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Abstract: This study presents a prediction model for high-power electromagnetic pulse (HPEMP)
effects on aboveground vehicles based on convolutional neural networks (CNNs). Since a vehicle is
often located aboveground and is close to the air-ground–half-space interface, the electromagnetic
energy coupled into the vehicle by the ground reflected waves cannot be ignored. Consequently, the
analysis of the vehicle’s HPEMP effect is a composite electromagnetic scattering problem of the half-
space and the vehicles above it, which is often analyzed using different half-space numerical methods.
However, traditional numerical methods are often limited by the complexity of the actual half-space
models and the high computational demands of complex targets. In this study, a prediction method
is proposed based on a CNN, which can analyze the electric field and energy density under different
incident conditions and half-space environments. Compared with the half-space finite-difference
time-domain (FDTD) method, the accuracy of the prediction results was above 98% after completing
the training of the CNN network, which proves the correctness and effectiveness of the method. In
summary, the CNN prediction model in this study can provide a reference for evaluating the HPEMP
effect on the target over a complex half-space medium.

Keywords: vehicle electromagnetic coupling; high-power electromagnetic pulse; half-space; deep
learning; convolutional neural network

1. Introduction

With the rapid development of high-power electromagnetic pulse (HPEMP) technolo-
gies and the widespread application of electronic systems and equipment in vehicles, the
electromagnetic environment of vehicles is extremely complex. Consequently, the study of
HPEMP coupling effects in sensitive electronic systems is of great importance [1,2]. It is
noted that HPEMPs have a strong energy and wide frequency spectrum, which not only
can cause direct disability to the electronic systems of vehicles but also can interfere with or
damage the electronic control system by powerful coupling through windows, apertures,
or antennas [3–5]. Therefore, studying the coupling effect on vehicles under HPEMP can
provide a reference for vehicular electromagnetic pulse protection technology and lay a
theoretical foundation for improving the vehicle’s anti-electromagnetic interference ability.

From the perspective of computational electromagnetism, the HPEMP effect on vehi-
cles is a composite time-domain scattering problem. Numerous numerical approaches have
been widely used, such as the Method of Moments (MoM) [6,7], the Finite-Difference Time-
Domain (FDTD) method [8–10], the Finite Element Method (FEM) [11,12], the Time-Domain
Integral Equation (TDIE) method [13,14], and other hybrid methods [15,16]. However, to
calculate the coupling between the vehicle and the half-space, most existing algorithms
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need to use half-space Green’s function, which is extremely difficult to derive and calculate,
particularly for multi-layered planar medium and rough surfaces. In addition, the HPEMP
effect is exceedingly sensitive to initial conditions; however, numerical methods require
remodeling and calculation for different initial conditions, which have a high demand on
computational memory and time. Therefore, the application of existing numerical methods
is often limited by computing resources and half-space Green’s function, which makes it
difficult to meet the demands of the vehicle’s HPEMP effect analysis.

In addition, the coupling fields within a vehicle are very sensitive to the initial con-
ditions, such as incident conditions, the location of the observation point, the incoming
frequency, etc. Small changes in these parameters can result in a significantly different
coupling field distribution within a vehicle. Once the initial conditions are changed, the
numerical method needs to be remodeled and calculated, which consumes a lot of com-
putational resources. Consequently, numerical methods may not be efficient enough in
an HPEMP analysis. To address the above problems, we designed a concise and effec-
tive framework using the half-space FDTD method and deep learning. Convolutional
neural networks (CNNs) have demonstrated attractive capabilities for both regression
and categorization applications. They have been applied in various electromagnetic engi-
neering problems, including rough surface parameter inversions [17], inverse scattering
problems [18], shielding effectiveness calculations [19], and radar target recognition and
classification [20,21]. In this study, an HPEMP effect analysis method based on a CNN
is proposed, which can be applied to predict the characteristics of the electric field of the
observation point inside a vehicle above half-space. Compared with existing methods, this
study makes the following main contributions:

(1) The HPEMP effect prediction based on LeNet-5, VGG-16, and GoogleNet was intro-
duced. The experiments show that the proposed method significantly improves the
efficiency and performance of predictions.

(2) The ground reflected wave was used instead of the half-space Green’s function to
analyze the HPEMP effect on the lower half-space of the vehicle; therefore, it can be
used for the prediction of HPEMP effects under various half-space environments.

(3) The possibility of using CNN for computational electromagnetics in electromagnetic
interference (EMI) analyses was discussed.

The rest of this paper is organized as follows. Section 2 introduces the methodologies,
including the half-space FDTD method and the proposed CNN model. In Section 3, the
correctness and effectiveness of the proposed method are verified. The coupling of the
electric field was then predicted and analyzed. Finally, conclusions are made in Section 4.

2. Methodology
2.1. Datasets Generated by Half-Space FDTD

A schematic diagram of the half-space scattering problem is presented in Figure 1.
In this case, the total incident wave of the target includes two parts: the direct incident
wave and the reflected wave of the half-space interface. The incident plane was defined
as the plane created by the k-and z-axes. Assume that α0 represents the incident wave’s
polarization angle. The incident wave’s electric field can be split into two components: a
horizontal component (perpendicular to the incident plane) and a vertical component.
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Figure 1. Scattering problem of the target over half-space.

Generally, the reflected wave is dependent on both the magnitude of the electric field
and its polarization state. When an incident wave is linearly polarized, the reflected wave
is typically elliptically polarized. The polarization angle α and ellipticity angle β of the
reflected wave can be written as follows:

α =
1
2

tan−1

(
2erherv cos ψr

e2
rh − e2

rv

)
β =

1
2

sin−1

(
2erherv sin ψr

e2
rh + e2

rv

)
, (1)

where ψr denotes the phase difference between the reflected wave’s horizontal and vertical
components, and

erh =
∣∣∣RTM

∣∣∣E0 cos α0 erv =
∣∣∣RTE

∣∣∣E0 sin α0, (2)

where RTE and RTM are the TE and TM wave reflection coefficients, which are related to the
incident angle and the half-space parameters, respectively. The enhanced half-space FDTD
approach [18] was applied in this work to determine the observation point’s time-domain
response. By setting two 1-D FDTD iterative expressions, the total incident wave can be
integrated into the total-field region during FDTD computation. A 3-D FDTD iteration can
then be used to obtain the electric field at the observation point.

The simulation model of the vehicle cab used in this study is shown in Figure 2. The
vehicle cab has three windows, that is, W1, W2, and W3, in which the media parameters are
set as εr = 4.82, σ = 0S ·m−1. Except for these three windows, the rest of the cab is made
of Perfect Electric Conducting (PEC). Since a high-altitude nuclear electromagnetic pulse
(HEMP) covers the intermediate frequency (MF), the high frequency (HF), the very high
frequency (VHF), and some ultra-high frequency (UHF) bands, it has the characteristics of
a wide radiation range, a high intensity, and a wide spectrum. Consequently, the HEMP is
set as the incident wave, which can be expressed as follows:

E = kE0
[
exp

(
−at′

)
− exp

(
−bt′

)]
. (3)

In the above formula, E0 = 50kV/m, k = 1.05, a = 4.0× 10−6s, and b = 4.76× 10−8s,
where E0 is the peak field strength, k is the correction coefficient, and a and b are pulse
parameters. δ = 8× 10

−3 m, and ∆t = 0.00625 ns is the discrete grid and time step size
used in the half-space FDTD calculation. In the FDTD calculation, the CPML absorbing
boundary is employed.
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Figure 2. Geometry of 3-D vehicle cab.

The electronic control unit (ECU), which contains various types of chips and electronic
devices, is the core component of the vehicle engine’s electronic control system. Hence, the
ECU is an important and sensitive part of the high-power electromagnetic pulse coupling
interference system. Thus, in order to observe the electric field distribution near the ECU,
the observation point P (0 m, 0.08 m, 0.096 m) is set. To train the CNN, five essential
parameters of the vehicles over half-space are set as the input data, including incident
wave parameters (incident angles θi and ϕi, polarization angle α0) and half-space medium
parameters (relative permittivity εr and electrical conductivity σ). The value ranges of the
above parameters are listed in Table 1. The electric field value E(t) of the ECU inside the
vehicle is used as the output data. The input parameters can be discretized as follows:

A = [θin, ϕin, α0n, εrn, σn], (4)

where n = 1, 2, . . . , N, and N is the number of samples in the training set. The value ranges
of the input data are listed in Table 1. In this study, the half-space FDTD method was used
to calculate the electric field value of the ECU for different incident angles, polarization
angles, and half-space medium parameters. A total of 1080 sets of data were obtained.
To train the CNN, 80% of the dataset was randomly selected as the training set, and the
remaining 20% was selected as the testing set to cross-validate the performance of the
established networks.

Table 1. Value range of input data.

Parameters Description Range

θ Incident angle 0
◦ ∼ 90

◦

ϕ Incident azimuth angle 0
◦ ∼ 180

◦

α Polarization angle 0
◦ ∼ 90

◦

εr Dielectric constant of half-space 1 ∼ 10
σ Conductivity of half-space 0 ∼ 50

(
S ·m−1)

2.2. Network Architecture and Training

Convolutional neural networks have been used to solve many different artificial intel-
ligence problems, providing significant advantages in solving nonlinear, multiparameter
learning tasks, such as HPEMP effects. A flowchart of the proposed method is presented
in Figure 3. First, the half-space FDTD method was used to calculate the electric field
distribution inside the vehicle under the HPEMP and generate data samples of the different
incident angles, polarization angles, and half-space parameters. The simulated results
were then used to train a CNN to predict the electric field distribution inside vehicles. In
addition, a comparison between the prediction results and the numerical method results is
provided. The technical details of each step are described below.
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Figure 3. Overall framework of the proposed CNN model.

The basic structure of a CNN mainly includes an input, a convolutional layer, a pooling
layer, and fully connected and output layers, in which the convolutional and the pooling
layers usually have multiple layers according to practical problems. As shown in Figure 4, the
established CNN consists of convolutional layers C1, C3, and C5, pooling layers S2 and S4,
and one fully connected layer F6, which are all followed by a rectified linear unit with
nonlinearity [22]. The final fully connected layer feeds into a Euclidean loss layer for
regression. To reduce overfitting, a dropout layer is applied [23]. In this study, we use the
coefficient of determination R2 to optimize the loss between the true values and model
predictions. R2 is expressed as follows:

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 , (5)

where yi, yi, and ŷ are the actual value, the mean of the actual values, and the predicted
value, respectively. N is the number of predicted results. The closer the value of R2 is to 1,
the higher the prediction accuracy and the better the generalization ability of the CNN.
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3. Numerical Experiments and Analysis
3.1. Numerical Validation

The performance of the proposed approach was evaluated by comparing the difference
in accuracy between the results of the traditional half-space FDTD with those predicted by
the CNN regression model. The observation point P (0 m, 0.08 m, and 0.096 m) is set at
the position of the ECU, and the incident wave is a HEMP pulse. Thus, the input data is
set as A = (θi, ϕi, α0, εr, σ), where θi, ϕi, α0 are the incident wave parameters, and εr, σ are
the half-space medium parameters. A comparison between the proposed CNN and the
traditional half-space FDTD methods of analyzing the electric field at the observation point
P is given in Figure 5. The incident parameters are set as A = (60◦, 90◦, 45◦, 4, 0.1S/m).
Figure 6 shows the two-dimensional electric field distribution of the vehicle model at
different time steps. From Figure 6 we can see the distribution of the electric field in any
observation plane at different time steps, so as to observe the change process of the electric
field after the incident wave is coupled into the target.
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Figure 6. Distribution pattern of the electric field in the yoz plane at different time steps.
(a) Time step = 50; (b) time step = 100; (c) time step = 200; (d) time step = 300.

As shown in Figure 5, the good agreement between the predicted and calculated
results indicates the validity and accuracy of the established CNN. In the experiment,
the CPU was an Intel (R) Core (TM) i9-10900F CPU @2.80GHz, the GPU was an NVIDIA
GeForce RTX 2060, and the training time was about 21 h. When the CNN model is trained,
it only takes 1s to complete the prediction, while the traditional half-space method takes
1856 s. At the same time, when the initial conditions are changed, the FDTD method needs
to be remodeled and calculated, while the CNN model does not. Therefore, the trained
CNN model can significantly improve the analysis efficiency of the HPEMP effect.

3.2. Comparison of Three CNN Models

To compare the performance of three different CNN models, the prediction accuracy
and efficiency of LeNet-5, VGG-16, and GoogleNet are shown in Figure 7. The performance
testing results of VGG-16 and GoogleNet were acceptable because the two models attained
95% to 98% accuracy and a 0.1–0.4% loss. After 80 iterations, the accuracies of VGG-16 and
GoogleNet were maintained at 96%, and the loss was 0.34%. It is evident that the GoogleNet
model achieves the highest accuracy and stability in this case, while the accuracy of LeNet-
5 is much lower than those of the other two models, and it is unstable and fluctuates
significantly. Therefore, this study selected the GoogleNet prediction algorithm. All the
experiments in this paper are conducted on an NVIDIA GeForce RTX 2060 GPU, and the
CNN framework was an open source in Pytorch. The experiment was performed in the
GPU mode.
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3.3. Discussion

To discuss the prediction results under different half-space medium parameters, three
input data were set as A1 (free space) and A2 (lossy half-space). The variation in the electric
field under HEMP in Equation (3) is shown in Figure 8. It is evident that after a short time
delay, the reflected wave arrives at the interior of the vehicle. At the peak and sub-peak of
the electric field, the field values increased significantly owing to the effect of the half-space
reflected wave. Therefore, the reflected wave of the lower half space cannot be ignored,
particularly for strong reflective media, such as a lossy medium. After the direct incident
wave brings an energy impact to the sensitive parts inside the ECU, the reflected wave may
cause irreversible damage to the sensitive electronic devices.

Since the coupling field is extremely sensitive to the polarization angle α0, Figure 9
illustrates the comparison of the prediction results under different polarization angles. We
set three sets of input data, A3, A4, A5, and A6, which have the same half-space parameters
εr = 10, σ = 0.1S/m, and the incident wave is the HEMP in Equation (3). It is evident
that the field values increase when the polarization angle increases. Consequently, the
coupling field from the vertical-polarization (α0 = 90◦) case is larger than that from the
horizontal-polarization (α0 = 0◦) case.
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4. Conclusions

This study proposes a novel prediction method for the HPEMP effect on vehicles using
a deep CNN. With the training of a limited number of input datasets, the electric field at the
observation point inside the vehicle cab can be analyzed over the half-space. The numerical
results demonstrate the feasibility and efficiency of the proposed method. In parallel with
traditional numerical algorithms, the proposed method can efficiently predict with low
computation cost and memory storage once the CNN network is trained. Furthermore,
by comparing the three CNN models, GoogleNet achieved excellent results. Overall, this
study makes a preliminary attempt to solve the multiparameter nonlinear HPEMP effect
problem based on a combination of numerical methods (not limited to FDTD methods)
and deep learning methods. In addition, the proposed method does not need to calculate
the half-space Green’s function, which can be applied to the complex scattering problem
of targets. Consequently, it can provide a reference for the HPEMP effects analysis under
different incident conditions and half-space models.
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