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Abstract: Among the smart factory studies, we describe defect detection research conducted on bear-
ings, which are elements of mechanical facilities. Bearing research has been consistently conducted in
the past; however, most of the research has been limited to using existing artificial intelligence models.
In addition, previous studies assumed the factories situated in the bearing defect research were
insufficient. Therefore, a recent research was conducted that applied an artificial intelligence model
and the factory environment. The transformer model was selected as state-of-the-art (SOTA) and was
also applied to bearing research. Then, an experiment was conducted with Gaussian noise applied to
assume a factory situation. The swish-LSTM transformer (Sl transformer) framework was constructed
by redesigning the internal structure of the transformer using the swish activation function and
long short-term memory (LSTM). Then, the data in noise were removed and reconstructed using the
singular spectrum analysis (SSA) preprocessing method. Based on the SSA-Sl transformer framework,
an experiment was performed by adding Gaussian noise to the Case Western Reserve University
(CWRU) dataset. In the case of no noise, the Sl transformer showed more than 95% performance, and
when noise was inserted, the SSA-Sl transformer showed better performance than the comparative
artificial intelligence models.

Keywords: bearing fault diagnosis; singular spectrum analysis; transformer; under noisy factory
environments

1. Introduction

Among smart factory-related studies, demand for machine condition monitoring re-
search is increasing. This is because increased downtime due to machine failures can cause
enormous economic losses. Therefore, the demand for better methods of diagnostic moni-
toring of machine conditions continues to ensure the machine operates stably. The method
described in this paper mainly uses a deep-learning-based artificial intelligence method-
ology. This paper studies a deep learning approach to diagnose bearing defects among
various machines and components [1–5].

The most important part of the machines in the factory is the motor. A defect in the
motor, which is an electrical device, can cause fatal damage to the factory. Among the
defects in the motor, defects in the bearing appear most frequently. Motor defects are found
mainly due to overcurrent. The inspection of bearing defects caused by this overcurrent
is a major concern in this paper. Most simply, a bearing is a device that supports an axis.
Upon further refinement, a bearing is a mechanical element that supports the rotational
axis and reciprocating movement in a certain position while being used in a machine,
resulting in accurate and smooth movement. That is, the bearing induces the shaft to rotate
smoothly and serves to support the load, determines the position of the rotation shaft,
and maintains the position even if the load changes. As such, bearings are a very important
factor for mechanical facilities with axes. For this reason, previous studies have focused on
the diagnosis of bearing abnormalities [6–10].
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The following describes the flow of previous studies on bearing defect detection. In the
beginning, statistical approaches or machine learning methodologies were mainly used
based on bearing data. The classification process for defects was solved using various
machine learning methods, such as support vector machine (SVM) and XGBoost [11–13].
However, as deep learning methods have emerged since the research of [14], a deep
learning approach has been introduced in earnest to research bearing abnormalities. Since
the introduction of deep learning, the following studies have been conducted. Artificial
intelligence neural network models of the recurrent neural network (RNN) series were used
as a method of dealing with time series data from bearing vibration data [15,16]. In an effort
to improve performance of the artificial intelligence model, most of the studies converted
one-dimensional data into two-dimensional data after preprocessing and approached it
using the convolutional neural network (CNN) model [17].

However, research on the diagnosis of bearing defects confirmed that the previous
directions were insufficient. There is the need to apply the latest trend of artificial intelli-
gence models to research more diverse data preprocessing methods and address the lack
of consideration, such as in actual factories. First, it was found that research on detecting
bearing defects incorporating the latest trend of artificial intelligence modeling, the trans-
former model, was insufficient. The transformer model, which has shown overwhelming
performance in the field of text generation [18], is now used in various fields such as image
classification. Likewise, the transformer model shows overwhelming performance in other
fields. Currently, several studies are known to have produced SOTA performance [19,20].
Second, vibration data to be used in research on the diagnosis of bearing defects can be
preprocessed in various ways. Several studies have confirmed the use of preprocessing
methods such as wavelet and fast Fourier transform (FFT) [14,21]. However, in many
studies, only preprocessing techniques were used to ensure the classification accuracy.
There is a need to research preprocessing techniques for processing noise. Third, most of
the public bearing data did not contain noise mixed inside the data. However, the actual
factory environment generates various obstacles in the process of data collection. Obstruc-
tive elements produce noise. Therefore, clean bearing data research may not be suitable
for an actual factory environment. Previously, there was also a paper that evaluated the
performance of the framework by adding noise to the data in consideration of the factory
environment [22,23]. However, it did not show what noise and how much noise was
inserted. Therefore, this paper was conducted to supplement the limitations of the existing
studies mentioned.

The following are the contributions of this paper. First, we propose the SSA-Sl transformer
framework. SSA is a data preprocessing technique and Sl transformer is an artificial intelligence
model that has developed the existing vanilla transformer model. Singular spectrum analy-
sis (SSA) is an algorithm that decomposes time series data into multiple subseries and then
reconstructs the data [24,25]. Sl transformer stands for swish-LSTM transformer. We used the
swish activation function in the paper, and then designed and inserted the LSTM block into the
feed-forward and self-attention internal linear layer within the encoder of the transformer. It was
possible to hypothesize that SSA would be an appropriate method for bearing fault diagnostics
in that it is an algorithm that considers the noise in time series data, and the Sl transformer
showed higher performance than the existing vanilla transformer. The second contribution
is the assumption of the factory situation. Previous studies related to bearing abnormality
detection have already demonstrated more than 95% classification-related accuracy. Therefore,
this experiment was also predictable in that a high level of accuracy could be obtained. This
figure was not considered realistic. This is because there are many variables in factories. This
is because when data are collected through sensors in actual factories, many field studies say
that they are suffering from noise generation. Therefore, in this work, we insert noise into clean
data, then separate the degree of noise. The main goal is to see how robust the framework
proposed in the paper is to noise. Engineers and follow-up researchers will be able to obtain
more practical research results. A summary of the contributions is as follows.
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1. We propose the SSA-Sl transformer framework. We re-examine noise-resistant SSA
preprocessing techniques and demonstrate the robust performance of existing Sl
transformer algorithms through various metrics.

2. Experiments were conducted assuming a realistic factory situation. The actual fac-
tory environment was implemented by mixing noise with the bearing dataset, and
experiments were conducted. Engineers and researchers will be able to look at more
realistic results through this paper.

This paper is composed as follows. Section 2 introduces previous bearing fault diagnos-
tic studies, LSTM, SSA algorithm, and transformer artificial intelligence models. Section 3
describes the proposed SSA-SL transformer framework. Section 4 provides a description of
the dataset and the experimental environment, how SSA deals with noise, a description of
the swish activation function, and a description of the results of the three experiments.

2. Related Works
2.1. Bearing Fault Diagnosis

The process of bearing defect formation is mainly as follows. After microcracks
occur inside the bearing, internal microcracks agglomerate and surface damage occurs.
Subsequently, due to a lack of lubricant, contact between the bearing surfaces, the metal
is damaged, or an abnormally excessive external force is applied to the bearing. Most
defects appear in the outer race, inner race, or ball. Defects can be classified according
to diameter. Previous studies on these bearing defects are as follows [6–10]. Many of
the initial classifications proposed framework or more advanced research by using an
autoencoder [26,27]. Other studies suggest methods of preprocessing bearing data to boost
performance [14,21,28]. Attempts to transform one-dimensional data into two dimensions
are also widely used. This paper shows high accuracy using the CNN artificial intelligence
model after transforming one-dimensional bearing signal data into two dimensions [29].
There are also previous studies that improve classification performance by utilizing CNN
artificial intelligence neural networks for 2D data images [17]. In addition to this, there are
various methodologies for resolving noise in the bearing fault diagnosis process. There
was a methodology that used empirical mode decomposition (EMD) to remove noise in
the bearing fault diagnosis process [30]. In [31], we could refer to a method robust to noise
through the second-order stochastic resonance method. In [32], it is suggested that MCKD,
MOMEDA, and CYCBD can be used to more effectively extract characteristic factors for
bearing defect detection.

2.2. SSA Algorithm

This paper seeks to present the singular spectrum algorithm (SSA) method, which is a
relatively unnoticed preprocessing method [24,25]. SSA is a methodology for decomposing
time series data into a simple form of components. SSA was developed as shown in
Figure 1. In the decomposition process, data are run through embedding and singular
vector decomposition (SVD) processes [33], and in the reconstruction process, they are run
through grouping and averaging processes before ending.

The decomposition process is subjected to (a) embedding and (b) SVD processes in
Figure 1. In the embedding process, one-dimensional time series data is converted into a
trajectory matrix. This trajectory matrix is also called the Hankel matrix. Suppose there is a
one-dimensional time series of length N. Let F = ( f0, . . . , fN). In the embedding process, it
appears as the definition of the lagged version of time series F. The matrix depends on L
(L ≤ I/2), which is the window length and is randomly determined. Let K = I − L + 1,
the Hankel matrix, be defined as (1).
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X = [X1, . . . , XK] =


f0 f1 f2 · · · fK−1
f1 f2 f3 · · · fK
f2 f3 f4 · · · fK+1
...

...
...

. . .
...

fL−1 fL fL+1 · · · fT

 (1)

The trajectory matrix is a Hankel matrix, and all elements along the diagonal (i + j =
const) are symmetrically identical. The SVD process in (b) is as follows. In the SVD process,
the Hankel matrix is changed to the sum of the two-dimensional bi-orthogonal elementary
matrices (2).

Xi = X1 + · · ·+ XK (2)

The elementary matrix Xi is defined by Xi = siUiVT
i . Si is the ith singular value of

X, Ui is the ith left singular vector of X, and Vi is the ith singular vector of X. si, Ui, Vi
is called the ith eigentriple of SVD. Until now, it was the decomposition process of the
SSA algorithm.

After deposition, the reconstruction process continues. In reconstruction, grouping
(c) and averaging (d) processes are performed. In grouping (c), the result of SVD (b) is
applied. It is selected by r out of d eigentriples, and r is the parameter of the SSA algorithm.
XI = Xi1 + Xi2 + · · · + Xir · XI is related to the signal of F, and the remaining (d − r)
eigentriples represent the error term ε.

Finally, the process of averaging (d) is described. The r groups selected in the group-
ing (c) process are used. I = Xi1 + Xi2 + · · · + Xir is reconstructed into a time series
yi1, yi2, · · · , yir through a Hankelization process or through a diagonal averaging process.
If the kth term among the reconstructed time series is i + j = k + 1, the kth term can be
obtained by averaging Z. Let Hankelization equal H(), which means that H(Z) is a time
series of length T reconstructed in matrix Z. As a result, the following equation is produced.

y = H(Xi1) + H(Xi2) + · · ·+ H(Xir) + e (3)

In Formula (3), y means the reconstructed time series that is the goal of SSA.
The SSA algorithm was used in the following directions in previous studies. There

have been previous studies in which SSA algorithms were used to predict time series. SSA
was used as a preprocessing algorithm for time series prediction using the LSTM model [34].
In addition, similar studies have been used as a predictive model preprocessing method for
machine defect detection [35].

2.3. LSTM

Previously, the recurrent neural network (RNN) artificial intelligence model was used
for research related to time series data. However, there was a limit to RNN. Therefore,
the developed long short-term memory neural network (LSTM) was developed to compen-
sate for the shortcomings of RNN. LSTM solves the slope loss problem of RNN. LSTM can
learn events from a distant past and process both high-frequency signals and low-frequency
signals. The advantage of LSTM is that it has excellent time series data processing per-
formance [36]. There have been previous studies using the LSTM model as a method of
classifying time series data [37]. In addition, the LSTM model was also used in this paper,
showing high performance by using it with multi-variate time series data [38].



Electronics 2022, 11, 1504 5 of 21

Figure 1. The structure of SSA algorithm, (a) shows embedding process block, (b) shows SVD process
block, (c) shows grouping process block and (d) shows averaging process block.

2.4. Vanilla Transformer

Vanilla transformers became famous by emphasizing the importance of self-attention [18],
and they immediately occupy SOTA performance in the field of text generation. Subsequently,
vanilla transformers are being used in various fields such as text classification and vision classi-
fication. The biggest feature of the transformer is that it removed the recurrent characteristics
from the existing RNN-structured artificial intelligence architecture and took the characteristics
of the attention module. The transformer model is mainly divided into encoder and decoder,
depending on the purpose of use. Figure 2a denotes an encoder and Figure 2b denotes a decoder.
The encoder serves to encode text as a presentation of numbers. In this case, the presentation
may be referred to as embedding or features. For a given input, the input is encoded by applying
a bidirective self-attention. Moreover, the decoder functions to decode the presentations from
the encoder. The decoder uses masked self-attention, to perform one-way auto-regressive learn-
ing. In this paper, bidirectional encoder representations from transformers (BERT) was mainly
used [39] and applied to text classification tasks using the encoder model separately. BERT has
laid the foundation for classification using an encoder by changing various approaches, such
as using a Gaussian error linear unit (Gelu) activation function instead of rectified linear unit
(Relu) activation [40,41]. Since then, approaches using transformer encoders have been studied
in various fields.
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Figure 2. The architecture of the vanilla transformer.

3. SSA-Sl Transformer

The SSA-Sl transformer is a framework born from the following ideas. Assuming a
complex factory situation, we use an SSA algorithm that is excellent for noise decomposi-
tion and reconstruction. In addition, the transformer model, which currently shows the
performance of SOTA, has been transformed into a model suitable for time series data.
Among the layers inside the transformer, the linear layer entering the attention block and
the multi-layer perceptron (MLP) block after the attention block were designed assuming
an LSTM-oriented block. In Figure 3, one can refer to the framework and overall exper-
iment presented in this paper, which can be separated into two processes. The first is
the SSA transform phase where bearing data are mixed with noise. Denoising work is
carried out through SSA modification, decompose, and reconstruct processes. The noise
was mixed with white Gaussian noise. In the Sl transformer phase, the swish activation
function and the LSTM artificial intelligence model are used inside the transformer encoder.
The highlight of the encoder in Figure 3 is a key part of this framework. The MLP block has
been replaced with the LSTM, and the details are described in Section 3.2. After passing
through the layers, the probability value for the data is derived through the softmax func-
tion. In addition, the artificial intelligence neural network determines what kind of bearing
defect is present through the probability value.
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Figure 3. The framework of SSA-Sl transformer.

3.1. SSA Transformation

The reasons for focusing on SSA in this paper are as follows. SSA is used to reproduce
and cope with the factory environment, which is the main purpose of the paper. SSA mainly
describes the noise extraction of the SSA algorithm in Section 3.1. As explained initially
in Section 2, SSA decomposes time series data into several subseries. SSA assumes that
various components are extracted during the decomposition process, and noise is included
in the components.

There are two parameters of the SSA algorithm, the window-length L and the number
of components r. This may be adjusted according to the user’s discretion. In general,
the window length is determined according to L = T/2 while the number of components r
is determined by the following method. The general criterion is to select r of the d com-
ponents so that the sum of the contributions to λi/Γ

(
Γ = ∑d

i=1 λi
)

is at least a predefined
threshold. In general, since the noise component has a low contribution, the purpose of
SSA transformation is to reconstruct time series data after removing the portion with a
low contribution. In general, to observe trends and noise well, a large value of L must be
selected. However, if the trend of time series data is too complex, it can be extracted only by
considering a large number of eigentriples. Therefore, the goal of the SSA transformation
phase can be seen as removing noise and extracting normal trends.

3.2. SL Transformer

In the Sl transformer section, The Sl transformer artificial intelligence model is de-
signed with the following hypotheses. There are two main explanations. First, it ex-
plains whether LSTM is composed of the linear layer (Figure 4b) or the feed-forward layer
(Figure 4a) as the main component, as shown in Figure 4d.

The Sl transformer is a methodology that modifies the encoder portion of the vanilla
transformer. The biggest change was the inclusion of the swish-LSTM structure, shown in
Figure 4a,b. Conventional vanilla transformer constructed layers are noted in Figure 4a,b
with linear MLP to extract specific data features. However, in this paper, it was judged that
it is more appropriate to replace MLP with LSTM for time series data.
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A detailed description is as follows. In the left encoder block of Figure 4, the linear
layers receiving K, V, and Q inside the multi-head self-attention were changed. LSTM and
dropout were configured in the corresponding linear layer, and the configuration shown
in the right figure (d) of Figure 4 was attempted. Through this process, we tried to apply
the recurrent property to the linear layer. In addition, it was judged that the swish action
function would be more suitable for time series data than Relu, an activation function used
in vanilla transformer. Swish is an activation function proposed by Google. Swish is known
as an active function with a smoother interface than the Relu activation function. Swish
is known to converge artificial intelligence models well when learning time series data in
various studies [39,42].

Figure 4. The architecture of the Sl transformer.

In Figure 4, the LSTM network is applied to the linear network only (a) and (b) among
linear networks (a), (b), and (c). First, (b) is a part that receives features of data from
positional encoding as key (K), value (V), and query (Q). This Q describes a hidden state
in the decoder shell, respectively, while K and V denote a hidden state in the encoder
shell. When used for classification purposes, the meaning of Q used as a decoder is greatly
reduced. Therefore, it was judged that the LSTM network with recurrent properties was
suitable for the linear network at the self-attention entrance used for classification purposes.

On the other hand, (c) does not apply this to the linear network. From the data in Q,
K, and V, self-attention determines which part of the time series is close to the core feature.
In addition, the sum of the determined weights is (c), which is then sent back to the linear
network. Since the time attribute is already considered, it could be assumed that applying
LSTM again would increase the bias of classification.

Finally, (d) is the structure of the block applied to (a) and (b). We explain why blocks
that replace MLP are configured in this way. First, the method of constructing the neural
network again after dropping out immediately after normalization was referenced in the
paper [43]. This paper evaluated the order of normalization and dropout.

At the end of Section 3, the overall process is explained through Figure 5 before
moving on to Section 4. In Figure 5, it can be seen that there is an important process for each
step: (a) represents the data received from the sensor. As for the data, the acceleration (b)
represents the data acquisition system. The contents of (a) and (b) are shown in Section 4.1.
A close investigation of the collection process of the CWRU public dataset was written.
Then (c) shows the exploratory data analysis (EDA) process. EDA mainly identifies whether
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there are no data missing values or statistically problematic data. CWRU data are known as
data suitable for learning with artificial intelligence because there is no problem in kurtosis
or skewness in existing studies. If there are too many missing data or a tendency to suspect
intentional manipulation occurring in (c), the data are collected again by going back to step
(b). Then, (d) is the process of preprocessing through SSA. In this process, the optimal L
value for applying the SSA algorithm is found. This is introduced in Section 4.2, and in
(e), the process of learning artificial intelligence comes out. Preprocessed data go through
EDA again to see if they are suitable for artificial intelligence learning. After that, the data
are divided into training, test, and validation. Hyperparameters for model learning are
selected based on the divided data. Hyperparameters are shown in Table 1. In addition,
scores are scored according to the metric selected in this study. However, if performance
differs from the hypothesis, or if results differ significantly from similar prior studies, it
returns to the process of EDA and checks again to see if the data are defective. The main
goal of the experiment is to repeat this process to check whether a metric score with a
hypothesis setting appears.

Figure 5. The block diagram of the proposed research process.
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Table 1. The optimization structure and hyperparameters for the proposed Sl transformer.

Hyperparameter Value

Input size [224, 224, 3]
Batch size 128

Max epochs 500
Learning rate 5 × 10−5

Label smoothing rate 0.1
Number of encoder layers N 6

Hidden dimension 256
Optimizer Adam

Dropout rate 0.2
Position encoding 1D

4. Experiment and Results
4.1. Experiment Settings

The dataset used in this paper is called the Case Western Reserve University (CWRU)
bearing dataset. The CWRU dataset is a supervised learning-based dataset that divides
normal and faulty bearings. In these data, a total of three defects are classified, which
include bearing inner ball defect, inner race defect, and outer race defect. Bearing vibration
data were recorded through a load of 0–3 horsepower (motor speed 1797 to 1720 RPM).
The defect test was measured using the mechanical facility shown in Figure 6a. As shown
in Figure 6 above, the test stand consists of 2 bearings (left), a 2 hp motor (left), a torque
transducer and encoder (center), a dynamometer (right), and control electronics (not shown).
Figure 6b shows the cross-section view of the simulator.

Figure 6. (a) The bearing simulator of CWRU and (b) its cross-section view.

Figure 7 shows the appearance of the rolling bearings of SKF6205-HC5C3. Most of the
defects appear in the outer race, the inner race, and the ball. The defect was created by a
process created by the electrical device called electro-discharge machining (EDM). EDM
is thermo-electric machining process in which material removal takes place through the
process of controlled spark generation between a pair of electrodes which are submerged
in dielectic medium. Ball, inner race, and outer race defects were created in the bearing
data through the EDM process. Figure 8 shows the EDM device. Figure 8a shows the servo
motor that makes the tool electode rotate (b). As the electode rotates, a spark is generated
by the electric device. In the EDM process, (c) is composed of a liquid that acts as a kind of
stabilizer. Oil or water is used to operate it. The distance to the object is adjusted as in (d) to
determine the degree of damage to the object. The dataset contains 4244 normal cases, 4860
ball defects, 4862 inner race defects, and 8529 outer race defects. While assuming the data
structure, we considered applying the data augmentation method. However, this paper
successfully reproduced the factory environment. Data augmentation was not attempted
as the experiment was conducted assuming a class-imbalanced situation.
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Figure 7. Components of rolling bearing.

Figure 8. Schematic of an electric discharge machining (EDM) machine tool.

The hardware used in the experiment included Intel core I7-9750h CPU @ 2.60 GHz
2.59 GHz 32.0 GB RAM, Nvidia GeForce GTX in 1650. The same experiment was conducted
using Google Colab Pro. Google Colab Pro is known for GPU, e.g., T4 or P100 specs.
Both environments gave good results. However, it should be noted that the degree of
convergence of the artificial intelligence neural network may vary depending on the GPU
performance when learning the artificial intelligence neural network.

4.2. Denoising with SSA Algorithm

The four graphs in Figure 9 show reconstructed diagrams by original data, noise, noise
with original data, and SSA algorithm, respectively. Original data brought an example of
an inner race defect. As for noise, white Gaussian noise was presented. The third graph
combines these two factors, and the fourth graph is the reconstruction of the data in the
third graph through the SSA algorithm.
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Figure 9. Data comparison diagram, original data (inner race), noise, noise with original data, and
reconstructed data from above.

Looking at the data reconstructed with the SSA algorithm at the bottom of Figure 9, it
can be seen that the original data are well reconstructed by removing noise. However, it
was necessary to look at a more detailed process. Figure 10 shows the noise cancellation
process based on the SSA algorithm operating principle described in Section 3.1.

The upper right corner of Figure 10 shows the first 11 components. The SSA algorithm
decomposes signal data into various time series data first and selects the most important
factor among the decomposed data, which can be decided at the user’s discretion. As de-
scribed in Section 3.1, it was observed that it is important to select 90% of the subseries
elements in the SSA algorithm grouping process. The notation in the lower left represents
the remaining data in the subseries. In the reconstruction process of the SSA algorithm,
these residual data are determined as noise and are not used. SSA algorithms certainly
had advantages in removing noise over other preprocessing methods. However, there was
an aspect of excessive data reconstruction in the process of removing and reconstructing
subseries. Interesting results were found in the third experiment with the SSA algorithm.
Accuracy performance was measured higher in the noisy third experiment than in the
first experiment without noise. This may be proof that the SSA algorithm makes the pat-
tern clearer. However, this is only a hypothesis, and more algorithm research seems to
be needed.
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Figure 10. Figure shows how SSA decomposes noise-mixed data. The top right, it shows the first
11 elements, the bottom left—maintaining 339 components, and the bottom right—the original time
series (TS), and the top left shows mixture of components.

The L size in Figure 10 is set to 200. This parameter is a very important number when
using SSA. The process of estimating the appropriate L was as follows.

The figures in Figure 11 are when L is 20. In the figure on the right of Figure 11, it
can be seen that the noise was not properly resolved because the number of remaining
components was too small. In addition, in the middle figure of Figure 11, it can be seen
that the data are derived as in the original TS mixed with noise.

Figure 11. The result of SSA when L is 20, the middle shows first 11 components, the right shows
remaining 339 components, the left shows mixture of components.

Figure 12 shows that in a situation where L is 100, many more values of remaining
components are detected than when L is 20. In the middle figure of Figure 12, it can be
seen that the reconstructed data of the first 11 components are in fact very similar to the
reconstructed data when L is 200. However, as can be seen from the Figure 12 right side
figure, it was confirmed that the noise was still less decomposed. In this way, we can find
the value of L.
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Figure 12. The result of SSA when L is 100, the middle shows first 11 components, the right shows
remaining 339 components, the left shows mixture of components.

Even without going through the above method, the method used as L = T/2 is most
widely known. However, there is no guarantee that the L value derived from T/2 during
the decomposition of SSA necessarily distinguishes trend from other components well.
Therefore, it is the process of finding the best parameter for the data to find the optimal
L value that decomposes the trend and other components well, considering the possible
cases among values below the L value.

4.3. Swish Activation Function

Traditionally, the ReLU activation function has been frequently used in deep learning
models. However, in recent years, a number of studies are paying attention to the use of
various activation functions, and in the BERT paper [39], the paper that this paper refers
to as the core, compared to ReLU, GeLU has a smooth curve, which can reduce gradient
vanishing. This is because GeLU can differentiate even for negative numbers, so it can
transmit a small gradient.

This can also be seen in Figure 13. In Figure 13, the black line represents ReLU and
the light blue line represents GeLU. As explained, GeLU has a smoother curve than ReLU.
However, in this paper, swish was judged to be more advanced than GeLU, so swish was
used. The formula for the swish activation function is shown in Formula (4).

f (x) = x · σ(x), where σ(x) =
1

1 + e−x (4)

Swish has a wider range of negative to x values than GeLU. This allows a wider
range than GeLU allows for slightly negative values, allowing better representation of the
gradients received from each node. Even if a small negative number is transmitted as a
gradient, it can be transmitted to the previous layer, so learning is successful [42].

Figure 13. Comparison of GeLU, ReLU, and swish
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Therefore, swish was able to establish the assumption that it would be a better type of
activation function than GeLU while overcoming the limitations of the existing ReLU.

4.4. Evaluation Metrics

The classification performance of the artificial intelligence model was measured using
the CWRU bearing dataset. As a metric, accuracy was mainly examined (5).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

True Positive (TP) means that true is classified as true. True Negative (TN) means that
true is classified as false. False Positive (FP) means that what is wrong is considered true.
Finally, False Negative (FN) means the case where something is wrong is said to be wrong.
The accuracy refers to the ratio of total number of samples vs. what the algorithm predicted
correctly. For example, if my algorithm is 90% accurate, only 90 out of 100 samples are
classified accurately.

Recall =
TP

TP + FN
(6)

The recall (6) is the proportion of the true class compared to what the model predicts
as true. The parameters recall and precision have a trade-off.

Precision =
TP

TP + FP
(7)

The precision (7) describes the ratio of the true class to what the model classifies as true.

F1 − score = 2
Precision × Recall
Precision + Recall

(8)

The f1-score (8) is called the harmonic mean, and if data labels are unbalanced, it can
accurately assess the performance of the model. All experiments used the most important
accuracy mentioned in the evaluation indicator, and the f1-score was used to compensate
for the shortcomings in accuracy.

4.5. Results

A total of three experiments were conducted. The first is to diagnose the fault of the
general CWRU bearing dataset. The first experiment assumed that the SLTransformer can
produce excellent performance when performing classification among comparative models.
The second and third experiments evaluated the SSA algorithm. In the second experiment,
data were classified without the SSA algorithm, and in the third experiment, through the
SSA algorithm.

SVM, CNN, LSTM, and vanilla transformer were selected as artificial intelligence
models that compare performance with Sl transformer. The artificial intelligence models
listed are artificial intelligence models widely used in various domains from the past
to present.

The results of the first experiment are shown in Table 2. The CWRU bearing dataset is
classified. As expected, the experiment confirmed that the Sl transformer performed the
best, as it recorded 95% accuracy and a 94% F1-score. Finally, it was confirmed that the
Sl transformer performed better than the vanilla transformer. It has been confirmed that
the accuracy of the artificial intelligence model has increased further through the method
of replacing the MLP of the vanilla transformer with LSTM. Further, the reason for using
swish activation was for a more stable convergence of artificial intelligence model learning.
Looking at Figures 11 and 12, it was confirmed that the result accuracy and loss have a
stable curve shape.
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A total of 95% accuracy is a very good value for an artificial intelligence model.
However, this is not realistic. The CWRU dataset has a relatively small amount of noise
among bearing datasets. Therefore, it is difficult to reflect the actual factory environment,
and was necessary to conduct another additional experiment.

Table 2. The table of accuracy of the Sl transformer and compared model.

Model SVM CNN LSTM Transformer Sl Transformer

Accuracy 64.32 85.69 90.15 93.47 95.54
F1-score 57.44 84.44 89.72 92.31 94.47

The second and third experiments are about noise, which was inserted into the bearing
data. The purpose of this experiment was to test how robust the methodology was to noise.
First, the framework of this paper explains how to diagnose normal abnormalities in a noise-
laden environment. The experiment was conducted by inserting Gaussian white noise into
the CWRU dataset and then diagnosing the modified data. Experiments involving noise
are close to actual conditions at industrial sites where the situation is not constant and
various noise occurs. In this experiment, noise changes were measured using the signal to
noise ratio (SNR) index [44]. The definition of SNR is as follows (8).

SNRdB = 10 log10

(Psignal

Pnoise

)
(9)

Here, Psignal and Pnoise are the power of signals and noise, respectively. The original
signal is added to the inner race fault by additional white Gaussian noise. The white
Gaussian noise ranged from −4 dB to 4 dB.

The second experiment was on a non-applying SSA algorithm that shows how vul-
nerable artificial intelligence algorithms are to noise data. The second experiment can be
confirmed through Tables 3–6. The experimental results shown in Tables 3–6 are shown
in Figures 14 and 15, which are visualizations of data. In addition, Figure 16 is the data
visualizing Table 3, and Figure 17 is the data visualizing Table 5. An experiment was con-
ducted to compare accuracy and F1-score by dB in the preceding five comparison groups.
As expected, the experiment showed a significant drop in accuracy. In experiments without
SSA, most artificial intelligence models exhibit accuracy and F1-score performance below
70% at −4 dB. The third experiment was about the SSA algorithm application, where it
can be seen how robust SSA is to noise, and at the same time, the Sl transformer perfor-
mance can be verified. In the third experiment, interesting results were observed. Higher
performance (96%) was observed in the presence of noise vs. 95% accuracy performance
in a noise-free situation. This result made it possible to establish another hypothesis: that
time series data were reconstructed more appropriately for artificial intelligence neural
networks in the process of decomposing and reconstructing SSA algorithms. In conclusion,
in this experiment, it was confirmed that the Sl transformer recorded higher accuracy and
F1-score overall compared to comparative models, and the SSA algorithm was robust to
data mixed with noise.
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Figure 14. The loss graph of Sl transformer. The x-axis describes epochs and the y-axis describes loss.

Figure 15. This accuracy graph of Sl transformer. The x-axis describes epochs and the y-axis de-
scribes accuracy.

Figure 16. The accuracy graph of non-applying SSA algorithm for noise data.
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Figure 17. The accuracy graph of applying SSA algorithm for noise data.

Table 7 is composed of scenarios assuming situations in which the application of this
experiment is required. The problem situations that usually occur in existing factories can
be seen in before, and the situation that is solved through SSA-Sl transformer can be seen
in after.

Table 3. The accuracy table of non-applying SSA algorithm for noise data.

Model −4 dB −2 dB 0 dB 2 dB 4 dB

SVM 55.33 57.43 59.62 59.63 59.44
CNN 60.32 62.33 64.45 65.43 67.32
LSTM 63.79 65.44 67.59 68.32 70.10

Transformer 65.72 70.50 73.44 75.62 77.66
Sl transformer 69.89 75.55 77.44 77.48 78.72

Table 4. The F1-score table of non-applying SSA algorithm for noise data.

Model −4 dB −2 dB 0 dB 2 dB 4 dB

SVM 54.79 55.44 58.41 58.01 58.88
CNN 59.44 61.15 61.90 63.57 64.23
LSTM 61.55 64.31 65.11 66.15 69.77

Transformer 64.16 68.51 72.45 74.10 76.09
Sl transformer 68.13 74.10 76.36 75.66 77.77

Table 5. The accuracy table of applying SSA algorithm.

Model −4 dB −2 dB 0 dB 2 dB 4 dB

SVM 65.30 75.65 78.79 80.75 82.33
CNN 79.25 80.95 82.55 85.88 86.75
LSTM 81.10 85.97 90.15 91.25 92.33

Transformer 83.55 87.42 92.35 93.75 94.21
Sl transformer 85.55 89.95 92.44 95.76 96.44

Table 6. The F1-score table of applying SSA algorithm.

Model −4 dB −2 dB 0 dB 2 dB 4 dB

SVM 64.24 74.10 76.42 77.10 79.17
CNN 78.15 79.95 81.34 83.11 85.15
LSTM 80.15 82.44 85.57 90.15 91.99

Transformer 82.11 85.17 88.44 92.28 93.12
Sl transformer 84.00 86.37 92.15 94.35 95.04
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Table 7. Before and after comparison with SSA-Sl transformer introduction scenario.

Before After

- Bearing data are retrieved from the sensor for bearing fault
detection, but noise occurs in the data.

- Accept situations in which noise is generated rather than
attempts to block the noise at the source.

- Remove the generated noise, and use denoise autoencoder as a
representative method. As the neural network for classify and

the neural network for denoise work together, real-time
inspection of defects becomes difficult .

- By performing SSA preprocessing on the generated noise,
the data mixed with noise are decomposed and reconstructed,
so that a large number of noises are separated from the data.

- If noise is not removed, the performance of the artificial
intelligence model will drop sharply due to noise generation,

and deep learning projects will fail.

- Solves the classify problem by using a robust Sl transformer
model on time series data on noise-free data.

5. Conclusions

This paper proposes the SSA-Sl transformer framework to solve the bearing fault
diagnosis challenge. While conducting the bearing fault diagnosis research, it was possible
to discover the limitations of existing studies and present the following hypothesis. Many
existing studies did not assume the actual environment of the factory. The actual factory
produces a variety of noise. In general, it is difficult to collect only clean data. Therefore,
we assumed and implemented the actual factory environment as a situation in which noise
is inserted into the bearing data. Therefore, the process of overcoming data mixed with
noise is the main content of this paper. The proposed method in this paper is expected
to be a re-examination of preprocessing techniques and a proposal of a new artificial
intelligence model. SSA preprocessing techniques allow noise to be decomposed and
reconstructed to create a robust framework for noise. An existing artificial intelligence
model, a transformer, was newly approached. An LSTM with a recurrent attribute was
applied inside the transformer, and a swish activation function suitable for time series
data was used. This artificial intelligence model was an approach that did not exist
before. We demonstrate the model performance of the Sl transformer through various
metrics. Three experiments were conducted to prove the hypothesis. The first experiment
derived metrics scores using Sl transformer for the CWRU dataset. The first experiment
confirmed that the performance was better than that of the vanilla transformer, and it
was confirmed that the classification was performed well. The second experiment added
noise to the CWRU dataset. The degree of noise addition was confirmed by dividing
it into dB. The second experiment confirmed that the artificial intelligence model was
vulnerable to noise, as hypothesized. The third experiment added the SSA preprocessing
process to the second experiment. When the noise was decomposed and reconstructed
through SSA, it was confirmed that the performance of the artificial intelligence neural
network was significantly improved, and in particular, the SSA-Sl transformer showed a
96% performance.

Through this paper, follow-up researchers and engineers hope to obtain the following.
Good performance can be expected by using the SSA methodology when processing data
noise in an artificial intelligence framework, and we present an existing Sl transformer
artificial intelligence model. We look forward to further developing this model. The ex-
perimental conditions and parameters were presented in Sections 3 and 4 to enable this
experiment to be implemented. Engineers can expect to be able to solve the noise generated
when collecting data with sensors using the method of this paper.

However, the limitations of this paper were as follows: Section 4.4 also measured when
noise (dB) was positive, and in the case of positive values, we found that the performance
of artificial intelligence neural network models improved. The same phenomenon was also
found in [22], but there was no mention of related content in the paper. Therefore, it was
possible to hypothesize that a certain level of dB could create robust artificial intelligence,
which was left as future work.
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2. Pech, M.; Vrchota, J.; Bednář, J. Predictive maintenance and intelligent sensors in smart factory. Sensors 2021, 21, 1470. [CrossRef]
3. Sufian, A.T.; Abdullah, B.M.; Ateeq, M.; Wah, R.; Clements, D. Six-Gear Roadmap towards the Smart Factory. Appl. Sci. 2021,

11, 3568. [CrossRef]
4. Sinha, D.; Roy, R. Reviewing cyber-physical system as a part of smart factory in industry 4.0. IEEE Eng. Manag. Rev. 2020, 48,

103–117. [CrossRef]
5. Büchi, G; Cugno, M.; Castagnoli, R. Smart factory performance and Industry 4.0. Technol. Forecast. Soc. Chang. 2020, 150, 119790.

[CrossRef]
6. Toma, R.N.; Prosvirin, A.E.; Kim, J. Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning

classifiers. Sensors 2020, 20, 1884. [CrossRef]
7. Li, H.; Liu, T.; Wu, X.; Chen, Q. A bearing fault diagnosis method based on enhanced singular value decomposition. IEEE Trans.

Ind. Inform. 2020, 17, 3220–3230. [CrossRef]
8. Kuncan, M. An intelligent approach for bearing fault diagnosis: Combination of 1D-LBP and GRA. IEEE Access 2020, 8,

137517–137529. [CrossRef]
9. Hoang, D.-T.; Kang, H.-J . A survey on deep learning based bearing fault diagnosis. Neurocomputing 2019, 335, 327–335. [CrossRef]
10. Yuan, L.; Lian, D.; Kang, X.; Chen, Y.; Zhai, K. Rolling bearing fault diagnosis based on convolutional neural network and support

vector machine. IEEE Access 2020, 8, 137395–137406. [CrossRef]
11. Han, T.; Zhang, L.; Yin, Z.; Tan, A.C. Rolling bearing fault diagnosis with combined convolutional neural networks and support

vector machine. Measurement 2021, 177, 109022. [CrossRef]
12. Zhang, X.; Han, P.; Xu, L.; Zhang, F.; Wang, Y.; Gao, L. Research on bearing fault diagnosis of wind turbine gearbox based on

1DCNN-PSO-SVM. IEEE Access 2020, 8, 192248–192258. [CrossRef]
13. Zhang, R.; Li, B.; Jiao, B. Application of XGboost algorithm in bearing fault diagnosis. In IOP Conference Series: Materials Science

and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 490.
14. Neupane, D.; Seok, J. Bearing fault detection and diagnosis using case western reserve university dataset with deep learning

approaches: A review. IEEE Access 2020, 8, 93155–93178. [CrossRef]
15. Zhu, J.; Jiang, Q.; Shen, Y.; Qian, C.; Xu, F.; Zhu, Q. Application of recurrent neural network to mechanical fault diagnosis: A

review. J. Mech. Sci. Technol. 2022, 36, 527–542. [CrossRef]
16. Liu, H.; Zhou, J.; Zheng, Y.; Jiang, W.; Zhang, Y. Fault diagnosis of rolling bearings with recurrent neural network-based

autoencoders. ISA Trans. 2018, 77, 167–178. [CrossRef]
17. Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. J.

Signal Process. Syst. 2019, 91, 179–189. [CrossRef]
18. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv.

Neural Inf. Process. Syst. 2017, arXiv:1706.03762.
19. Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. arXiv 2021, arXiv:2103.00112.

https://engineering.case.edu/ bearingdatacenter/download-data-file
https://engineering.case.edu/ bearingdatacenter/download-data-file
http://doi.org/10.3390/s20236783
http://dx.doi.org/10.3390/s21041470
http://dx.doi.org/10.3390/app11083568
http://dx.doi.org/10.1109/EMR.2020.2992606
http://dx.doi.org/10.1016/j.techfore.2019.119790
http://dx.doi.org/10.3390/s20071884
http://dx.doi.org/10.1109/TII.2020.3001376
http://dx.doi.org/10.1109/ACCESS.2020.3011980
http://dx.doi.org/10.1016/j.neucom.2018.06.078
http://dx.doi.org/10.1109/ACCESS.2020.3012053
http://dx.doi.org/10.1016/j.measurement.2021.109022
http://dx.doi.org/10.1109/ACCESS.2020.3032719
http://dx.doi.org/10.1109/ACCESS.2020.2990528
http://dx.doi.org/10.1007/s12206-022-0102-1
http://dx.doi.org/10.1016/j.isatra.2018.04.005
http://dx.doi.org/10.1007/s11265-018-1378-3


Electronics 2022, 11, 1504 21 of 21

20. Ha, S.; Marchetto, D.J.; Dharur, S.; Asensio, O.I. Topic classification of electric vehicle consumer experiences with transformer-
based deep learning. Patterns 2021, 2, 100195. [CrossRef]

21. Li, G.; Deng, C.; Wu, J.; Chen, Z.; Xu, X. Rolling bearing fault diagnosis based on wavelet packet transform and convolutional
neural network. Appl. Sci. 2020, 10, 770. [CrossRef]

22. Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault
diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]

23. Oh, S.; Han, S.; Jeong, J. Multi-scale convolutional recurrent neural network for bearing fault detection in noisy manufacturing
environments. Appl. Sci. 2021, 11, 3963. [CrossRef]

24. Hassani, H. Singular spectrum analysis: Methodology and comparison. J. Data Sci. 2007, 5, 239–257. [CrossRef]
25. Golyandina, N.; Korobeynikov, A.; Zhigljavsky, A. Singular Spectrum Analysis with R; Springer: Berlin/Heidelberg, Germany, 2018.
26. Yan, X.; Xu, Y.; She, D.; Zhang, W. Reliable fault diagnosis of bearings using an optimized stacked variational denoising

auto-encoder. Entropy 2021, 24, 36. [CrossRef] [PubMed]
27. Chen, Z.; Li, W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE

Trans. Instrum. Meas. 2017, 66, 1693–1702. [CrossRef]
28. Liu, H.; Li, L.; Ma, J. Rolling bearing fault diagnosis based on STFT-deep learning and sound signals. Shock Vib. 2016, 2016,

6127479. [CrossRef]
29. Islam, M.M.; Kim, J.M. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep

convolutional neural network. Comput. Ind. 2019, 106, 142–153. [CrossRef]
30. Abdelkader, R.; Kaddour, A.; Derouiche, Z. Enhancement of rolling bearing fault diagnosis based on improvement of empirical

mode decomposition denoising method. Int. J. Adv. Manuf. Technol. 2018, 97, 3099–3117. [CrossRef]
31. Chen, B.; Zhang, W.; Song, D.; Cheng, Y. Blind deconvolution assisted with periodicity detection techniques and its application to

bearing fault feature enhancement. Measurement 2020, 159, 107804. [CrossRef]
32. Qiao, Z.; Elhattab, A. A second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault

detection. Nonlinear Dyn. 2021, 106, 707–723. [CrossRef]
33. Qiao, Z.; Pan, Z. SVD principle analysis and fault diagnosis for bearings based on the correlation coefficient. Meas. Sci. Technol.

2015, 26, 085014. [CrossRef]
34. Rodrigues, P.C.; Pimentel, J.; Messala, P.; Kazemi, M. The decomposition and forecasting of mutual investment funds using

singular spectrum analysis. Entropy 2020, 22, 83. [CrossRef] [PubMed]
35. Hassani, H.; Yeganegi, M.R.; Khan, A.; Silva, E.S. The effect of data transformation on singular spectrum analysis for forecasting.

Signals 2020, 1, 4–25. [CrossRef]
36. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw.

Learn. Syst. 2016, 28, 2222–2232. [CrossRef] [PubMed]
37. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series classification. IEEE Access 2017, 6,

1662–1669. [CrossRef]
38. Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019, 116,

237–245. [CrossRef]
39. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
40. Li, Y.; Yuan, Y. Convergence analysis of two-layer neural networks with relu activation. Adv. Neural Inf. Process. Syst. 2017,

arXiv.1705.09886.
41. Nguyen, A.; Pham, K.; Ngo, D.; Ngo, T.; Pham, L. An Analysis of State-of-the-art Activation Functions For Supervised Deep

Neural Network. In Proceedings of the 2021 International Conference on System Science and Engineering (ICSSE), Nha Trang,
Vietnam, 26–28 August 2021.

42. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
43. Garbin, C.; Zhu, X.; Marques, O. Dropout vs. batch normalization: An empirical study of their impact to deep learning. Multimed.

Tools Appl. 2020, 79, 12777–12815. [CrossRef]
44. Chang, C.-I. Hyperspectral Target Detection: Hypothesis Testing, Signal-to-Noise Ratio, and Spectral Angle Theories. IEEE Trans.

Geosci. Remote. Sens. 2021, 60, 1–23. [CrossRef]

http://dx.doi.org/10.1016/j.patter.2020.100195
http://dx.doi.org/10.3390/app10030770
http://dx.doi.org/10.1016/j.ymssp.2017.06.022
http://dx.doi.org/10.3390/app11093963
http://dx.doi.org/10.6339/JDS.2007.05(2).396
http://dx.doi.org/10.3390/e24010036
http://www.ncbi.nlm.nih.gov/pubmed/35052062
http://dx.doi.org/10.1109/TIM.2017.2669947
http://dx.doi.org/10.1155/2016/6127479
http://dx.doi.org/10.1016/j.compind.2019.01.008
http://dx.doi.org/10.1007/s00170-018-2167-7
http://dx.doi.org/10.1016/j.measurement.2020.107804
http://dx.doi.org/10.1007/s11071-021-06857-7
http://dx.doi.org/10.1088/0957-0233/26/8/085014
http://dx.doi.org/10.3390/e22010083
http://www.ncbi.nlm.nih.gov/pubmed/33285858
http://dx.doi.org/10.3390/signals1010002
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.1016/j.neunet.2019.04.014
http://dx.doi.org/10.1007/s11042-019-08453-9
http://dx.doi.org/10.1109/TGRS.2021.3069716

	Introduction
	Related Works
	Bearing Fault Diagnosis
	SSA Algorithm
	LSTM
	Vanilla Transformer

	SSA-Sl Transformer
	SSA Transformation
	SL Transformer

	Experiment and Results
	Experiment Settings
	Denoising with SSA Algorithm
	Swish Activation Function
	Evaluation Metrics
	Results

	Conclusions
	References

