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Abstract: Business process outcome prediction plays an essential role in business process monitoring.
It continuously analyzes completed process events to predict the executing cases’ outcome. Most of
the current outcome prediction focuses only on the activity information in historical logs and less
on the embedded and implicit knowledge that has not been explicitly represented. To address these
issues, this paper proposes a Deep Latent Factor Model Predictor (DLFM Predictor) for uncovering
the implicit factors affecting system operation and predicting the final results of continuous operation
cases based on log behavior characteristics and resource information. First, the event logs are
analyzed from the control flow and resource perspectives to construct composite data. Then, the
stack autoencoder model is trained to extract the data’s main feature components for improving the
training data’s reliability. Next, we capture the implicit factors at the control and data flow levels
among events and construct a deep implicit factor model to optimize the parameter settings. After
that, an expansive prefix sequence construction method is proposed to realize the outcome prediction
of online event streams. Finally, the proposed algorithm is implemented based on the mainstream
framework of neural networks and evaluated by real logs. The results show that the algorithm
performs well under several evaluation metrics.

Keywords: Deep Latent Factor Model; business process outcome prediction; stacked autoencoder
model; predictive process monitoring

1. Introduction

Process mining is a discipline that analyzes historical event logs to discover process
models, detect actual versus expected deviations, and thus optimize business process
structures [1]. As the research interest in process mining continuously rises, the traditional
a posteriori review can no longer meet the growing real-time demand. In this context,
predictive business process monitoring has been proposed to provide operational support
regarding detection, prediction, and recommendation [2].

The goal of predictive business process monitoring is to continuously predict the future
state of a business system concerning current ongoing events and historical information [3],
and an outcome-oriented predictive approach is one of the most intuitive tasks [4]. With
the help of outcome-oriented predictive process monitoring techniques, managers can
obtain relevant recommendations while the system is running. For example, whether
the solution will be accepted, whether the customer is satisfied with the service quality,
and which travel route will be chosen by the customer. Current approaches to outcome
prediction mainly analyze the relationship between events in the process from the control-
flow perspective [5,6]. Some studies have also incorporated attributes related to events to
enrich the information of the researched object [4,7].

Electronics 2022, 11, 1509. https://doi.org/10.3390/electronics11091509 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11091509
https://doi.org/10.3390/electronics11091509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0792-2628
https://doi.org/10.3390/electronics11091509
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11091509?type=check_update&version=1


Electronics 2022, 11, 1509 2 of 18

Realistically, the factors that affect the results are not limited to the explicit attributes
embodied in the logs, such as users, execution time, and resources involved. Some latent
factors that have not been explicitly quantified and analyzed can also have a non-negligible
impact on the results, such as local policies and the mental state of the process executors.
We consider the latent factor model to extract the implicit factors in the historical infor-
mation to address this issue. The latent factor model is a collaborative filtering algorithm
originating from recommender systems [8]. The latent factor model is widely used in
product recommendation and movie rating prediction. It builds on the consensus that
each user has their preferences. Each item also contains the preference information of
all users. High user ratings for items indicate that the preference information contained
in the item is exactly the information that the user prefers. This preference information
cannot be identified obviously, and it is considered the factor that potentially influences the
user’s rating of the item, i.e., the latent factors. We introduce the latent factor model, which
considers that the case occurs because it matches the supposed preference information of
the event log and thus explores the prediction method under the action of the latent factor.

Inspired by the studies mentioned above, this paper proposes a Deep Latent Factor
Model method Predictor (DLFM Predictor) to predict business process outcomes based
on historical event behavior and data information. We realize this method in offline and
online phases:

(1) Construct the deep latent factor model in the offline phase. First, analyze the
processing activity and resource sequences from the control and data flow perspectives.
Then they are mapped into a composite training data set, and the critical features of the
training set are analyzed using a stacked autoencoder model. Finally, a deep latent factor
model is constructed, updated, and optimized on the training set.

(2) Predict business process outcome in the online phase. This phase introduces
a sliding window mechanism that caches the running online event streams as a prefix
sequence (including the activity and resources of the event stream). We can then predict
the process outcome using the model optimized in the offline phase.

The other sections of the article are structured as follows. We present some closely
related research work in Section 2. Section 3 briefly introduces some of the notations,
concepts, and theories involved. Section 4 breaks down each algorithm step in detail,
followed by an evaluation of our algorithm using real logs in Section 5. Finally, Section 6
concludes this paper and presents plans for future work.

2. Related Works

The literature on process outcome prediction analyzes logs based on a known set of
categorical labels to predict the outcome of a process by grouping real-time events into
different subgroups. Maggi et al. constructed a decision tree based on historical execution
information, reduced by user-defined linear time logic rules during prediction [9]. This
method reduces the analysis space and predicts the case’s outcome on time. Leoni et al.
proposed a generic framework for classification/regression problems to predict process
outcomes by considering multilevel features such as control, data, and organization [10].
Francescomarino et al. considers the data properties of event sequences and traces. It
clusters each prefix of the historical traces in the offline part and then matches the real-time
cases with the clusters to complete the prediction in a classification way [11]. The complexity
of prefix computation is alleviated by limiting the prefix length to 21 and interval fetching.
Leontjeva et al. proposed two complex coding sequences based on feature vectors by
training classifiers to give two or more predictions for running cases [12].

With the development of deep learning, the prediction problem has received more
attention. Many neural network-based methods have been introduced to the prediction
process monitoring scenario. Metzger et al. extended the application of recurrent neural
networks (RNN) by considering the sequential form of the process and incorporating
recurrent and parallel structures for outcome prediction [5]. Pasquadibisceglie combined
computer vision with process monitoring to predict outcomes [13]. The method represents
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the feature vector of the current trace in the form of an image, from which convolutional
neural networks in computer vision can be introduced to obtain the prediction results in
image processing.

Many studies manually captured the features of the process without differentiating the
importance of the features. Wang et al. used the Att-Bi-LSTM algorithm, which incorporates
a bidirectional long- and short-term memory network and an attention mechanism to
capture representative features [4]. This method avoids manual screening of log features
and can reduce subjective bias.

While the above methods consider outcome prediction as supervised learning, Folino
et al. show a particular case [7]. The method proposes a semi-supervised approach that
achieves outcome prediction on partially labeled datasets through a fine-tuning strategy
that applies parameters obtained from training on unlabeled complete logs to the outcome
prediction model.

The latent factor model is a model-based collaborative filtering algorithm in recom-
mender systems [8], which has received much attention due to its high accuracy and
scalability in implicit semantic analysis. Cheng extended the latent factor model to an
aspect-aware latent factor model in predicting movie ratings [14]. They focus on the latent
factors related to ratings and analyze the reviews related to ratings by aspect-aware topic
models to address limitations such as cold starts and opacity. When constructing latent
factor models on existing data, using stochastic gradient descent to optimize the model is
a common means, and the selection of learning rate plays an essential role in this stage.
Qingxian Wang et al. used the particle swarm optimization principle to automatically
search for the learning rate, thus constructing a word use latent factor model to select the
optimal learning rate [15].

In order to extract latent factors from high-dimensional sparsity with missing infor-
mation, Luo et al. proposed a new intrinsic nonlinear factor model, inherently, an NLF
model [16]. In comparison, Wu et al. added a data feature-aware module to the latent
factor model for achieving high accuracy prediction under noisy data [17]. In recent years,
the rapid development of deep learning has inspired scholars such as Mongia and Wu.
The former proposed a deep latent factor model for the recommendation system [18]. Since
the high computational complexity is due to the high dimensionality and sparsity of the
user and item matrices, the latter constructed the deep latent factor model by connecting
the latent factor models sequentially through nonlinear activation functions [19]. They
replaced the neural network structure in the depth structure with the LFM, which allows
multilayer latent factor models. These methods have high expressiveness and improve
computational efficiency very well.

3. Preliminaries

In this section, we briefly introduce some domain knowledge and involved notations
related to the study of this paper.

3.1. Event Log

Let A denote an active set, and a sequence consisting of elements ai, a ∈ A in the set is
denoted as σ =< a1, a2, . . . , an > , which length is n. If only some of the elements in σ are
needed, we call it a subsequence and it is marked as σ′ =< ai, . . . , aj >, i ≤ j∧ i, j ∈ [0, |n|].
In particular, when i = j = 0, the sequence σ′ =< ai, . . . , aj >, i ≤ j ∧ i, j ∈ [0, |n|] is an
empty set, denoted as ε. We use the symbol · to denote the concatenation operation.
For example, if σ1 =< a, b >and σ2 =< c, d >, we can get the connection of σ1 and σ2 as
σ′ = σ1 · σ2 =< a, b, c, d >, and the new sequence obtained is the original two sequence
elements connected. The set formed by all these sequences is noted as A∗. The function
f rσ(ai) can express the frequency of each element in the sequence σ.

The prefix is used to extract the first activity of the sequence, formalized as follows.

Definition 1. Prefixes [20]
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The prefix f (k)pre (σ) of a sequence σ =< a1, a2, . . . , an > is a non-empty subsequence of length
k, denoted as follows:

f (k)pre (σ) =

{
< a1, . . . , ak >, i f 0 < k < |σ|

σ, i f k ≥ |σ|

When an activity a is triggered in a system, it is usually accompanied by related infor-
mation about resources and roles data. These are collectively called attributes and denoted
by attr. We denote each activity trigger, and the accompanying attribute information by the
symbol e = (a, attr) called an event. Traces are denoted as sequences in which each activity
trigger is recorded, i.e., σ =< e1, e2, . . . , en >. Moreover, all the traces recorded during the
execution of the system together constitute the event log L.

3.2. latent Factor Model

Latent factor models are often used to recommend favorite items for users. For exam-
ple, when analyzing users’ ratings of movies, the latent factor model assumes that explicit
factors such as movie genre, actors, and directors, and some implicit features influence
users’ ratings.

We explain the latent factor model from a mathematical perspective. We take the
analysis of movie rating data, a widely used scenario for recommendation systems, as an
example. The user’s rating of a movie is noted as xi,j, and the latent factor model is analyzed
by modeling an inner product of the user’s latent factor ui and the movie’s latent factor
of vi, i.e., xi,j = ui � vj, ∀i, j [18]. The latent factor model can be transformed into a matrix
decomposition problem.

If all the data in the scoring matrix were known, the decomposition process would
be fast and straightforward. However, the observed information is usually incomplete,
making matrix decomposition less intuitive. The latent factor model can infer the missing
ratings by minimizing the deviation of the inner product of the latent factors from the
actual observed values and recommending the most likely favorite movies to the users.

This idea can also work in prediction scenarios, where the latent factor model is used
to obtain the best recommendation about the label to obtain prediction results.

The idea based on the LFM model can be fitted with the product M̂CE of the case matrix
PC and the event matrix QE [18]. To investigate the influence of potential factors on the
occurrence of cases and behavior, we consider that there are K hidden factors influencing
the cases and events, so the behavior matrix is further decomposed as follows.

M̂CE = PCQE =
K

∑
k=1

PC,kQk,E (1)

The goal of the training is to minimize the value of M̂CE from the actual matrix MCE
value, where a loss function is used to quantify the deviation between the fitted and
actual values.

Definition 2. Loss function

Cost = ∑
(C,E)∈K

(
MCE − M̂CE

)2
= ∑

(C,E)∈K

(
MCE −

K

∑
k=1

PC,kQk,E

)2

(2)

In the actual training process, overfitting often occurs. A standard method is to add a
regular term to the loss function, at which point the loss function is

Cost = ∑
(C,E)∈K

(
MCE − M̂CE

)2
+ λ‖PC‖2 + λ‖QE‖2 = ∑

(C,E)∈K

(
MCE −

K

∑
k=1

PC,kQk,E

)2

+ λ‖PC‖2 + λ‖QE‖2 (3)
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Therefore, the latent factor model’s training objective is converted to minimize the
loss function.

Definition 3. Objective function

min : Cost = min : ∑
(C,E)∈K

(
MCE − M̂CE

)2
+ λ‖PC‖2 + λ‖QE‖2 (4)

To optimize the objective function, we use gradient descent to find the fastest opti-
mization direction by taking partial derivatives of the objective function, which gives us

∂ Cos t
∂PCE

= −2

(
MCE −

K

∑
k=1

PC,kQk,E

)
QKE + 2λPCK (5)

∂ Cos t
∂QKE

= −2

(
MCE −

K

∑
k=1

PC,kQk,E

)
PCK + 2λQKE (6)

4. Deep Latent Factor Model for Predicting the Outcome

The prediction problem can often be viewed as a classification problem [21]. Our
goal is to infer which outcome the process ultimately boils down to based on the available
historical information. There are many realistic scenarios with various explicit or implicit
factors that affect the system. Explicit factors include information recorded in the logs, such
as activities, resources, and runtime. Implicit factors are not recorded in the logs, have not
been thoroughly studied, or cannot be explicitly described in words or formulas for the
time being, such as policies, biases, regulations, laws, and ethics that affect the operation
of processes.

As shown in Figure 1, this section explores the potential latent factors in the historical
event logs to perform real-time prediction of running cases. We divide the algorithm into
two phases, offline and online, which are described in four subsections.

1. Preprocess logs in the offline phase.
In Section 4.1, we preprocess the historical event logs and construct the case–event matrix.
Then, in Section 4.2, we use the self-encoder to reduce its dimensionality.

2. Predict event flow in the online phase.
In Section 4.3, we construct and train latent factor models based on matrix decomposi-
tion techniques and gradient descent methods.
Finally, in Section 4.4, the model is used to run the real-time prediction of event streams.
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Figure 1. Business Process Outcome Prediction Framework.

4.1. Constructing the Input Log Vector

Predictive models gain insights into the future operational state by analyzing the
training set. A good training set is a basis for obtaining an accurate training model.
Therefore, we first preprocess the null values in the event log, the training set of this paper,
to improve its quality. Subsequently, the event logs are constructed into a case–event matrix
to extract the data’s essential features.

Since our study aims to predict the run results as early as possible, it is necessary to
consider each run trace’s activity and attribute information in log L. However, there may be
misrecording and omission when recording the logs, so we use Lagrange interpolation to pre-
process the numerical-type attributes before constructing the case-activity/attribute matrices.

Numerical missing value processing: Many scenarios contain some kind of intrinsic
connection or law between different objects. Lagrangian interpolation can find unknown
data by known discrete data when a physical quantity is observed. It is one of the standard
algorithms for numerical analysis in mathematics and has been widely used in the data
preprocessing stage (e.g., filling missing values) in data science in recent years. Given a
log L, for each trace t, x denotes the attribute’s location, which is reflected in the log as the
ordinal number of the trace, and y denotes the attribute value corresponding to the current
x. The filling of missing values is done by applying a Lagrangian interpolation polynomial.

Definition 4. Lagrangian interpolation formula
Given a polynomial function with known k + 1 points: (x0, y0), . . . , (xk, yk). Assuming that

any two x are not identical to each other, the Lagrangian interpolation polynomial obtained by
applying the Lagrangian interpolation formula is

L(x) =
k
∑

j=0
yjLj(x)

In the above equation,

Lj(x) =
k

∏
i=0,i 6=j

x−xi
xj−xi

= (x−x0)

(xj−x0)
· · · (x−xj−1)

(xj−xj−1)
(x−xj+1)
(xj−xj+1)

· · · (x−xk)

(xj−xk)
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For missing values, the calculation results can be obtained directly by substituting
them into the Lagrangian interpolation polynomial.

Resource information processing in logs: We consider different text contents as differ-
ent data classes for character-based attributes. In order to input them into the algorithm
for quantitative analysis, they need to be mapped to numeric type data. Directly mapping
character-based data into the corresponding indexes in the order of occurrence can achieve
our goal. However, it is not the best solution because there is no size relationship between
categories. In natural language processing and machine learning, a common means is to
use one-hot encoding to map character-based data into vectors with the same size and only
one non-zero value.

The definition of the encoding function is first introduced to map characters to unique
integers, creating a bijection between characters and integers.

Definition 5. Encoding function [22]
Let X denote all the values that x may pick, i.e., x ∈ X, y ∈ 1, 2, . . . , |X|, then the encoding

function can be defined as
Map(x) : x 7→ y

Definition 6. One-hot encoding function
Let Y denote all the values that y may pick, and the One-hot encoding function is Onehot(y) :

y 7→ ~V, which encodes y as a vector of length |Y|, denoted as

Onehot(y) = ~V = {v1, ..., vi, ..., vmax(Y)} (7)

vi =

{
1, i f f i = y
0, otherwise

For attribute set Attr = {a1, a2, . . . , an}, after One-hot encoding, each element (char-
acter type of attributes) in the set is represented as a1 = (1, 0, . . . , 0), |a1| = n, a2 =
(0, 1, . . . , 0), |a2| = n, an = (0, 0, . . . , 1), |an| = n.

Event information processing in logs: In the study of business process monitoring, it
is common to analogize logs to text in natural language processing, traces to statements,
and activities to words. Therefore, it can use the statement processing techniques in natural
language processing to analyze log activities.

Here we detail how to use activity vectors to extract feature vectors for event logs.

Definition 7. n-gram bag of words Given a trace T =< a1, a2, . . . , aN+n−1 > of an event log L,
the n-gram form of T is defined as follows.

Tn−gram = (σ1, σ2, . . . , σN) (8)

where σi =< ai, ai+1, · · · , ai+n >, |σi| = n. The symbol n is the coefficient in the n-gram.

For each n, T is divided into N n-grams. Assuming that T has a total of ϕ unique
activities, the number of all possible n-grams of T is (|ϕ|n) [23].

When n− gram encoding is used, the order relationship between elements is ignored.
For example, when n = 1, the value in the vector-only indicates whether the element occurs
and how often it occurs. However, sequential, cyclic, and concurrent relationships exist
between each event in the log. We define the activity vector based on n− gram encoding to
compensate for this representation bias.

Definition 8. Activity vector
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Based on the n-gram encoding, setting n to 2, the set of all direct dependency pairs appearing
in the log L is denoted as DS. For the direct dependency between activities a and b in the trace,
denoted as ds(x,y), its activity vector is defined as follows.

Vσ =
[
. . . , ΠDS(ds(x,y)), . . .

]
(9)

where ΠDS(ds(x,y)) =

{
1, if ds(x,y) ∈ DS
0, if ds(x,y) /∈ DS

, 0 ≤ i ≤ ∑σ
i=1(|σ| − 1)

When the elements of the vector are greater than 0, it has the physical meaning that
there is a direct dependency between two activities; when the elements are equal to 0, there
is no direct dependency between two activities.

For example, given an event log L = {< a, b, d >,< a, b, c, e >}, we can obtain
DS = < a, b >,< b, c >,< b, d >,< c, e >, then Vσ1 = [1, 0, 1, 0], Vσ2 = [1, 1, 0, 1].

Result processing of logs: We consider the last activity of the trace where the log
is located as the prediction target, thus attributing the prediction problem of the log to
a classification task, and the name of the activity can be considered as a label in the
classification task. Therefore, the ending activity needs to be treated differently from the
regular activity.

Definition 9. Log result set
By noting the last activity of trace σi as Tail(σi) = oi, the set of ending activities of the log

is noted as END = {o1, o2, . . .}, where oi = Tail(σi). Then, each ending activity is encoded as
one-hot based on the log result set, noted as onehot(oi).

Constructing the input log vector: After the above step processing, we map the
activities and attributes in the event log into vector form. Subsequently, each trace’s activity
and attribute vectors are concatenated according to the trace identifier and then stacked
into a Case-Event matrix, called the behavior matrix.

Definition 10. Behavior vector MCE of log L.

MCE =

onehot(attr11) · · · onehot(attr1m) 2− gram(a11) · · · 2− gram(a1n) onehot(o1)
... · · · · · · · · · · · · · · ·

...
onehot(attrj1) · · · onehot(attrjm) 2− gram(aj1) · · · 2− gram(ajn) onehot(oi)

 (10)

Where

ajn ∈ A ∧ ajn /∈ END, j ∈ [1, |L|], n ∈ [1, |A|], m ∈ [1, |Attr|]i ∈ [1, |END|]

Since the behavior vector construction process involves the processing strategies of
control flow and data flow, we show the process in Algorithm 1 to make it more transparent.

In Algorithm 1, we start from the event log L and expect to obtain a vector that charac-
terizes the behavioral and attribute dependencies between business activities. First, two
empty lists are initialized in Line 2–3 to store the behavior vectors and interdependencies.
Then, we extract the set of activity sequences and the set of attribute sequences from
the event log in the form of traces (Line 4–5). If there are missing values for numerical
attributes, they are repaired by Lagrange interpolation (Line 6–8). After that, the attribute
traces and activity traces are encoded using the One-hot function and the 2-gram function,
respectively (Line 9–14). Finally, the two encoded vectors are connected as a behavior
vector (Line 15).
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Algorithm 1: Construction of behavior vector MCE

Input: Event log L
Result: Behavior vector MCE

1 begin
2 MCE ← [ ];
3 DS← [ ]; // Set of direct dependencies
4 Acts← All activities organized by trace in L;
5 Attrs← All attributes organized by trace in L;
6 if Attrsi is missing and Attrsi is numerical then
7 Attrsi ← Repairing by Lagrangian Interpolation L;
8 end
9 for trace in Attrs do

10 Vattr ← Function Onehot for attributes encoding
11 end
12 for trace σ in Act do
13 Vact ← Function 2-gram for direct dependencies encoding
14 end
15 MCE ← Vattr ·Vact

16 end

4.2. Vector Dimensionality Reduction Based on Stacked Autoencoder

Since the resource encoding takes the One-hot form, there are many 0 elements in
the resource vector. If the activity vector is in the worst case, i.e., all activities have direct
dependencies on each other when the encoding length of each activity reaches |ϕ|2. This
encoding leads to a very sparse vector, which can cause unnecessary space costs. Therefore,
we perform feature extraction on the log vector based on the autoencoder model (as shown
in the AutoEncoder section of Figure 1).

The autoencoder model can be used for data downscaling and feature learning. The ba-
sic idea is to represent the original data with low-dimensional data, similar to principal
component analysis (PCA) [24]. In contrast to PCA, the autoencoder model analyzes
the nonlinear relationships between features by minimizing reconstruction errors in an
unsupervised learning approach. The two main components are the encoder and the
decoder. The former encodes the samples into dimension-specific vectors, and the decoder
reconstructs the vectors into their original dimensions. The log vector MCE obtained in
the previous section is expanded into a set of n-dimensional vectors x, at which point the
autoencoder model can be represented as follows [25].

Encoder:
h = f (x) = σ(Wx + b) (11)

The encoder h is the hidden layer of the neural network, which can produce reduced-
dimensional encoding.

Decoder
r = g(h) = σ(W ′h + b′) (12)

Loss function: Similar to other neural network models, the latent layer of the autoen-
coder model performs a weighted sum of inputs and deviations, which is then processed
by an activation function to achieve a nonlinear transformation [26]. For optimizing the
parameter settings, the loss function is usually set to the squared error of the reconstructed
vector with respect to the original vector.

L =
n

∑
i=1
||x− g( f (x))||2 (13)
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Optimization strategy: We then train the autoencoder model using a gradient descent
optimization algorithm. It is difficult to obtain more desirable abstraction results due to
the weak autoencoder expression capability of the two layers. Therefore, we construct a
layer-by-layer stacked deep autoencoder to extract the trained encoder and use it for the
deep latent factor model.

4.3. Constructing a Deep Latent Factor Model

The current scholars mainly consider the system’s direct influences and analyze the
system’s occurrence pattern from the dependency relationship between activities. In this
section, we construct the Deep Latent Factor Model (as shown in Figure 1) to analyze the
implied characteristics behind the occurrence of events through the control and resource
flow perspectives of logs.

Deep Latent Factor Model: In this section, the middle part of the autoencoder is used
as the model’s input data, and the data are re-divided into a behavior vector PC and a
resource vector QE.

Definition 11. Based on the idea of the LFM model, the product M̂CE of PC and QE can be used to
fit the latent factor model and decompose it further [18].

M̂CE = PCQE = PC,KQK,E (14)

where each item of M (the two-colored squares in Figure 2) can be obtained by multiplying the
corresponding case matrix row vector (the blue squares of PC,K in Figure 2) and the event matrix
column vector (the pink squares of QK,E in Figure 2).

Figure 2. Decomposition diagram of the case–event matrix.
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To train the deep latent factor model using historical data, we decompose and map the
traditional latent factor model matrix into a neuron and weight matrix in a neural network
(refer to [18] for the specific mapping method).

We expect the deep latent factor model to produce a probability value, and the current
output is a real number with a wide range of values. To obtain a probability number
between 0 and 1, the algorithm processes each prediction using the softmax technique,
which is common in deep learning for multi-classification problems. After processing,
the initial prediction results become a decimal number between 0 and 1, and the sum of all
values is 1.

Definition 12. softmax [27]

so f tmax(Op) =
e(O

p
i )

∑C
c=1 e(O

p
c )

, C = |Op| (15)

Example: Suppose the log’s set of terminating activities is {o1, o2, o3, o4}, and the
algorithm’s actual output is Oi = (0.7, 0.6, 1, 2). After the softmax transformation, a set of
prediction results about different categories, i.e., the prediction probabilities, is obtained,
which is noted as Pi = (0.14442535, 0.13068146, 0.19495381, 0.5299394). The subscript with
the highest probability value of 0.5299394 is chosen as the prediction classification, and its
coordinate index(max(Pi) corresponding to the activity name o4 is the final result of the
prediction process.

The model obtains the probability of each process output result by weighted aggrega-
tion of the latent factor model in the last layer and calculates the final output result activity
using the SoftMax activation function.

O′ = so f tmax(W ′′ � M̂CE + b′′) (16)

Loss function: The goal of deep latent factor model training is to minimize the differ-
ence between the prediction result O and the actual category label, which can be classified
as a multi-classification problem, and usually uses cross-entropy loss.

J = −
m

∑
i

yi log(oi
′) (17)

Where m is the number of resultant activities, yi = 1, when the label is the ith activity,
and 0 otherwise; oi

′ is the probability of the ith category obtained by softmax.

4.4. Predicting Process Results

This section describes how to predict the process outcome using the latent factor model
obtained from training.

We consider predicting the running outcome of a process as a multi-categorization
problem, such as accept, reject, ignore, or return. Predicting the running instances makes
it possible to predict the outcome before the system has finished. This stage generates
prediction results by constructing a prefix sequence of running instances as input to the
LFM model. For this purpose, the definition of sequence prefixes needs to be given first.

Definition 1 in the previous section only describes the prefix relationship at the log
control flow level, and we need to extend it to meet the information needs of the prediction
model in this paper.

Definition 13. Expanded prefixes
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The expanded prefixes are written as eprep(σ), where σ =< a1, a2, . . . , an >, attr denotes the
relevant attributes involved in σ, p denotes the number of prefixes, and f r(σi) refers to the frequency
of the subsequence σi.

eprep(σ) =< f r(a1, a2), . . . , f r(ak−1, ak), attr1, . . . > (18)

In the running phase of the system, events belonging to the same trace are associated
according to the case identifier to form an expanded prefix of event length p ∈ [1, n],
and then the trained model is used to achieve process outcome prediction in online scenarios.

5. Experiments

We construct the proposed algorithm as a deep latent factor prediction model (DLFM)
based on Python, implemented using the PM4Py, Scikit-learn, and TensorFlow frameworks,
and evaluate their performance using three real logs. Next, the experimental setup, metrics,
experimental results, and discussion are elaborated.

5.1. Experimental Setup

We use logs from five different scenarios to evaluate DLFM. Since process outcome
prediction is considered a multi-classification problem, the log with more output results
(greater than or equal to 3) is chosen in this paper.

Receipt phase of an environmental permit application process: This log is the exe-
cution record of the status of each phase of the building permit application, abbreviated as
’receive’ in the following.

Sepsis Cases: This log is derived from sepsis cases recorded by the hospital, where
the data attributes are anonymized to protect patient privacy, but the sequence of events is
retained in the log and hereafter abbreviated as ’sepsis’.

BPI Challenge 2012: This log records the process activities required to apply for a
loan, abbreviated as ’bpic2012’.

Road Traffic Fine Management Process: This log records the actual logs generated
by the road traffic fine management system, abbreviated as ’fine’ below.

Hospital Billing: This log is a regional hospital’s ERP financial execution information.
The number of logs is significant, but the information is limited (it does not contain
the required resource logs), so it is sliced and diced in this experiment, abbreviated as
’Billing’ below.

It is worth noting that the outcome activities in each log are not uniformly distributed.
If we consider only the prediction accuracy, the model may obtain spuriously high accuracy
by predicting all the samples as the classifications with the highest number due to the
unbalanced samples. Therefore, we choose the metric ROC curve (Receiver Operating
Characteristic) that is adapted to the unbalanced data scenario.

The ROC curve is a graph with FPR as the x-axis and TPR as the y-axis. FPR indicates
the proportion of negative samples incorrectly judged as positive samples, and TPR is the
proportion of correctly predicted positive samples among all positive samples. When the
area covered by the ROC curve is larger, the model reflects better performance. For quan-
tifying the ROC curve, the area between the curve and the x-axis and y-axis is usually
denoted as AUC (Area Under ROC curve). That is, the larger the AUC, the better the
model performance.

Figure 3 shows the length distribution of the traces in the selected logs. The average
lengths of the traces are all within 50, with more complex trace distributions in ’Sepsis’,
’BPIC2012’, and ’Billing’. The traces in the ’Receipt’ and ’Fine’ logs are relatively short and
straightforward in structure.
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Figure 3. Distribution of trace lengths in the logs.

Combining the statistical information of the logs in Table 1, we can find that the selected
logs all contain multiple resultant activities (consider the activity names as classification
tags). Moreover, the first three logs contain more information with an adequate number of
activities and resources, and the last two logs contain only activity information and lack
resource attributes.

Table 1. Statistical information of logs.

Number Receipt Sepsis BPIC2012 Fine Billing

Traces 1318 1049 13,087 150,370 1013
Events 8577 15,214 262,200 561,470 12,506
Activities 27 16 36 11 18
Resources 48 26 69 \ \
Results 13 14 11 7 14
Unique direct dependency 99 115 125 70 142

We conducted multiple comparison experiments on the selected logs.

1. We set different numbers of latent factors. Multiple sets of experiments analyze the
prediction effects of the proposed prediction method under five logs.

2. Analysis based on different data objects. Compare the prediction results of the
model when only control flow or data flow is considered with those when both
control flow and data flow are considered.

3. Comparison with other outcome prediction methods. We compare DLFM with the
baseline method provided by Teinemaa et al. [3] and the prediction method based on
Attention-Based Bidirectional LSTM Neural Networks proposed by Wang et al. [4] to
evaluate the performance of our algorithm.

5.2. Results

We take Receipt logs as an example to show the relevant experimental results in detail.
The best performance of the model arises from the bounds of underfitting and overfit-

ting. Figure 4 shows the trend of the training-validation loss of the Receipt log where the
number of latent factors k is set between [1, 120] and the number of iterations is between
[1, 200]. We can find that the starting value of the validation loss of the model is lower
than the starting value of the training error, which is the underfitting state at this point.
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The overall trend of the validation error is increasing, while the training error is gradually
decreasing. As the number of iterations increases, the validation error gradually intersects
with the training error and is greater than the latter, becoming an overfitting state.

Figure 4. Loss values for Receipt log.

Thus, Figure 4 illustrates two conclusions obtained with the increase of the number of
latent factors:

(1) The number of iterations for the model to reach the best performance decreases.
When the number of hidden factors is 1, the model is not overfitted even at the training
stop (at the end of 200 iterations). In contrast, when the number of hidden factors is 90,
the model reaches the optimal point at the 100th iteration.

(2) The rate of decrease of the loss value increases. Comparing the graphs in rows 1
and 3, we can find that the gradient of the loss function in row 3 is significantly larger than
that in row 1. This gradient indicates that the training and validation loss can achieve fast
optimality when the number of hidden factors is more significant.

Table 2 shows the prediction performance of the five logs under different parameter
settings.

(1) The effect of the number of latent factors is first analyzed. Observing the corre-
sponding three rows of data in each log, from top to bottom, as the number of latent factors
becomes larger, the AUC values of most of the model predictions increase continuously.
For example, in Sepsis, the AUC of the model under control flow constraint grows from
0.7829 to 0.8479, an increase of 0.0650, while the AUC under control flow and data flow
constraints grow from 0.8411 to 0.8548. The situation in the BPIC2012 log differs from
the overall pattern. Its overall decreasing trend as the latent factor can be explained ac-
cording to the model structure of DLFM. This situation is due to a large number of direct
dependencies in the logs, and the feature vector becomes very sparse. Additionally, dur-
ing data preprocessing, the descriptive power of some features is lost, which reduces the
prediction results.
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Table 2. The highest AUC values of the 5 logs at different settings.

RF [3] XGBoost [3] Att-Bi-LSTM [4]
DLFM

Factors’
Number

AUC under
Control Flow

AUC under
Data Flow

AUC under
Double Flows

Receipt 0.8235 0.8316 \
10 0.8611 0.6123 0.9452
50 0.8823 0.8082 0.9554
100 0.9051 0.8125 0.9581

Sepsis 0.8104 0.8412 0.92
10 0.7829 0.8374 0.8411
50 0.8469 0.8368 0.8429
100 0.8479 0.8527 0.8548

BPIC2012 0.7126 0.7121 0.85
10 0.7930 0.7876 0.7978
50 0.7782 0.7848 0.7928
100 0.7523 0.7606 0.7783

Fine 0.8163 0.8232 0.85
10 0.9388 \ 0.9388
50 0.9391 \ 0.9391
100 0.9388 \ 0.9388

Billing 0.7761 0.8109 0.82
10 0.8856 \ 0.8856
50 0.8957 \ 0.8957
100 0.9077 \ 0.9077

Next, the effect of control flow or data flow on the model’s predictive power is
analyzed. We now need to study Table 2 from left to right for an overall view. When there
are no resource attributes in the logs, the model can make predictions under the constraints
of control flow. When resource attributes are present in the logs, the AUC under the control
flow level constraint is higher than the result under the data flow constraint, and the AUC
is higher in the case of the combination of control flow and data flow.

Finally, we compare the DLFM algorithm with other algorithms. The random forest
(RF) and gradient boosted trees (XGBoost) methods are reported to outperform other base-
line algorithms [3]. Att-BiLSTM also performs well in terms of time and performance [4].
We reran the code of Teinemaa et al. to obtain values for both columns of Table 2 (RF)
and (XGBoost). Since Wang’s code is not yet available, we list the optimal values of their
experimental results in Table 2. The results show that DLFM outperforms both RF and
XGBoost on the logs used. While it performs better on log Sepsis and Billing compared to
Att-BiLSTM, the results are lower on log Sepsis and BPIC2012 compared to Att-BiLSTM.

We still use the Receipt log as an example, and Figure 5 visualizes the resource
relationship in the Receipt log, which is generated by the Mine for a Working-Together
Social Network plugin in the ProM framework. This figure shows that resources act as
additional data attributes in the log messages, acting as constraints and limitations during
the event occurrence. Moreover, the use of these relationships in prediction can assist the
control flow in decision making and improve the prediction results of the model.
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Figure 5. Analysis of the relationship between various resources in the Receipt log.

5.3. Discussions

The experimental results show that considering the hidden factor can improve the
prediction. When the number of selected hidden factors is appropriate, it can enhance the
model’s prediction ability. However, the larger the number of hidden factors is, the better.
When it reaches a critical value, a further increase will lead to a decrease in prediction
ability. This is because the dimensions of activities and resources are then multiplied by the
dimensions of the hidden factor matrix to obtain a vast sparse matrix, leading to a decrease
in the expressiveness of the model.

In addition, resources are interrelated and can influence the direction of the control
flow to some extent. Unfortunately, the exploration of resource perspectives in this paper is
limited. In the experimental results of the previous section, we found that the prediction
model had mediocre performance with some resources alone, yet, when combined with
the control flow, it was able to improve the prediction results significantly. Moreover,
the addition of some resources produced the opposite result. We infer that not all resources
are beneficial to the prediction model. Some useless resource constraints may limit the
model’s performance, leading to the so-called feature explosion. Therefore, selective
resource enrichment should be further explored in future work.

6. Conclusions

This paper proposes a deep latent factor model to predict the process outcome while
the system process is still in progress using potential factors affecting the system operation.
The contributions of this paper can be summarized in the following two aspects:

(1) A deep latent factor model is constructed and optimized offline based on activity
and resource dependencies. We first build a composite vector by incorporating activity and
resource sequences and then stack the auto-encoder model to reduce the dimensionality
of the data to extract the core factors. The encoder part of this model is then used to
construct the deep latent factor model, and the model optimization is performed on the
historical logs;

(2) The results are predicted for the running event stream online. We construct the
online event stream as a sequence of event streams to allow for prediction in the operational
state of the system. To validate the prediction results of the proposed model, we implement
the algorithm based on an open-source framework and evaluate it using several real logs.
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Experiments show that better results are obtained when the model considers both control
and resource flow.

We additionally considered the resource perspective other than the control flow,
however, limited by the nature of the One-hot coding approach, we only considered the
question of whether resources exist. Do resources affect each other? Do resources have
an impact on the control flow? Which resources have a more significant impact on the
control flow? In addition, the impact of data from other perspectives on control flow needs
to be further explored, such as the activity execution role perspective and the organizer
perspective. These exciting questions have not yet been definitively answered, and in
future work, we will further explore these factors by deepening theoretical studies and
expanding the scale of experiments.
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