch designed to run in user space and achieve
carrier-grade performance. It is built on an efficient packet-switching algorithm architecture,
which sparked the invention of the vhost-user. mSwitch [41] is an accelerated Open vSwitch
module with minor code changes that boosts performance by 2.6–3 times; and a filtering
module that can direct packets to virtualized middleboxes. mSwitch is also a learning
bridge with 45 line codes that outperform FreeBSD’s bridge by up to 8 times.

4. Accelerations in NFV Management

This section discusses how to accelerate from a managerial standpoint. As previously
stated, the ETSI NFV framework attributes a management responsibility to each infras-
tructure piece. We classified and structured the corresponding acceleration methods as in
Figure 3 according to the framework’s design.

4.1. Virtualization Infrastructure Manager (VIM)

Since the solutions are all related to management, we combine the solutions in Table 5.

4.1.1. Software Defined Network (SDN)

The distinction between VIM and NFVI is in the network’s control ability. VIM is in
charge of distributing network control between NFVIs, which is an ideal scenario for SDN.
SDN’s primary goal is to abstract the component responsible for forwarding decisions
(control plane) from switches and routers and place it in software operating on general-
purpose hardware. Nfvnice [42] discovered that by integrating SDN and NFV, SLAs could
be successfully met, network monitoring and use could be more thorough, and the NF’s
network overhead could be globally reduced. The study employs an NF state manager and
a flow manager to maintain real-time control over the status of the two resources.

Microboxes [43] enable the decomposition of complex NFVs into parts and the con-
struction of dynamically and effectively coupled chains of functions. Microboxes provide
modular protocol processing engines that can only be configured to handle the function-
ality required by a particular flow. A middlebox service chaining perspective that is not
packet-centric is required to ensure that individual flows acquire appropriate protocol
functionality. Individual packet arrivals, protocol events, and application-level actions
produce and consume events generated by microboxes. Additionally, this establishes a
publish–subscribe architecture that enables the development of convenient higher-level
interfaces that are event-driven rather than packet-driven. Both studies, as previously
indicated, aim to synchronize the status of NFVs to lessen their reliance on one another.
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Table 5. The acceleration solutions in VIM.

Name Strategies Effectiveness Advantage Disadvantage

Nfvnice

Complementing the
capabilities of the OS
scheduler but without
requiring changes to the
OS’s scheduling
mechanisms

Appropriate rate–cost
proportional fair share of
CPU to NFs and significantly
improves NF performance
(throughput and latency)

Reducing wasted work
across an NF chain

Not support in every
OS

Microboxes
Support transport- and
application-layer
middleboxes

This can provide between
31% and 57% improvement
in throughput and a 32% to
47% reduction in latency
while only using one core.

Eliminates redundant
processing across a chain
and enables a modular
design

Does not support
Layer2

UNO
A generalized
SDN-controlled NF offload
architecture

Reduces power usage by up
to 2×, and reduce the control
plane overhead by more
than 50%.

Makes optimal use of the
host’s and sNIC’s
combined packet
processing capabilities

Needs hardware
support

StatelessNF

Implemented three
example network functions
(network address
translator, firewall, and
load balancer)

Able to reach a throughput
of 10 Gbit/sec

Architected around
efficient pipelines
utilizing DPDK

Can support a limited
scenario

OpenNF
Combination of events and
forwarding updates to
address race conditions

State can be compressed by
38%, improving the
execution latency from
110 ms to 70 ms

Ensure lock-step
coordination of updates
to NF and network state

Not supported by
complex NFV

4.1.2. Control Plane

A control plane design [44] offers the coordinated control of both internal and network
forwarding states, enabling quick, safe, and fine-grained flow reallocation between NF
instances. UNO [45] develop an offloading architecture that dynamically optimizes by
making the best use of sNICs and host packet processing capabilities without requiring
changes to the data center’s administration and orchestration. Building a rule translation
algorithm that maps NF traversal rules from an external controller to the component
host/sNIC switches ensures that the controller’s packet routing semantics are appropriately
implemented. Meanwhile, the controller’s NF configuration is presented, which formulates
and executes an NF placement algorithm that dynamically determines the ideal position
for an NF. Thus, sNIC and interconnection resources are efficiently utilized, migration
techniques that effectively minimize packet loss during NF relocation are avoided, and the
NF’s internal state is maintained during the relocation process.

Finally, Ref. [28] introduced stateless network functions, a ground-breaking design
approach that decouples the state that network functions must retain from the activities
that they must perform. This simplifies state management and addresses several concerns
that existing solutions have highlighted. Beyond the above studies, Ref. [46] offered a
machine learning-based strategy that begins with the first packet of a flow and makes its
decision from there. A fundamentally different technique is to make the offloading decision
based on packet sampling. This compares the two ways in terms of complexity, offloaded
traffic share, and table occupancy. The results indicate that the first packet’s offloading
decision based on machine learning is doable. The sampling strategy achieves equivalent
performance only at extremely high sampling rates.

4.2. Virtual Network Functions Manager (VNFM)

The solutions in VNFM are organized as shown in Table 6.
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Table 6. The acceleration solutions in VNFM.

Name Strategies Effectiveness Advantage Disadvantage

Metron

Realizes stateful network
functions at the speed of
100 GbE network cards on
a single server

2.75–8× better efficiency, up
to 4.7× lower latency, and
7.8× higher throughput than
OpenBox

Zero inter-core
communication

Needs hardware
support

ParaBox Distributes packets to
VNFs in parallel

Reduces the service chain
latency by up to 37.7% and
increases the downloading
throughput by up to 10.8%

Not only significantly
reduces the service
chaining latency, but also
improves throughput

The complex SFC
may increase the
latency

Octans

An NFV orchestrator to
achieve the maximum
aggregate throughput of all
SFCs in many-core systems

Improves the aggregate
throughput comparing to
two state-of-the-art
placement mechanisms by
26.7% 51.8%

First formulates the
optimization problem as a
non-linear integer
programming
(NLIP) model

Needs a very long
calculation of the
NLIP model

P4SFC

Leverages P4-capable
switches to accelerate
packet processing by
offloading proper NFs to
the switches

Increases 20% performance

Fully offloadable, partially
offloadable and
non-offloadable according
to the limitations of P4

Only supports
P4-capable switches
to accelerate SFCs

4.2.1. Service Chain

The administration of the VNFM layer is intended to be similar to that of the VNF
life cycle. It will undertake actions such as adding, removing and upgrading the services
supplied by the VNF. Meanwhile, it may be tasked with assessing the requirements of
the service chain. Along with defining the service orchestration method, the service chain
describes the resource requirements for the service, such as the number of required VNFs
and the network interface to use. The Open Network Automation Platform (ONAP) and
Open Source MANO (OSM) are well-known orchestration solutions for VNFM. These
systems exchange essential service specifications via descriptive languages such as Yet
Another Next Generation (YANG) or TOSCA to reduce the service function chain (SFC)
latency by leveraging parallel packet processing capabilities across NFVs. However, since
the VNFM’s process description is pre-written, the service description cannot parse the
service independently. Thus, the main issue in VNFM is how to disassemble the user
process correctly and generate a description spec.

Metron [47] sought to mitigate the state’s impact on NFV distribution by including an
early statement in the packet flow. The resulting packet flow is then partitioned between
stateless and stateful activities. Metron instructs all programmable hardware (i.e., switches
and network interface cards) to perform stateless operations while routing incoming pack-
ets to CPU cores performing stateful operations. ParaBox [48] is a hybrid packet flow
processing architecture that dynamically distributes packets to VNF in parallel and intel-
ligently blends their outputs to preserve accurate sequential processing semantics where
possible. Octan [49] is an VNF orchestrator that facilitates the optimal arrangement of SFCs
within a server. It begins by deriving a non-linear Integer Programming (NLIP) model for
identifying critical optimization parameters. The critical element for problem resolution is
defined as how NFVs can impact an NF’s throughput incomparable or dissimilar SFCs due
to cross-node memory access and intra-node resource congestion.

4.2.2. P4

P4 is an open source domain-specific programming language for network devices
that specifies how data plane devices (switches, routers, NICs, and filters, for example)
process packets. The P4 ecosystem is comprised of a diverse set of products, initiatives, and
services. To discover more about P4 and to join the community, please visit the P4 website.
DE4NF [50] presents P4-based software switches that do high-speed flow table lookups and
packet header inspection, resulting in a lighter manager. DE4NF’s NF manager receives
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processed packets from software switches, extracts the result of the flow table, and routes
packets to the appropriate service chains. In addition, DE4NF builds an efficient event
management system in which the transport layer or lower events are created in switches
and kept in a tunnel header that is put into each packet upon arrival.

The P4 and service chain work very well together. P4SFC [51] is a high-performance
SFC system that takes advantage of P4-capable switches to accelerate packet processing by
offloading the appropriate NFVs to the switches. To steer the packet flow of new SFCs at
runtime, P4SFC creates a dynamic P4 data plane with reconfigurable execution logic that
can be modified without interfering with the current execution logic. Furthermore, P4SFC
provides state consistency between the server and switch for partially offloaded NFVs,
which creates a state library that automatically synchronizes the server and switch states.
The experimental results demonstrate that P4SFC significantly improves the performance
of real-world SFCs.

4.3. Network Function Virtualization Orchestrator (NFVO)

The solutions in NFVO are organized as shown in Table 7.

Table 7. The acceleration solutions in NFVO.

Name Strategies Effectiveness Advantage Disadvantage

POSCARS

An efficient predictive and
online service chaining and
resource scheduling
scheme

Randomly incurs the
highest response time
(47 ms), as it disregards
information about
workloads or
communication costs when
scheduling requests

Achieves tunable trade-offs
among various system
metrics with stability
guarantee

Does not support
service chaining and
scheduling scheme
with multi-resource
fairness consideration
among VNF instances

SLOMO

Ensures the performance of
each VNF while
minimizing the total
energy consumption of the
data center

Reduces energy
consumption by 7.6% and
the running time cost by
63.2% on average
compared to
state-of-the-art methods.

On deep reinforcement
learning (DRL) to process
complex large-scale network
state spaces in real-time

Need booting data for
the reinforcement
learning

VNF-AAPC

Two methods to tackle the
VNF AAPC problem with
integer linear
programming (ILP) and
heuristic-based method

(No specific experiment
results)

Incorporating
accelerator-awareness in
VNF-PC strategies can help
operators achieve additional
cost-savings

The problem has
been separated into
two pieces

Microscope

A performance diagnosis
tool for network functions
that leverage queuing
information at NFs to
identify the root causes

Correctly captures root
causes behind 89.7% of
performance impairments,
up to 2.5 times more than
the state-of-the-art tools
with low overhead

A performance diagnosis
tool that identifies the causal
relations in a directed acyclic
graph (DAG) of NFs without
any knowledge of their
implementation

Only supports with
interrupts, software
bugs, traffic bursts,
resource exhaustion

Prune and
plant

Reduces the overall delay
while limiting the number
of duplicated packets

Decreases 20% delay
The dependency of the NFs
is characterized by a directed
acyclic graph (DAG)

Does not support to
handle parallelizable
NFs of multiple
network services

SIVA
Mathematically for both
unprotected and
protected SFCs

(No specific experiment
results)

Achieves a close to optimal
performance with a much
quicker running time

Does not support the
DAVS problem and
DSVS problem when
traffic demands vary
in different time
intervals
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Table 7. Cont.

Name Strategies Effectiveness Advantage Disadvantage

A-DDPG

Formulates the VNF
placement and traffic
routing problem as a
Markov decision process
model to capture the
dynamic network
state transitions

(No specific experiment
results)

Uses the attention
mechanism to ascertain
smooth network behavior
within the general
framework of network utility
maximization (NUM)

Only cares for the
observation process,
training process, and
online running
process

4.3.1. Schedule/Predit

NFVO is responsible for service scheduling and administration and is primarily re-
sponsible for NFV configuration planning, schedule management, and service runtime
scheduling. The majority of contemporary methods and techniques are centered on algo-
rithm processing. Nowadays, the bulk of methods and procedures are based on algorithm
processing. To begin, VNF-AAPC [52] uses integer linear programming (ILP) to optimize
VNF placement, chaining, and accelerator assignment simultaneously while adhering to all
NFVI requirements and efficiently allocating regular NFVI resources as well as hardware
accelerators to VNF chains.

4.3.2. Placement

Meanwhile, simulate the VNF placement and traffic routing problem using a Markov
decision [53] process to account for dynamic network state changes. For scheduling,
Ref. [54] presents a scalable, distributed, and online method for configuring a trade-off be-
tween a large number of system parameters while maintaining stability, all while exploiting
predictive scheduling power. Ref. [55] suggested that earlier performance prediction frame-
works perform poorly on contemporary architectures and NFVs because they consider
memory as a monolithic unit and ignores the fact that the memory subsystem has several
components that might individually create congestion. An adjustable trade-off between
numerous system metrics is achieved with POSCARS [56], an efficient, distributed, and
online method that uses predictive scheduling to maintain stability. POSCARS presents
three variations that employed randomized load balancing to reduce the sampling over-
head. It shows that POSCARS and its derivatives can achieve near-optimal average system
costs while reducing average request response times. Maintaining resource counters at
individual NFVs is insufficient, as resource contention can spread between NFVs and
over time.

A directed acyclic graph represents the VNF’s dependency (DAG), deploying VNFs
in the optimal locations and processing them concurrently without breaking the DAG,
reducing overall time. However, tackling the delay minimization problem is NP-hard and
may send a significant number of duplicated packets into the system, burdening it. To
address these difficulties, the Prune and Plant [57] has a polynomial computing cost and
reduces the overall time while minimizing packet duplication. Prune and Plant consists
of two stages: in the Prune step, we convert the original DAG into a series-parallel graph
(SP-graph), which reduces NP-hardness while preserving VNF parallelism.

4.3.3. Benchmarking

A benchmark was added to NFVO because valid measurements are required to
support sound decision making. In later chapters, we will talk about the impact of under-
measurement on the acceleration of NFV. Microscope [58] is a network function perfor-
mance diagnosis tool that takes advantage of queuing information at NFVs to pinpoint
underlying causes (i.e., resources, NFVs, traffic patterns of flows). The evaluation of re-
alistic NF chains and traffic demonstrates that they can correctly identify the underlying
causes of 89.7% of performance degradations, up to 2.5 times higher than state-of-the-art
low-overhead solutions.



Electronics 2022, 11, 1457 19 of 25

5. The Significance of Cloud Infrastructure for NFV

Mobile networks will drive the majority of current NFV demands. Telecommunica-
tions standards groups have made mobile network components natively NFV-compatible in
recent years. To the point that components such as those included in 5G’s Core Network al-
ready support the NFV architecture natively, making the development of the Core Network
more adaptable. As cloud service providers demonstrate an increasing ability to deliver
reliable cloud infrastructure, many successful cases are being put on cloud environments.
We anticipate that the cloud data center will be the principal setting in which NFV will be
implemented in the future. This section will address the demand for and impact of NFV
on cloud infrastructure. Additionally, we also analyze that each ETSI NFV framework’s
components can be accelerated for its use in cloud infrastructure.

5.1. 5G NFV Platform Requirements

5G is the next generation of mobile networks. In comparison to 4G, 5G requires a
higher level of performance. NFV acceleration is critical for delivering 5G by improving
the functionality and architecture of 5G radio access networks. NFVs are implemented as
software components. NFV overcomes some of the 5G difficulties but introduces new ones.
Researchers have made some efforts to investigate the issues that have arisen due to the
integration of NFV with 5G. However, Ref. [59] focuses on networking problems and [60]
on making optimal decisions regarding the placement of NFVs and CPU allocation in a
host, few researchers have examined how to consider the challenges in NFV-enabled 5G
networks with concurrently introduced acceleration techniques. Soon, we will undoubtedly
see NFV acceleration integrated into or even as a component of next-generation mobile
networks to offer high-performance mobile services to end customers jointly.

Scalability is critical while developing an acceleration solution to support 5G. To begin
with, the employed acceleration techniques require minimal, if any, changes to operating
systems, virtual switches, hypervisors, and network interface cards. Similarly, modifying
NFVs to conform to a particular high-performance framework is not permitted, and new
modules are not required to deliver new NF capabilities. The fast NFV system would
have performed better if it had been developed in a more conventional development
environment (e.g., Linux and FreeBSD). Second, the acceleration solution must be built
to work with various processors, network interface cards, and hardware platforms (e.g.,
Intel ×86, IBM POWER). This allows for the easy integration of the solution into a variety
of platforms. Thirdly, the solution should enable the deployment and migration of NFVs
across various servers. These tools should enable NFV developers to work with high-
level abstractions while focusing on rapid development and speed. Additionally, proofs
of concept for new acceleration methods should be carried out prior to large-scale NF
development to ensure their scalability.

5.2. Cloud Infrastructure: Of NFV

Through software technology, NFV implements network functions in regular hard-
ware, and throughout this process, the requirements of traditional CT are implemented
through IT technology. Originally, CT had a single functional specification. It demands an
exceptionally high level of performance and stability, which is difficult to achieve with cur-
rent information technology. However, following the growing demand and the evolution of
technology, the standard specification of CT has become increasingly common and modular,
and IT technology can sustain more extreme performance and stability requirements. On
top of that, the catalyst for integrating these two factors is cloud service. The reasons for
this integration can be analyzed from three angles:

1. CT-compliant service requirements: Cloud services already host over 92% of global
services, and as the infrastructure provider for these services, cloud services can
provide 99.9999% of service-level requirements. This allows us to have a very high
confidence level in using cloud services as our infrastructure.
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2. Telecom-center level bandwidth: In 2021, Amazon launched Amazon services that
support direct 100Gbps connections for enterprises. Therefore, it can be said that,
regardless of whether it is a pure cloud model with only cloud services or a hybrid
cloud model with both public and hybrid clouds, each model can support 100 Gbps
of services.

3. Diversified service models and ecosystem toolchains: Stability and high bandwidth
indicate that the hybrid cloud model can be further adapted and embraced. Accord-
ing to statistics, more than 80% of enterprises use hybrid cloud architectures. The
simultaneous use of public and private cloud resources can deliver higher service
requirements. For telecom operators who need to invest in server room construction
early, it is possible to integrate their existing server room with infinitely scalable
services seamlessly. The rich ecosystem of toolchains of cloud services can also reduce
the cost of OSS/BSS for telecom operators.

Therefore, we can be confident in our belief that, in the actual deployment of NFVs in
the future, cloud services will be used extensively or even wholly to provide carrier-grade
services. Amazon Web Services (AWSs) has already successfully implemented a 5G server
room core network combined with AWS outpost services and direct access to operate in
the cloud service environment.

5.3. The Strategies of Cloud Infrastructure Acceleration

Although cloud infrastructure is generally a virtualized execution environment, it is
delivered as a service which means that the uniqueness of its hardware and the unman-
ageability of its software must be taken into account. Additionally, because cloud service
providers offer the hardware for cloud services, the option is restricted, and there are even
specific standards for the hardware environment. This is why we do not prioritize hardware
solutions. A similar issue exists with acceleration technologies enabled by virtualization,
which vary according to the cloud provider. Additionally, we adhere to the ETSI structure
framework and categorize the acceleration techniques by block as shown in Table 8.

Table 8. An ETSI framework perspective on acceleration strategies that can be used in
cloud infrastructure.

NFV Function Blocks Support Acceleration in
Cloud Strategies

EMS Yes VNF routing and
orchestration

VNF Yes Operation system tuning
NFVI No N/A
VIM No N/A

VNFM Yes Service function
chain/dispatch Optimization

NFVO Yes Scheduling and placement

The cloud execution environment has a negligible impact on EMS. The architecture
is implemented as a logical service delivery layer between the infrastructure’s VNFs.
Thus, current acceleration techniques such as middleBox and routing enhancement can
be used indefinitely. VNF acceleration, both in terms of OS network tuning and I/O
access path improvement, should continue to significantly impact network performance.
One thing to note is that some acceleration techniques integrate virtualization technology,
which depends on whether the cloud environment in which it is running supports the
corresponding virtualization technology.

Acceleration via the NFVI and VIM blocks is nearly brutal. Since cloud service
providers frequently utilize customized virtualization technologies to properly manage
the virtual machines that they deliver to their clients, even if the technology is not altered,
user autonomy is limited. Therefore, NFV customers cannot increase the transport link
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between physical hosts or the capabilities of their underlying software network switches.
Additionally, while cloud infrastructure is often a virtualized execution environment, it
is supplied as a service, implying that the hardware’s uniqueness and the software’s
unmanageability must be considered.

Moreover, because cloud service providers provide the hardware for cloud services, the
selection is limited, and the physical environment must adhere to particular requirements.
That is why we do not place a premium on hardware. A similar issue applies with
virtualization-enabled acceleration solutions, which differ according to the cloud provider.
Additionally, we follow the ETSI structure framework and classify acceleration algorithms
according to their block type.

VNFM and NFVO both provide abstract management flexibility as necessary. In
addition, through algorithmic and resource allocation optimization in a cloud context,
the VNFM and NFVO can boost the performance of NFV. It is worth noting that cloud
infrastructures frequently cannot accelerate NFV via algorithms if resource use is inefficient.
Again, this is because the NFV’s performance is difficult to quantify. Occasionally, it is
difficult to adequately comprehend the monitoring figures when no access to the underlying
devices or virtualized hypervisor layer of the virtualized environment is available. The
following section will address this subject in further depth.

5.4. Benchmarking NFV Performance

Benchmarking network performance is critical for a successful transition to NFV since
it allows experimentation options prior to large-scale installations. Ref. [61] suggested
that NFV orchestration tools must pre-configure the virtualization environment based on
available NF profiles for NF performance optimization. Multiple NFVs from disparate
manufacturers can be provisioned on the same computed node under the NFV paradigm,
resulting in a shared multi-vendor environment. Although cloud providers supply runtime
infrastructure, they have restricted NFV benchmarking capabilities due to inefficiency and
high cost.

As a result, identifying performance bottlenecks for those NFVs becomes particularly
challenging, as bottlenecks might emerge at any level of the NF processing cycle. Recently,
a paradigm dubbed VBaaS was introduced [62], emphasizing the critical role of NF bench-
marking in orchestration decision support. On the other hand, predicting NFV performance
in a virtualized environment is far from straightforward. Currently, test solutions either
focus exclusively on self-generated workloads or collect NFV infrastructure resource utiliza-
tion statistics based on a misunderstanding of NF profiles. Likewise, adversarial workloads
are required by accelerated NFV platforms such as the CASTAN tool [63] that are used to
analyze and optimize the performance of NFVs. CASTAN has previously demonstrated an
exceptional ability to test the NF performance using synthesized workloads; nevertheless,
additional research, particularly utilizing real user workloads, is required in this area.
Indeed, there is currently no unified approach as providers continue to prioritize their
technologies and NF implementations.

6. Conclusions

The primary impediment to large-scale NFV implementation is that the performance
delivered by previous techniques is insufficient for carrier networks. To solve this gap,
considerable effort has been expended on improving the performance of NFVs or service
chains. However, due to the various bottlenecks associated with a virtualized system, creat-
ing and deploying a high-performance platform presents significant obstacles. Numerous
research studies have used different acceleration techniques and have focused on a variety
of different acceleration purposes.

In this research, we examined the evolution of acceleration approaches in the context
of NFV and developed a taxonomy by categorizing the examined works with the ETSI NFV
framework based on their acceleration methodologies. We analyzed all the surveyed works
inside the taxonomy and then compared these solutions to ascertain their relative merits
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and demerits. Additionally, we discussed developing goods, solutions, and widespread
industry projects. Finally, we examined the gap between current techniques and identified
some possible future research directions.
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Appendix A. Flow of Processing of Packets

In the network architecture, the logic of L1–L2 layers, such as the packaging and un-
packaging of L2 data packets, is executed by the network interface controller (NIC). At the
same time, the CPU processes the corresponding protocols according to the specifications
of the L3–L7 layers. When high-speed networks are used, some of the processing logic
is offloaded to the NIC to alleviate the CPU’s stress, and some NICs can even offload the
entire L4 layer entirely to the hardware. Due to the hardware offloading capabilities, the
internet protocol stack processing of a host OS can match the existing high-speed network.
To gain a better understanding of the latency issues associated with network function
virtualization (NFV), it is vital to understand the network packet processing process as
Figure A1:

Figure A1. Linux packet processing flow.

1. When the NIC receives a packet, it uses direct memory access (DMA) to place the
packet in the ring buffer (Tx), after which it uses a hard interrupt to notify the NIC it
has received the packet.

2. The NIC interrupt handler allocates the kernel data structure sk_buff (socket buffer)
for the packet and notifies the kernel when it has received the packet through a
soft interrupt.

3. At this point, the CPU removes the packet from the sk_buff buffer for processing,
which includes checking the legitimacy and identifying the type of upper layer pro-
tocol (e.g., IPv4 or IPv6), after which it removes the packet’s header and footer and
transfers it to the network layer.
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4. The network layer determines whether the packet should be transferred to the next
layer for processing or forwarded. When the network layer confirms that the packet
will be sent to the local machine, it captures the protocol type of the upper layer (e.g.,
TCP or UDP), removes the header, and transfers it to the transport layer for processing.

5. After retrieving the TCP or UDP header, the transport layer locates the correspond-
ing socket and copies the data to the socket’s recipient cache, which is the TCP
receive window.

6. Finally, the application in user space can use the socket read interface to read the data,
and the program switches to kernel space and copies the data in the socket receive
buffer to the user space, after which it is removed from the socket buffer.
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Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating
Systems, New York, NY, USA, 19–23 April 2021. https://doi.org/10.1145/3445814.3446724.

24. Sun, C.; Bi, J.; Zheng, Z.; Yu, H.; Hu, H. NFP: Enabling network function parallelism in NFV. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 43–56.

25. Anwer, B.; Benson, T.; Feamster, N.; Levin, D. Programming slick network functions. In Proceedings of the 1st ACM Sigcomm
Symposium on Software Defined Networking Research, Santa Clara, CA, USA, 17–18 June 2015; pp. 1–13.
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